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Abstract

This deliverable details the state of the INTO-CPS tool chain code generation
capability at the end of project Year 3. Code generation is spread across the
three tools OpenModelica, 20-sim and Overture. With respect to FMI, all
tools have the ability to export standalone FMUs.

4



D5.3d - INTO-CPS Code Generation (Public)

Contents

1 Introduction 6
1.1 Summary of Changes in Year 3 . . . . . . . . . . . . . . . . . 6

2 Background and Related Work 6
2.1 Modelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 SIDOPS+ and Bond Graphs . . . . . . . . . . . . . . . . . . . 7
2.3 VDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 FMI Code Generation with OpenModelica 10

4 FMI Code Generation with 20-sim 12
4.1 Code Generation Principles . . . . . . . . . . . . . . . . . . . 13
4.2 Code Generation Capabilities . . . . . . . . . . . . . . . . . . 15
4.3 FMU Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 FMI Code Generation with Overture 16
5.1 VDM and Code Generation . . . . . . . . . . . . . . . . . . . 17
5.2 Semantics of VDM-RT . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Achieving Translation . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Distributed Architectures in VDM-RT . . . . . . . . . . . . . 42
5.5 Ambiguities Not Addressed by the Semantics . . . . . . . . . . 67
5.6 Implementation as Overture Plugin . . . . . . . . . . . . . . . 68

6 FMU Compilation Service 68

7 Conclusions 69

5



D5.3d - INTO-CPS Code Generation (Public)

1 Introduction

This deliverable describes the maturing code generation capability of the
INTO-CPS tool chain at the end of Year 3 of the INTO-CPS project. Code
generation is spread across the three tools OpenModelica [Lin15], 20-sim
[Con13] and Overture [LBF+10]. In comparison to the code generation ca-
pabilities of OpenModelica and 20-sim, which rely on code generation for
simulation, Overture’s C code generator was developed from scratch for
INTO-CPS. This has resulted in a corresponding emphasis on Overture’s
code generator in this deliverable.

1.1 Summary of Changes in Year 3

Both the OpenModelica and 20-sim code generators have been improved since
project Year 2, but these changes are only minor. The new status of these
code generators is captured in Sections 3 and 4 with only minor differences
from what is reported in the previous version of this deliverable. These minor
changes are as follows:

• OpenModelica New support for embedded platforms through the
Modelica DeviceDrivers library. This is reported briefly in Section 3.

• 20-sim New support for the timeevent() function and for getting and
setting complete FMU state. Support for the 3D visualisation FMU has
been moved out of 20-sim, as previously reported, and is now described
in the INTO-CPS user manual, Deliverable D4.3a [BLL+17]. This is
reported briefly in Section 4.

The most substantial update over the Year 2 version of this deliverable is
contained in Section 5.4, where new code generator support in Overture for
distributed VDM-RT architectures is described. Nevertheless, as most of this
deliverable is dedicated to describing code generator support in Overture, the
reader would benefit from reading all of Section 5, as minor updates appear
throughout.

2 Background and Related Work

This section introduces the three modelling notations Modelica, bond graphs
and VDM, and some existing work on code generation for each. Citations
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for these formalisms are given herein.

2.1 Modelica

Modelica [FE98], [Fri04] is an object-oriented, equation-based language for
conveniently modelling complex physical systems containing, e.g., mechani-
cal, electrical, electronic, hydraulic, thermal, control, electric power or process-
oriented subcomponents. The Modelica language supports continuous, dis-
crete and hybrid time simulations.

The Modelica language has been designed to allow tools to automatically gen-
erate efficient simulation code with the main objective of facilitating exchange
of models, model libraries, and simulation specifications. The definition of
simulation models is expressed in a declarative manner, modularly and hier-
archically. Various formalisms can be expressed in the more general Modelica
formalism. In this respect Modelica has a multi-domain modeling capability
which gives the user the possibility to combine electrical, mechanical, hy-
draulic, thermodynamic etc. model components within the same application
model.

