
Grant Agreement: 644047

INtegrated TOol chain for model-based design of CPSs

DSE in the INTO-CPS Platform

Deliverable Number: D5.3e

Version: 1.0

Date: 2017

Public Document

http://into-cps.au.dk



D5.3e - DSE in the INTO-CPS Platform (Public)

Contributors:

Carl Gamble, UNEW

Editors:

Carl Gamble, UNEW

Reviewers:

Julien Ouy, CLE
Etienne Brosse, ST
Frederik Foldager, AI

Consortium:

Aarhus University AU Newcastle University UNEW
University of York UY Linköping University LIU
Veri�ed Systems International GmbH VSI Controllab Products CLP
ClearSy CLE TWT GmbH TWT
Agro Intelligence AI United Technologies UTRC
Softeam ST

2



D5.3e - DSE in the INTO-CPS Platform (Public)

Document History

Ver Date Author Description
0.0 2017-08-25 Carl Gamble Skeleton Structure, content from D5.2d

added
0.1 2017-11-02 Carl Gamble Cloud DSE operation added
0.2 2017-11-05 Carl Gamble Updated App interface added
0.3 2017-11-06 Carl Gamble Implementation matrix added, version

ready for review
1.0 2017-12-15 Carl Gamble Internal review comments addressed

3



D5.3e - DSE in the INTO-CPS Platform (Public)

Abstract

There are two components to Design Space Exploration (DSE), the method-
ology of how to conduct a search of the design space and the scripts that then
support performing the search. The methodological aspects may be found in
deliverable D3.3a [FGP17] while this deliverable focusses on the scripts that
actually perform the search. In this deliverable we discuss the needs of the
industrial partners of the INTO-CPS project and then describe the scripts
that comprise the tool support in terms of their function, status and future
plans.
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1 Introduction

After an introduction to the related work around DSE (Section 2) and the
needs to the Work Package 1 industrial partners (Section 3), this document
then focusses on the tool support for DSE, providing a description of the
structure, the current status and future plans for DSE as part of the INTO-
CPS association (Section 4).

2 Related Work

In the DESTECS project1 DSE was supported by applying Automated Co-
model Analysis (ACA), such as parameter sweep. The project also provided
support for testing di�erent model implementations. The project provided
methodological guidelines for DSE in [BFG+12] and [FLPV13] and tool sup-
port for the Crescendo in the form of ACA [NBAR+12]. INTO-CPS will use
the methods work from DESTECS as a baseline, extended with wider range
of analysis techniques and including closed loop support.

The Certainty project2 uses DSE in the DOL-Critical method; using the
results of interference analysis reliability analysis to evaluate potential map-
ping and scheduling solutions of tasks to cores on multi-core platforms.
The project includes several tools: �the EXPO tool is the central module
of the framework. As an underlying multi-objective search algorithm, the
Strength Pareto Evolutionary Algorithm (SPEA2) is used that communicates
with EXPO via the PISA interface� [CER13a]. The project also proposes
the �Mixed Criticality Mapping and Scheduling Optimisation (MCMSO)
method� which implements a heuristic method based on simulated anneal-
ing [CER13b]. Both the implementation and methods developed by Cer-
tainty will in�uence DSE in INTO-CPS, in particular the use of simulated
annealing and Pareto Front techniques. It is not clear to what extent this
work is `closed-loop', one focus of DSE in INTO-CPS.

As part of an integrated tool chain for high-level synthesis of high-performance
FPGA systems, the ENOSYS 3 project uses two tools for DSE: FalconML4

and Jink 5. The Jink Design Space Explorer coordinates a design �ow and its

1http://www.destecs.org/
2http://www.certainty-project.eu/
3https://sites.google.com/a/enosys-project.eu/www/home
4https://sites.google.com/a/enosysproject.eu/www/enosys-tools/falconml
5https://sites.google.com/a/enosys-project.eu/www/enosys-tools/jink
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exploration engine searches over various parameters used in customising the
soft core multi processor and in partitioning the UML design to the under-
lying architecture. Jink �nally parses over the various logs and reports �les
produced by the tools during synthesis, compilation, simulation to extract
various design characteristics and metrics. This work is limited to FPGA
design and it is not clear to what extent this work is `closed-loop', or which
ranking or analysis methods are used. Further investigation is required to de-
termine the extent of in�uence these outputs may have on INTO-CPS.

The ongoing AXIOM 6 project will provide DSE, with a deliverable on DSE
due in M24 of the project (January 2017). DSE technologies will be used in
the development of the software parts and the selection of the most appro-
priate hardware architecture and interconnect.

MADNESS 7 use traditional methods for DSE, alongside their �co-exploration�
which uses di�erent search algorithms for di�erent dimensions and they re-
port that �multidimensional co-exploration can �nd better design points and
evaluates a higher diversity of design alternatives as compared to the more
traditional approach of using a single search algorithm for all dimensions.�
We have been unable to obtain public deliverables.

In the iCyPhy project8, e�ort is placed to reduce the design space for DSE
through optimal architecture selection [FNSV15]. A routine is de�ned to
optimise the continuous parameters of a CPS to decrease the number of
simulations.

The DARPA AVM META project9 de�nes the CyPhyML for the modelling
of CPSs. The project uses the Design Space Exploration Tool (DESSERT)
to prune the design space to a �manageable size�. INTO-CPS should consider
the DESSERT technology and its methods for design space reduction.