Several tools exist that support code generation from the Modelica language.
These are the commercial tools Dymola1, SimulationX2 and MapleSim3; and
the open-source tools OpenModelica4 and JModelica5. Most of these tools
generate C or C++ code and can also generate FMUs.

2.2 SIDOPS+ and Bond Graphs

SIDOPS (Structured Interdisciplinary Description Of Physical Systems) is
a computer language developed for the description of models and submod-
els of physical systems [Bro90]. It is designed to express bond-graph mod-
els that describe domain-independent engineering systems. 20-sim uses the
SIDOPS+ version of the language, the key features of which are discussed
below.

1http://http://www.modelon.com/products/dymola/.
2http://www.simulationx.com/.
3http://www.maplesoft.com/products/maplesim/.
4http://www.openmodelica.org/.
5http://jmodelica.org/.
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SIDOPS+ [BB97] enhances support for organizing complex systems as a hi-
erarchy of submodels by separating the interface of a model from its specifica-
tion. This enables the creation of different specifications for one interface. In
addition, SIDOPS+ supports different representations of model descriptions
within three abstraction levels [BB97]:

• At the technical component level, models describe networks of devices
which are represented by component graphs.

• At the physical concept level, models capture the physical processes of
a system and can be expressed using graphical formalisms.

• At the mathematical level, models provide the quantitative description
of the physical processes, written in the form of acausal equations or
sequential statements (computer code) that calculate output variable
values from the input variables.

All representations are port-based networks, meaning that the connection
points between model elements is the location where exchange of informa-
tion (signals) or power takes place. As a result, it is possible to map one
representation to another without losing consistency. Similar to Modelica,
the SIDOPS+ language supports continuous, discrete and hybrid time sim-
ulations by offering special functions for determining the sample interval for
discrete-time variables that are linked through equations, and for creating
continuous signals out of discrete input signals.

In 20-sim a model can be defined graphically, similar to drawing an engineer-
ing schematic, or using equations based on the SIDOPS+ language. Such
models can be used to simulate and analyze the behaviour of multi-domain
dynamic systems using, e.g., mechanical, electrical, hydraulic, thermal and
control components.

Systems can be modelled in 20-sim using a variety of modelling formalisms:

• Block diagrams

• Bond graphs

• Iconic diagrams

• Mathematical equations

• System descriptions (state space, transfer function)

Different formalisms can be freely combined within one model (mixed model).
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Graphical models in 20-sim are built from pre-built library blocks or custom-
made blocks. These blocks are called “submodels”. They are implemented
using either a graphical representation or equations.

Using graphical implementations inside submodels allows for hierarchical
modelling. 20-sim supports unlimited levels of hierarchy in the model. The
highest hierarchical levels in the model typically consist of graphical models
(state space models, block diagrams, bond graphs or components). The low-
est level in the hierarchy is always formed by equation models written in the
SIDOPS+ language.

20-sim supports ANSI-C and C++ code generation for a large part of the
SIDOPS+ language. The focus for the code generator is on generating code
with real-time capabilities. Other tools that can generate code from bond
graphs include CAMP-G6, which generates MATLAB code; MS17 which can
generate C and MATLAB code; and PSM++8 which can generate Pascal
code.

2.3 VDM

The Vienna Development Method (VDM) [Bjø79] is a formal software devel-
opment notation and method based on formal proof of specification proper-
ties. The core specification language of VDM is called VDM-SL. Specifica-
tions written in VDM-SL are based on a central system state. Modifications
to the state define the overall behaviour of the system being specified. The
facilities of the language include fundamental types such as R and N+, func-
tion and operation pre- and post-conditions, state invariants, user-defined
types with invariants etc.

The first level of development of VDM sees a move from VDM-SL to the
language VDM++, an object-oriented extension. In VDM++ it is possi-
ble to make use of class-based structuring of specifications such that por-
tions can be reused across specifications, just as encapsulation can be ex-
ploited for reuse in object-oriented programming languages. Indeed, object-
orientation in VDM++ was inspired by object-orientation in programming
languages.