The Merlin project10 produced a suite of tools collectively called the Strategic
Decision Making Tool (SDMT) to facilitate exploring the design space within
the rail domain. This suite consists of a core tool that orchestrates the DSE,
an optimisation tool responsible for driving the DSE through the use of a
genetic algorithm and pareto optimality analysis and a costing analysis tool
tasked with computing the electrical costs part of the simulation results. This
project makes explicit something akin to architectural aspects of the design

6http://www.axiom-project.eu
7http://www.madnessproject.org/
8http://www.icyphy.org/index.html
9http://cps-vo.org/group/avm/meta
10http://www.ncl.ac.uk/newrail/research/project/4392
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space by allowing the use of clusters, where each cluster may have di�erent
sets of parameters and constraints but all are ultimately compared using the
same objective values.

3 INTO-CPS Case Study DSE Goals

In this section the case study owners present details of their scenarios from
four distinct viewpoints. These viewpoints consider the parameters that
are present in each scenario, how each scenario will be measured, how the
results of each design will be compared to rank the designs and how the
results could be presented. These aspects will a�ect the direction of the DSE
module scripts over the next two years of the project.

3.1 Agro Intelligence

3.1.1 Design Parameters

In the agricultural case study, we have two categories of parameters. The
�rst category de�nes the robot and its operation conditions. The second
category de�nes the parameters of the surrounding environments. The �rst
category has internal dependencies, like total weight, wheel size/operation
speed, sensors and control software. But there are also dependencies between
the two categories, the wheel slip will a�ect the operating speed and the
surface type will a�ect the wheel slip. Crop type will a�ect the width of the
robot because the robot needs to �t the row distance for the current crop.
Current placement of the robot in the environment has a signi�cant impact
on how the controller should operate in terms of movement and operational
strategy.

3.1.2 Solution Objectives

The simulation goal for the agro-case is to determine viable candidate robot
con�gurations for a given scenario. The scenarios are de�ned by the imple-
ment, crop, and surface type. The parameters that the robot design should
be optimised for are navigation and implement response in the environment.
The result should be a list of con�guration parameters that can be used in
the robot design.
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3.1.3 Ranking of solutions

Similarly to the automotive case discussed in Section 3.2.3, the di�erent robot
designs will be compared by a cost function. The evaluation criteria of the
cost function will be total cost and operational performance of the robot in
the given scenario and con�guration.

3.1.4 Results Presentation

The result of the simulation should be presented in an interactive manner,
where the company developers can select the parameter he/she want to evalu-
ate for a speci�c scenario. It should be possible to select several parameters,
e.g. robot vehicle implement, wheel size, and sensory types. The result
should be presented in a list and a graph so the user can see the how the
result compares to each other. It should be possible to select the individual
simulations to see a detailed description of the scenario.

3.2 TWT Gmbh

3.2.1 Design Parameters

For the automotive case study, two categories of parameters can be di�er-
entiated: The �rst group of design parameters that can be varied during an
DSE experiment de�nes the vehicle: vehicle mass, aerodynamic drag coe�-
cient cw, rolling friction coe�cient crr, battery capacity C, and the full load
curve, de�ned by the maximum engine speed nmax and the maximum torque
Mmax. The second set of parameters de�nes the route the vehicle takes to
get from the start position to its destination. These parameters can be de-
scribed as a set of coordinates. For a typical DSE experiment in the context
of INTO-CPS, the �rst set of parameters, de�ning the vehicle, is most likely
the more relevant group.

The vehicle design parameters can depend on each other, e.g. the battery
capacity has an in�uence on the total mass.

3.2.2 Solution Objectives

The simulation results that are of most interest for the automotive case study
are relatively directly measurable. They include: the maximum acceleration
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should not be higher than a speci�c value (e.g. 4ms−2), the time that it
takes to travel a certain distance, the time it takes to achieve a temperature
inside the vehicle within the comfort zone (Tmin < T < Tmax).

3.2.3 Ranking of solutions

Di�erent designs (i.e. vehicle con�gurations) are compared by using a cost-
function that has parameters such as total vehicle cost, energy consumption,
space, and mass. In particular, electric vehicles are optimized using cost
functions that include the battery capacity, energy consumption, mass, driv-
ing performance, e�ciency per component, and energy at the tire. Hybrid
vehicles have cost functions that include the battery capacity, power of the
electric motor, power of the combustion motor, range, energy consumption,
driving performance, and e�ciency of components. These cost functions are
however individual for each automobile manufacturer and depend on the spe-
ci�c problem that needs to be solved. Therefore, there are no universal cost
functions or rules for ranking of results.

3.2.4 Results Presentation

The range of electric vehicles is typically presented as a bar diagram for
di�erent vehicle con�gurations. For hybrid vehicles, the results could be
shown in a 3D-plot, with the di�erent working points of the combustion
motor as the second parameter axis.

3.3 ClearSy

3.3.1 Design Parameters

For the railway case study, two kinds of parameters can be di�erentiated.
The �rst group of parameters correspond to real numbers (or function of
real numbers) such as Kinetic energy, communication or physical movement
delay, track length, track slope (function of position) or traction acceleration
(function of speed), or breaking force.
The other group of parameters is rather a choice of decomposition of a whole
track map into several distributed one, and the corresponding distributed
interlocking. Thus, such parameters are a set of subsets of the track map
database tuples. One can also consider a varying number of trains.
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The parameters may be related, such as minimal and maximal kinetic energy,
or minimal or maximal slope, or traction acceleration.

3.3.2 Solution Objectives

There are two kinds of measurement. The �rst kind of measurement are
extremal values of monitored real number variables such as: train trip delay,
kinetic energy, train availability. The other kind of measurement is whether
one train will overrun another and collide, or whether two train collide be-
cause of an error in the interlocking PLCs. The two kinds may be dependent:
one may want to measure availability but only in the case there is no colli-
sion.

3.3.3 Ranking of solutions

The preference value for solution objective may be the maximal or minimal
value while such and such parameters vary (ex: track map distribution or
traction vary and then the simulation tool would try to �nd the minimal
train trip delay).

It is not clear what is the link between train trip delay and train availabil-
ity. In this case, a curve with at least an extremal value (for instance the
availability) in function of train trip delay could be �ne (train trip delay
computed with the other parameters the number of train, track map decom-
position).

3.3.4 Results Presentation

The presentation for simple objective value would be a table or curve with
a few signi�cative simulations and showing the extremal objective value(s).
For the case of a limit value is overrun (such as maximal allowed speed,
overrun of train so positions overrunning, or collision with same), it could
be interesting to show similar table or curve in the neighbourhood of this
limit value. Finally, it should be interesting to show XY curve for showing
tradeo� between two competitive objectives such as availability vs train trip
delay.

11
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3.4 United Technologies

3.4.1 Design Parameters

DSE is used in building automation to: (a) identify the optimal equipment
and control settings for an existing building; (b) study the equipment scal-
ability over di�erent building thermal characteristics. In the following, we
highlight the key design parameters used in the building automation case
study:

• Equipment Design Parameters: tuning these parameters lead to iden-
tify the optimal thermal supply settings to a building using Fan Coil
Units (FCUs).

1. Maximum water �ow rate: m·
water ∈ [0.08 : 0.12]

2. Maximum air �ow rate: m·
air ∈ [0.4 : 0.6]

3. Water coil e�ciency: εcoil ∈ [0.1 : 1]

• Control Design Parameters: tuning these parameters lead to identify
the optimal PID control response to the building thermal load.

1. Proportional set-point weighting: Kp ∈ [0 : 1]

2. Derivative set-point weighting: Kd ∈ [0 : 1]

• Plant Design Parameters: these parameters are used to express dif-
ferent building heat dissipation characteristics. The building thermal
parameters are varied based on ASHRAE fundamentals 2013 standard.

1. Wall density: ρwall ∈ [960 : 1600]

2. Wall thermal conductivity: λwall ∈ [0.0865 : 0.1298]

Considering that these parameters are independent, then the search space for
optimizing equipment setting is m·

water ×m·
air × εcoil ×Kp ×Kd . Whereas,

the search space for equipment scalability study is ρwall × λwall.

3.4.2 Solution Objectives

The objective of a building automation system is to maintain the user com-
fort, while minimizing the energy consumption. In this case study, the user
comfort is represented as the room air temperature RAT , whereas more
comfort metrics can be taken in account, such as CO2 and humidity. The

12
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automation system maintains the RAT in the comfort band identi�ed as
RATsp ± 1oC, where RATsp is the RAT set-point identi�ed by the user or
the building manager. Therefore, evaluating these performance metrics re-
quires observation of the following dependent variables:

1. Room Air Temperature RAT

2. Room Air Temperature Set-point RATsp

3. Supplied Power Qin

3.4.3 Ranking of solutions

In order to rank the search space solutions, we formulate two evaluation
metrics as follows:

• User discomfort UD is calculated as the area between RAT and RATsp
curves. In order to minimize the user discomfort, the RAT needs to re-
spect the RATsp. RMSE (Root Mean Square Error) is used to quantify
the user discomfort as follows, where N is the total number of samples:

UD =

√√√√∑N
k=1

[
RATsp(k)−RAT (k)

]2
N

(1)

• Energy Consumption E is calculated as the integration of the used
power Qin over the time. In order to calculate the energy consumption,
Coe�cient Of Performance (COP) of the heat pump (HP) required
to be considered as follows (i.e. COP=2.6), where T is the sample
duration :

E =
N∑
k=1

Qin(k) ∗ T
COP

(2)

Optimizing the building performance requires minimizing both metricsMin(UD,E).
However, decreasing one of them leads to increase the other, therefore a
Pareto frontier is required to be evaluated in order to identify the optimal
design parameters.

3.4.4 Results Presentation

Considering the building automation is a multi-objective optimization prob-
lem, then we present the DSE results in an nD plot, where n is the number

13
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of the optimization criteria. In our case study, we optimize the building
automation against two optimization criteria, i.e. E, UD. Therefore, the
search space will be presented in a 2D plot that captures E and UD values
for di�erent con�gurations.

3.5 Key Points from the Case Studies

There are many key points from these descriptions that we can extract
and take into account during the future development of the DSE model
scripts.

• Each of the scenarios has a mixture of both design parameters of the
system itself and parameters de�ning the environment in which the
system is to operate. While these both contribute to the total design
space to be explored it is important that we di�erentiate between them
when, for example, grouping results by design.

• There are sometimes relations between simulation parameters meaning
that not all combinations are valid, for example in the AI case study,
the surface type of the ground a�ects the wheel slip parameter and in
the TWT case study various parameters of the vehicles are linked, such
as the battery capacity of an electric vehicle and its total mass. The
parameter sweep should only visit parameter sets that respect these
constraints.