The second expansion of the language results in the dialect VDM-RT. Be-
side all the object-oriented features of VDM++, VDM-RT adds facilities

6http://www.bondgraph.com.
7http://www.lorsim.be.
8http://www.raczynski.com/pn/pn.htm.
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for capturing timing behaviour and specifying distributed system architec-
tures.

Code generation for the various dialects of the (VDM) is implemented in two
VDM support tools. The original VDMTools [CSK07, FLS08] implements
Java and C++ code generators for VDM++. The follow-up open-source
alternative, Overture, provides a Java code generator and a C code generator
that is currently under active development. The target language for the
Overture code generators is VDM-RT, specifically its features for distributed
architectures.

3 FMI Code Generation with OpenModelica

OpenModelica is an open-source Modelica-based modeling and simulation
environment. Modelica is an object-oriented, equation based language to
conveniently model and simulate complex multi-domain physical systems.
The OpenModelica environment supports graphical composition of Modelica
models. Models are simulated via translation to FMU, C or C++ code.
Compilation of Modelica models in OpenModelica happens in several phases

Figure 1: OpenModelica compilation phases.

[Sjö15] (see also Figure 1):
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• Frontend - removes object orientation structures and builds the hybrid
Differential Algebraic Equations (DAE) system to be solved.

• Backend - the hybrid DAE system is index reduced, transformed to
causal form (sorted), and optimized.

• Codegen - the optimized system of equation is transformed to FMU, C
or C++ code using a template language.

We now describe briefly the design principles behind code generation in the
OpenModelica simulator. The OpenModelica simulator transforms Model-
ica code into different lower level languages that can be compiled into exe-
cutable code. Currently OpenModelica can generate C, C++ and JavaScript
code. Additionally, the OpenModelica simulator can generate FMUs compli-
ant with both FMI 1.0 and 2.0 for model exchange and co-simulation.

The transformation from Modelica into executable code consists of several
phases (see also Figure 2):

• Flattening - removal of object orientation from the Modelica language
and creation of a hybrid DAE system.

• Basic Optimization - optimization of the hybrid DAE system, index
reduction, matching, equation sorting, causalization.

• Advanced Optimization - more optimization of the system of equations,
alias elimination, tearing, common sub-expression elimination, etc.

• Independent Simulation Code - the final system of equations is trans-
formed into an independent simulation code structure.

• Code Generation - the Independent Simulation Code structure is given
to several templates which can generate code in different languages,
currently C, C++, JavaScript. The templates can also package FMUs.

• Simulation - the code is compiled into a standalone executable from
the generated code and executed.

The code generation templates are written in the OpenModelica template
language Susan [FPSP09].

As with the other INTO-CPS tools, OpenModelica’s code generation capa-
bility is employed in generating FMI 1.0 and 2.0 FMUs for co-simulation.
Only the forward Euler method of integration is available in the generated
FMUs. These are source code FMUs which contain all the necessary source
code files to be compiled for any target. With INTO-CPS, specifically for
embedded targets, this process is facilitated by 20-sim 4C.
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Figure 2: OpenModelica code generation using templates.

A direct way to compile to embedded target has also been implemented
in OpenModelica [TBW+17] using a new restricted code generator and the
Modelica DeviceDrivers library.

4 FMI Code Generation with 20-sim

FMI code generation from 20-sim builds upon the application’s existing code
generation toolbox. 20-sim can generate ANSI-C and C++ code from a
graphical or equation model. The generated code is passed to 20-sim 4C, a
rapid prototyping application that takes the generated model code as input,
combines it with target-specific code and prepares it for execution on a real-
time target.
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The main design principle behind the separation between 20-sim and 20-sim
4C is that a model should be independent of the actual target on which
it should run. A model should contain only the necessary information of
the target relevant for the simulation and no details specific or relevant to
code generation. A typical 20-sim model contains no information about the
intended target. The model can contain behavioural details about the target,
such as the accuracy of an analog-to-digital converter, but detailed knowledge
about the actual chip used and how to read values from this converter is not
necessary for the simulation and is therefore not part of the model. As a
consequence, 20-sim is not able, on its own, to produce standalone C code
that can access specific hardware. It can only generate standalone C code
that includes the model behaviour. This is enough for generating FMUs but
not for running them on actual hardware.

4.1 Code Generation Principles

The 20-sim ANSI-C/C++ code is generated based on all SIDOPS+ equations
inside the model. Figure 3 shows the flowchart of the 20-sim code genera-
tion process. The processing phase in 20-sim takes the graphical or equation
model, flattens it and translates it into a hybrid Differential Algebraic Equa-
tion (DAE) system. This DAE system is transformed into a causal form (set
of sorted equations). These sorted equations are then further optimized for
both simulation and code generation purposes.

20-sim uses code generation templates to generate code for different purposes.
One of these templates is the standalone FMU export template (for both FMI
1.0 and 2.0). 20-sim translates the optimized sorted equations into several
blocks of ANSI-C code (e.g. initialization code, static equations, dynamic
equations). These blocks are all stored in a token dictionary. Based on
the token dictionary and the selected code generation template, the actual
code is produced by means of a token replacement step. An example of the
generated code can be found in deliverable D5.1d [HLG+15] (Section 6.2,
Listing 3).

The FMU export template contains all functions that are required by the
FMI 1.0 and/or 2.0 standard. These functions call the pre-defined 20-sim
model functions for initialization, calculate steps and terminate. Besides
20-sim generated model functions, the template contains several pre-defined
helper functions that implement ANSI-C versions of the SIDOPS+ language
functions not directly supported in ANSI-C. Examples include matrix sup-
port functions, Table file read functionality and motion profile calculation
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Figure 3: Flowchart of code generation from 20-sim.

functions. The latest version of the 20-sim Standalone FMU template can
be found on GitHub:

https://github.com/controllab/fmi-export-20sim.
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4.2 Code Generation Capabilities

Only a subset of the 20-sim modelling language elements can be exported as
ANSI-C or C++ code. The exact supported features depend on the chosen
template and its purpose. The main purpose of the 20-sim code generator is
to export control systems. Therefore the focus is on executing the generated
code on “bare-bone” targets (i.e. without operating system support, such as
Arduino) or as a real-time task under a real-time operating system.

The following features are not, or are only partially supported for code gen-
eration in all templates. The FMI export template has no specific real-time
goal, therefore this template supports more features than the other code
generation templates.

• Hybrid models: Models that contain both discrete- and continuous-
time sections cannot be generated at once. However, it is possible to
export the continuous and discrete blocks separately.

• External code: Calls to external code are not supported. Examples
are: DLL(), DLLDynamic() and the MATLAB functions.

• Variable delays: The tdelay() function is not supported due to the
requirement for dynamic memory allocation.

• Frequency Event function: frequencyevent() statements are ig-
nored in the generated code.

• Fixed-step integration methods: Euler, Runge-Kutta 2 and Runge-
Kutta 4 are supported.

• Variable-step integration methods: Vode-Adams and Modified Back-
ward Differential Formula (MeBDF) are only available in the devel-
opment FMI export template found on GitHub at https://github.

com/controllab/fmi-export-20sim (branch: MeBDFi). The vari-
able step-size methods are not supported for all other code-generation
templates due to their real-time constraints.

• Implicit models: Models that contain unsolved algebraic loops are
not supported.