• There is a range of di�erent complexity levels when processing the raw
simulation results to derive the objective measures needed to assess
each simulation. Some are instantaneous measures that may be directly
provided by the simulation outputs, such as the maximum acceleration
of a vehicle, which others require more complex assessment. Exam-
ples include the time taken for the car cabin temperature to reach a
comfortable level, the cumulative occupant comfort level in the UTRC
scenario and computation of the turning radius in the AI study.

• There are also constraints over the variables in the simulations that
must not be breached, an example of this is the detection of collision of
two trains in the CLE case study. Such a constraint results in a boolean
pass or fail that should be recorded amongst the objective results. It
may be advantageous to terminate a simulation when a constraint is
breached to reduce wasted CPU time but this is outside the current
planned capabilities of the DSE module.

14
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• The UTRC case study explicitly calls for a pareto optimal type analysis
to compare and rank the design results the TWT case study calls for
cost functions that take into account multiple design parameters and
simulation results and are unique to each vehicle simulated.

• In terms of presentation the case studies propose a range of visuali-
sations from being able to select a range of graph types such as bar
graphs, 2 dimensional plots and 3 dimensional plots. These plots could
show a range parameter and results or focus in on interesting areas such
as the neighbourhood around the maximum speed of a train. These are
alongside the ability to compare any two values on an XY plot style
and also pareto optimal style plots.

4 DSE Component Status and Plans

4.1 Module Overview

The DSE module comprises multiple python scripts, con�guration �les, anal-
ysis �les and �les used to store DSE progress and results. Figures 1 & 2 show
the entities associated with DSE. Within an INTO-CPS project folder, the
primary element is the dseCon�g which contains details de�ning the design
space to be searched, how to search it, how to measure the results and how
to compare results. Paths to the dseCon�g and the mm.json �le describing
the model to be used are passed to the search algorithm script to start the
DSE process. The search algorithm creates a date-time folder to store results
and creates a subfolder for each simulation it needs to run. The subfolder
contains a con�g �le containing the complete multi-model details including
the speci�c parameters for that simulation. A COE handler script sends the
contents of the con�g �les to the COE, launches the simulation, retrieves the
raw result and saves it in the results.csv �le.

With the raw results in place, the search algorithm invokes the analysis de-
�ned in the dseCon�g which making use of the built in simple objective scripts
and/or user de�ned scripts, represented here by analysis.py. In the case of
the user de�ned analysis, the script is passed a path to a scenario folder, in
this case scen. 1 in which it will �nd a data �le related to that scenario
if needed, such as the map for a line following robot, here represented by
analysis data. Both types of analysis store their results (objective values)
in the objectives.json �le appropriate for the simulation. The results in the
objectives.json �les are used by the ranking script, to compare all results,
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Figure 1: Folders and �le used by DSE in an INTO-CPS project

with the resulting rankings over the whole DSE experiment being stored in
the ranking �le. Finally, the stored rankings are used by the output scripts
which generates the dseResult that is presented to the user.

4.2 DSE Con�g File

The <name>.dse.json �les contain seven sections, each de�ning a separate
part of the DSE to be performed, Figure 3, these will now be explained.

4.2.1 Parameters

Parameters are core to de�ning the space over which a DSE should search.
Figure 4 shows an example of parameter de�nition for the line follower robot.
Parameters are currently de�ned explicitly as a list.

The future plan here is to allow a set comprehension such as de�ning lower
value, upper value and step.

16
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Figure 2: Outline scripts in the DSE module

Parameter Constraints Parameter constraints allow the user to de�ne
conditions that must be true for a set of design parameters to be valid and
therefore worth simulating. In the line follower example, Figure 4, we de�ne
parameters that represent the co-ordinates of the left and right line follow
sensors. Each sensor has two possible x and y coordinate values, giving each
sensor 4 possible position and therefore 16 possible combinations of the two
sensors. Only four combinations of the sensor positions represent symmet-
rical designs and so the engineer may want to apply constraints so that the
non-symmetrical designs are not simulated. Figure 5 shows the constraints
that ensure the line follow sensors only adopt symmetrical positions.

These constraints are written as a list of boolean equations in python, which
are processed to map the names given to the data structure used in the DSE
scripts and then passed to the Python eval method where it is evaluated.
This method of de�ning parameter constraints has been tested using the line
follower model and the three water tank model and has proven itself to be
adequate in these cases. There are no immediate plans to develop this feature
further unless shown to be needed by any of the case studies.

4.2.2 Objectives

Objective is the name given to the characterising metrics we may derive
from the raw simulation results [Deb12]. There are two methods available

17
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Figure 3: An example DSE con�g �le for the line follower robot

18
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Figure 4: Example parameters from the line follower robot example

Figure 5: Parameter constraints

for evaluating objectives and we refer to these as internal, so called because
it is built in to the DSE module, and external analysis, so called because it
is not part of the supplied DSE scripts but is developed by the engineer and
may make use of data and applications external to the DSE scripts.

Internal analysis allows the user to de�ne objectives that are based upon sim-
ple functions of individual variables logged during simulation. These func-
tions are currently limited to �nding the maximum, minimum or mean value
of some logged variable. Such functions could be used to evaluate an objec-
tive such as �nding the peak measurement of the current drawn through a
component or the minimum �uid level measured in a water tank. Figure 6
shows an example of how internal analysis is declared. Each instance of the
analysis is declared within the internalFunctions section. The de�nition be-
gins with the name of the objective which is also the name that will be used
to record the objective in the objectives.json �le. The de�nition contains two
�elds, columnID which de�nes the name of the variable to be tracked and
objectiveType which states the function to be applied to that column of data
where the options are max, min and mean.

External analysis permits the user to de�ne their own methods for calculating
objectives for use during DSE. The de�nition is in two parts, the script that
performs the calculation and the de�nition of the dseCon�g of the parameters
needed to invoke the script. Figure 7 shows the de�nition of two external
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Figure 6: De�nition of an internal objective which captures the energy con-
sumed during a simulation

Figure 7: De�nition of external objectives for the line follower robot

analysis that evaluate the lap time and cross track error for the line following
robot. Each analysis de�nition is given a name and contains two �elds, the
scriptFile �eld contains the name of the python script containing the analysis
and the scriptParameters �eld contains and ordered list of arguments to be
passed to the script when launched. The parameters passed can contain any
string and in the example they contain the name of variables to be used by
the script and also a constant value which represents a target value to be
used in the cumulative deviation script. When launching an external script
there are three arguments that are passed by default and before those the
user de�nes. These arguments pass the script its objective name, the path
to the folder containing the simulation results and the path to a scenario
folder.

Figure 8 shows an example of an external analysis script that calculates the
cumulative deviation of the water level from a target level in the water tank
example. The script can be separated into two parts. The common part can
be used in all scripts and it extracts the objective name, results folder path
and scenario folder path, it also contains methods to determine the column
index for any variables it should use and a method to write the �nal objective
result into the objectives.json �le. The second part of the script contains the
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scripting that is required to compute the associated objective value and to
extract the arguments added by the user in the de�nition.

There are no plans currently to develop the internal analysis at this point
unless the need for more simple functions is derived from any of the case
studies. There are plans to develop the external analysis in two ways. First,
the common part of the analysis is to be made a library that can be imported
to reduce the need to copy and paste code. The second is with regard to the
values returned by an objective. It has been observed that it is not always
possible to return a value from the analysis function that has meaning, for
example, if the line follower robot fails to complete a lap in the simulation
time it is not possible to calculate the lap time. To this end we will introduce
keyword values that may be returned to indicate that it was not possible to
compute a value and this will be used in place of the very large default values
that have been used up till this point.

4.2.3 Objective Constraints

Objective constraints are not yet implemented but it is expected that they
will follow the same structure as used for parameter constraints. These
will be boolean expressions over objectives values de�ning conditions that
must be true for a result to be considered further. Such expressions could
include objective values being considered against constant values, such as
'maximum_power < 200' based upon multiple objectives such as
'max_deviation_A +max_deviation_B < 10'. These constraints may be
used both by closed loop DSE algorithms so that bad results are not consid-
ered further and also in the presentation of results so only acceptable results
are presented.

4.2.4 Ranking

Ranking is the process of determining the relative �tness of the simulated
designs to meet some goals of the user. There is a single ranking method
implemented at this time, this is the Pareto method which returns a non-
dominated set of results that represent the set of best compromises of a
pair of objectives. The non-dominated set contains all the points where it
is not possible to improve the value of one objective without degrading the
other. Figure 9 shows the results of Pareto ranking the results of running
a DSE on the water tank example, with the non-dominated set shown in
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Figure 8: De�nition of an internal objective which captures the energy con-
sumed during a simulation
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Figure 9: The results of running a DSE on the water tank model, the Non-
dominated set represented in green

green. Here the objectives vCount and cumulativeDeviation were being used
to rank designs with the goal of minimising both values.

The current implementation of the Pareto ranking method supports ranking
results based upon two objective values where they can independently have
their preferred direction (maximising or minimising) de�ned. The plan here
is to extend the current algorithm to support n variables since we can imagine
wanting to perform a ranking of the quality, cost & delivery type.

Pareto is of course not the only type of ranking that a user may want to
utilise, indeed TWT expressed a desire to be able to de�ne a cost function for
ranking (Section 3.2.3). Thus ranking e�orts as the INTO-CPS association
starts will be to implement methods to support such ranking functions. It
is not decided yet what implementation method(s) will be used to extend
this functionality. If the cost functions take the form of a single equation
such as the Weighted Additive Method [Bak05] then allowing the user to
write the equation in the dseCon�g and then processing it using the Python
eval appears feasible, however if the cost functions are more complex such as
the Enumeration and Scoring method [Bak05] then eval may not be suitable
and an approach similar to the external analysis scripts used for measuring
objectives may permit the user the �exibility they need.
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Figure 10: Speci�cation of scenario names to be explored

4.2.5 Scenarios

Scenarios permit the user to make use of di�erent text environments and con-
ditions when assessing the performance of a system under test, for example
we may want to evaluate performance of the line following robot using a vari-
ety of tracks that assess di�erent capabilities or in the case of a vehicle model
we may want to assess how it performs with di�erent driver models.

There are multiple ways in which scenarios may be changed in an INTO-
CPS multi-model depending on how and where the scenario is de�ned in the
model. Changing a scenario may change any or all of the following:

FMU parameter(s) If an FMU contains aspects of more than one scenario
such as a line follow sensor containing the data for more than one map,
it may possible to select which map is used via a parameter that may
be set using the same mechanism as used for design parameters.

FMU implementation An alternative to FMUs containing data for mul-
tiple scenarios is to use multiple FMUs each representing one scenario.
This is the current method used for the line follow robot sensors. Here
scenarios would be changed by changing the instance of FMU refer-
enced in the multi-model.

Multi-Model con�guration While there have, so far, been no examples of
this in any of the pilot studies, it is conceivable that a di�erent scenario
may require the use of a di�erent multi-model.

External analysis data �le Finally, the external analysis scripts may re-
quire data speci�c to a scenario to support their analysis. For example
the cross track error analysis for the line follow robot requires a data
�le containing a representation of the path to be followed.

The DSE con�guration contains a section where the user may specify in a
list the name of each scenario to be used in a DSE (Figure 10). The DSE
drivers currently used this list both in the naming of results directories along
with the design parameters and it is also used to de�ne a path passed to the
external analysis so it may �nd the required data �le.
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4.3 Search Algorithms

At this point there are two DSE search scripts implemented, exhaustive
search, and a genetic algorithm.

4.3.1 Exhaustive Search

The �rst algorithm is an open loop exhaustive algorithm which, as the name
suggests, will search through the entire design space, testing each and every
combination of design parameters, computing the objective values as it goes
and �nally determining the ranking of those results. This is a simple algo-
rithm with no parameters to adjust its behaviour and it guarantees to �nd
the optimal design with the design space de�ned. However, its weakness is
that it may not be feasible to run simulations for all combinations of design
parameters and so it is only applicable to 'small' design spaces.

4.3.2 Genetic Algorithm

The second script contains two variants of a genetic algorithm [Deb12] that
have two parameters to tune their behaviour. The variations o�er choices
of both how the initial population is generated and how parents are selected
to produce each subsequent generation. The parameters a�ect the size of
the initial population and how long the algorithm will continue if no better
results are being found. The strength of a closed loop search, such is this
genetic search, is that they will perform a search of the design space with-
out testing each design and so require less CPU time than an exhaustive
search [FGPL17]. This strength comes at the cost of guaranteeing of �nding
globally optimal designs, the search may instead �nd some set of local opti-
mums and return those. The following subsections outline the steps take by
the genetic algorithm.

Initial population generation The �rst step in the genetic algorithm is
to generate an initial population of designs. The size of this initial set is
a parameter the user may set and there is ongoing work that is described
in D3.2a [FGPP16] that aims to provide guidance on what this size should
be. It is on the generation of this initial set that the two genetic algorithms
di�er. One version of the script produces an entirely random set of designs
and then proceeds to the next step, while the other version attempts to
produce a set of designs that is evenly distributed across the design space.
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Again the experimentation in D3.2a aims to provide guidance about which
of these options should be used and when.

Evaluation and ranking The second step in the genetic algorithm is to
evaluate the new designs according to the objectives in the DSE con�g �le
(section 4.2.2) and then to place them in a partial order according to the
ranking de�ned (section 4.2.4).

Progress assessment With the whole population evaluated and ranked it
is possible to determine if the �tness of the best designs is improving or not,
where �tness is a function of each design's objective values and the ranking
method. This is done by looking at the population of the non-dominated set
of designs to determine how long, in generations, it has been since the one
or more new designs were added to this set. If the number of generations
since this set changed is above a threshold then the algorithm assumes that
an optimal design has been found and the genetic algorithm halts, returning
the graph and table of results to the user. The number of generations the
algorithm will proceed to the next step without seeing any improvement is a
parameter the user may de�ne for the algorithm and once again this is being
investigated so that guidance may be provided.

Parent selection and o�spring generation If the algorithm decides to
proceed, the next step is to select a pair of parents from the whole popula-
tion. Here the parents are weighted according to the rank they achieved in
the evaluation step such that those in rank 1 are more likely to be selected
than any of those in rank 2 and any design in rank 2 is more likely to be
selected than any in rank 3 and so on. With a pair of parents selected the
algorithm places their design parameters in an ordered list, and randomly
chooses a place to cross them, producing two o�spring, such that each o�-
spring has some parameters from each parent, with a small probability that
each parameter may mutate to a di�erent but valid value. Once the o�spring
have been de�ned, the process moves back to the evaluation and ranking step
and the loop continues until the progress and assessment step determines that
no progress is being made.
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4.4 COE Handler

The COE handler is the script that connects the DSE scripts with the COE
and orchestrates the running of the simulation and retrieval of the simulation
results. Aside from the occasional changes imposed by changed in the COE
itself, this script it has remained largely stable since the �rst version was pro-
duced. The most signi�cant change made during Year 3 has been to remove
a dependency on the application curl. This application was used to commu-
nicate the HTTP messages between the COE Handler and the COE itself.
Since Windows does not contain an implementation of curl by default, this
required the application to be distributed with the DSE scripts. The COE
Handler now uses a Python library to handle the HTTP communications
meaning it is now entirely Python based.

One change that would be desirable is the addition of simulation progress
monitoring to the COE Handler. While it is not expected that a user will
sit and watch a DSE running, it is important that feedback be given on
the progress of this activity. As will be discussed later in Section 4.7, it
is most important that the user can perceive progress on the level of the
DSE search rather than an individual simulation, however if individual sim-
ulation progress were available then this would provide the user with extra
information regarding how long the DSE is likely to take. There is a mecha-
nism currently in the INTO-CPS Application that performs this simulation
progress function, it will therefore be investigated if this may be leveraged
for use in the DSE section of the application.

4.5 Cloud support

While the INTO-CPS DSE scripts now support closed loop searching in the
form of the genetic algorithm (Section 4.3.2) and this does improve the e�-
ciency of the search, there is still a non-trivial cost in terms of the number
of simulations run, to exploring a large design space [FGPL17]. One means
to partly address this issue is to make use of parallelism by running multi-
ple simulations of di�erent designs at the same time, thereby reducing the
time to complete a search. However, performing parallel simulation may re-
quire access to more spare computation resources than a small organisation
may have available and so making use of cloud based resources may help
democratise this capability.
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Figure 11: The condor system

The INTO-CPS DSE scripting makes use of the HTCondor11 high through-
put computing platform. This is an open source 'workload management
system for compute-intensive jobs' developed by the University of Wisconsin-
Madison. In essence, HTCondor consists of a submit node and some number
of compute nodes, Figure 11. A user interacts with HTCondor by submit-
ting a job to the compute node. A job consists of a software package the
user wishes to execute and a con�guration �le that, among other things, the
environment the job requires, how to launch the job, how many instances
of the job should be launched and what results should be returned to the
submit node once a job is complete. The submit node is then responsible for
ensuring that all instances of the job are executed by sending them to the
compute nodes when they become available, monitoring their progress and
retrieving the required results when they complete.

Implementing DSE on the cloud required signi�cant extension of the existing
DSE search scripts to cover the transfer of simulation artefacts to and from
the HTCondor submit node, communications with the submit node and also
handling of `straggler' jobs. The issue of stragglers will be discussed shortly.
The outline of the operation both the exhaustive and genetic search scripts
are shown in Figures 12 and 13. Apart from the di�erences in the open-loop
and close-loop approaches, both scripts follow the same sequence when a
simulation is to be run: they �rst create the appropriate multi-model con�g-
uration, pass the path of the multi-model con�guration to a COE Handler
script and then await the results of this single simulation.

The interactions when using HTCondor to deploy parallel simulations is
somewhat di�erent and is outlined for the exhaustive search in Figure 14.

11https://research.cs.wisc.edu/htcondor/
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Figure 12: Outline sequence diagram showing local execution of exhaustive
DSE

Figure 13: Outline sequence diagram showing local execution of genetic DSE
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Figure 14: Outline sequence diagram showing execution of an exhaustive
DSE using HTCondor

First of all, the user is expected to have created an archive containing the
simulation FMUs and the objective scripts and transferred these to the HT-
Condor submit node. This is done once as these �les are common to all
simulations and so this reduces network tra�c. This archive is termed the
simulation package.

With the simulation package in place, the key di�erence between the local
and cloud search implementation arise from the need to paralellise the sim-
ulations. Rather than generating a con�guration, running the simulation
and then moving on, the script now generates exhaustively all con�gura-
tions before commencing simulation. When all simulations are created, the
script then proceeds to create a 'batch' of con�gurations to run, the size of
this batch should match the number of compute nodes that are available
for simulation. The batch is then zipped up and transferred to the HTCon-
dor submit node. On the submit node the con�gurations are added to the
simulation package, before copies of this package are distributed among the
compute nodes and each is given a process number to identify it among the
batch. Each node then performs a single simulation, using its process number
to select the required multi-model con�guration.

A script called the straggler handler monitors the execution of the simulations
and determines when the simulation of the batch is complete. The objective
results, which are returned to the submit node from the computation nodes,
are then zipped up and returned to the search exhaustive search script where
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they are placed into a folder structure using the same naming conventions
as employed when DSE is performed locally. In the case of the exhaustive
search, the next batch is then packaged up and sent to the submit node for
the next round of simulations, while in the case of a genetic search, it now
computes the ranking of the results seen so far and then breeds the next
generation of simulations.

The concept of stragglers has been mentioned and needs explanation. Dur-
ing the testing of cloud DSE at Newcastle University using our HTCondor
installation, we have found that simulations do not always complete. In one
test with 200 identical copies of the line follower robot using identical multi-
model con�gurations, several copies of the simulation failed to terminate.
This problem is likely due to the nature of our HTCondor facility, which
makes use of idle computing cluster machines which, although they have
identical software installations, have had di�erent usage histories and so be-
have di�erently. To address this the DSE scripts include a straggler handling
strategy that allows it to retrieve the completed simulation results when cer-
tain conditions arise. At this time the strategy employed returns results when
either a minimum percentage of the simulations has terminated successfully
or a time-out is reached, whichever occurs �rst. When the simulation results
are returned, the search script places the multi-model con�gurations for any
simulations that did not complete correctly back into the pool to be run again
later. Using this method the scripts eventually return all simulation results
despite the slightly unreliable infrastructure. It is possible that a dedicated
computation facility may not exhibit this unreliable behaviour.

4.6 Results Presentation

The results presentation is the result of two scripts, the ranking script is
responsible for producing the raw ranking data and the graph that will be
displayed (in png format). The output script is responsible for producing
a static html �le including the png graph and extracting the details of the
ranked designs for a table, the results of which are shown in Figure 15.

The page contains the information that would allow the user to determine
which are the best designs, but while the graph highlights the best designs
with di�erent coloured points and the table lists all designs with their rank
number, it is still a manual process to link the points on the graph with the
rows in the table. It also does not lend itself to the identi�cation of trends
by, for example, highlighting all designs with a particular value of a design
parameter. The page also presents all design results, even those with the very
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Figure 15: A page of DSE results

high default values when an objective could not be computed, on the same
graph, this has the e�ect of distorting the results such that the real spread of
results become obscured. The plans for Year 3 include making the page more
dynamic to help identify trends and the position of results in objective space
and also to �lter the simulation results into the acceptable results, those
that were evaluated but did not meet the objective constraints and those
that could not be evaluated for some reason. Additionally to this, since DSE
simulations are not run with either 3D or live stream output, it is desirable
if a user will be able to relaunch a simulation from the results such that the
simulated behaviour may be observed using these other features.

4.7 INTO-CPS Application Integration

The integration of DSE into the INTO-CPS Application has moved from
a simple launch of an already con�gured DSE as reported in Year 2, to a
facility that permits the editing and launching of DSE. The outline of the
user's interaction with a DSE con�guration are shown here, full details are
described in the user manual, D4.3a [BLL+17].
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Figure 16: Double clicking on a DSE con�guration in the app takes the user
to the DSE view

The outline process for using DSE is that the user �rst selects a DSE con�g-
uration by double clicking its icon in the project browser (Figure 16). The
user must then select the multi-model that the DSE will use as a basis for the
simulations that will be performed (Figure 17). The DSE con�guration is
then parsed with the multi-model con�guration in mind and will only open
if the two are compatible in terms of the FMUs in the DSE con�guration
existing in the multi-model con�guration (Figure 18). The user may then
edit the details of the DSE con�guration (See D4.3a for details here), when
this is done the user must then save the DSE con�guration and launch the
COE (Figure 19). Finally the user may then launch the DSE process and
await the results (Figure 20). When complete the user may view the results
as shown in the previous section in Figure 15.
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Figure 17: With a con�guration selected, the user then selects which multi-
model the DSE will act upon

Figure 18: The DSE con�guration is then opened and parsed, and the user
may then edit the details.
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Figure 19: The DSE con�guration is saved once edited and the COE is
launched

Figure 20: The DSE may be launched once the con�guration is saved.
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4.8 Analysis Available to Single Simulations

There is a distinct di�erence in the analysis included provided by the DSE
internal and external analysis scripts along with the ranking methods and
the analysis within the INTO-CPS Application. The INTO-CPS Applica-
tion analysis supports a live stream of selected variables and there is also the
3D visualisation option if engineers create such a view for their models. The
INTO-CPS Application analysis is well suited for understanding how a model
is behaving during simulation, for fault analysis and for communicating with
non-technical stakeholders, especially through the 3D visualisation. At the
same time the DSE analysis abstracts away the detail generated during a sim-
ulation and concentrates on producing the objective values that characterise
performance and allow comparison of competing designs. Making the DSE
type of analysis available to single simulations as well as DSE simulations
would allow them to be compared on common grounds

As can be seen earlier in Figure 3, the de�nitions of both the DSE search
space and algorithm are in the same �le as the de�nition of the objectives and
ranking de�nition, this structure does not make it obvious that the analysis
could be used outside of DSE, also it leads to the objective and ranking
de�nitions being duplicated across multiple DSE con�gurations when it only
needs to be de�ned once.

The proposal for Year 3 then is to dissect the DSE con�guration such that
the search and analysis sections are separate and then to move the analysis
portion up the to a higher level in the INTO-CPS Application project struc-
ture so it is more logically accessible to both DSE and single simulations.
Figure 21 shows a proposed change to the �le and folder structures around
DSE. Note the new analysis folder at the bottom of the tree, it contains a
new �le the name.analysis.json containing the description of the objectives
and ranking method. The external analysis scripts and their data �les are
moved under the new analysis folder. The dseCon�g still exists but contains
only the sections de�ning the search parameters and algorithms.
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Figure 21: Proposed adjustment to the INTO-CPS Application project struc-
ture around DSE
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4.9 Matrix of Capability Implementation

The di�erent DSE search algorithms, Exhaustive/Genetic and Local/Cloud
execution currently exist a four individual scripts that share some common
functions via a library. This parallel development has resulted in not all fea-
tures being available to all versions of the search. This section then describes
which features are available to which search scripts.

Table 1 presents a view of each of these scripts and which features are imple-
mented in each, indicated by a . There are two comments regarding the
implementation of both scenario sweeping and architecture sweeping that are
common to all search scripts, these comments now follow.

**1: Scenario sweeping is currently under development and is being driven
by the 'Little Yellow Bot' that will be added to the examples compendium.
This work will be completed by UNew as their �rst action in the INTO-
CPS association.

**2: Architecture sweeping has been discussed with colleagues at the IN-
COSE international symposium and work on exploring the description of
architecture change points and options. UNew aim to collaborate with the
interested party on this subject in the �rst half of 2018.

Table 1: The four DSE search scripts and the features implemented in each

Local DSE Cloud DSE
Exhaustive Genetic Exhaustive Genetic

Parameters:
range
constraints

Objectives:
de�nition
constraints

Sweeping:
scenarios **1
architectures **2

5 Conclusions

This deliverable has described the state of DSE support in scripts and also in
the INTO-CPS Application. It identi�es that there is certainly much more
work that can take place in terms of DSE support and this is a key part of
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the UNew contribution to the activities that follow on from the INTO-CPS
project in the INTO-CPS association.
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6 List of Acronyms

AU Aarhus University
CLE ClearSy
CLP Controllab Products B.V.
DSE Design Space Exploration
ENUM Enumeration and Scoring
PROV-N The Provenance Notation
ST Softeam
TWT TWT GmbH Science & Innovation
UNEW University of Newcastle upon Tyne
UTRC United Technology Research Center
UY University of York
VSI Veri�ed Systems International
WAM Weighted Additive Method
WP Work Package
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