• File I/O: The 20-sim “Table2D” block is supported for FMU export.
All other file-related functions are not supported.
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4.3 FMU Capabilities

The FMI standard allows for many optional features. Here we summarize
the most important characteristics of FMUs exported from 20-sim. Feature
support includes the following:

• Co-simulation FMUs for both FMI 1.0 and FMI 2.0

• Standalone FMUs

• Real-time capability (when not using file I/O and variable step-size
integration methods)

• Multi-instance support

• Support for both fixed-step-size and variable step-size methods

• FMUs which include source code

• Access to all model parameters and internal model variables

• Dynamic memory allocation (canNotUseMemoryManagementFunctions
= false)

• Structured variable naming support (hierarchy using “.” and arrays
using “[ ]”)

• Getting and setting the complete FMU state

The following FMI features are not supported:

• Getting partial derivatives

• Definition of used units

5 FMI Code Generation with Overture

Code generation capability development for Overture was split into two
stages. Unlike 20-sim and OpenModelica, which had mature code genera-
tion capabilities at the beginning of the INTO-CPS project, code generation
to C for Overture was a new feature. The first step was to develop the code
generation capability proper, the second to extend this to export of stan-
dalone FMUs. This section describes the design and implementation of the
C code generator. This discussion is further divided into two parts. The
first is concerned with code generation for the basic expression language of
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VDM-SL and the object-oriented features of VDM++, whereas the other
deals specifically with code generation of the distribution features of VDM-
RT.

5.1 VDM and Code Generation

VDM can be used to specify systems at a very abstract level, as well as at a
level that is concrete enough to be transliterated to any imperative program-
ming language. Constructs such as pre- and post-conditions, state invariants
and non-determinism facilitate the former, whereas constructs such as local
variable declarations, assignments and loops facilitate the latter.

For instance, consider the following two specifications of a sorting algorithm,
one very abstract, the other very concrete:�
ab s t r a c tSo r t ( unso r t edL i s t : seq of int ) s o r t e dL i s t : seq of int
pre true
post permutat ions ( unsor tedLi s t , s o r t e dL i s t ) and

fora l l i , j in set inds s o r t e dL i s t &
i <= j => s o r t e dL i s t ( i ) <= so r t edL i s t ( j ) ;
� ��

conc r e t eSo r t : ( seq of int ) ==> ( seq of int )
conc r e t eSo r t ( unso r t edL i s t ) ==
(

dcl s o r t e dL i s t : seq of int := unso r t edL i s t ;
dcl tmp : int ;

for a l l i in set inds s o r t e dL i s t do
for a l l j in set inds s o r t e dL i s t do

i f s o r t e dL i s t ( j ) >= so r t edL i s t ( i ) then
(

tmp := so r t e dL i s t ( i ) ;
s o r t e dL i s t ( i ) := s o r t e dL i s t ( j ) ;
s o r t e dL i s t ( j ) := tmp ;

) ;

return s o r t e dL i s t ;
)
� �
The former assumes the existence of a function that confirms whether two
sequences of integers are permutations of each other:�
permutat ions : seq of int ∗ seq of int −> bool
� �
The abstract specification conveys its meaning very clearly in terms of the
relationship that the resulting state must bear to the starting state. It forms
a very clear starting point for implementation in any programming language.
The meaning of the concrete specification is perhaps not as easily gleaned,
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as it has an imperative flavour. But it is intentionally constructed like an
imperative program, such that it can be easily transliterated into, say, a Java
implementation:�
private stat ic List<Integer> conc r e t eSo r t ( L i s t<Integer> unso r t edL i s t )
{

List<Integer> s o r t e dL i s t = unso r t edL i s t ;
I n t eg e r tmp ;

for ( int i = 0 ; i < s o r t e dL i s t . s i z e ( ) ; i++)
{

for ( int j = 0 ; j < s o r t e dL i s t . s i z e ( ) ; j++)
{

i f ( s o r t e dL i s t . get ( j ) >= so r t edL i s t . get ( i ) )
{

tmp = so r t e dL i s t . get ( i ) ;
s o r t e dL i s t . s e t ( i , s o r t e dL i s t . get ( j ) ) ;
s o r t e dL i s t . s e t ( j , tmp ) ;

}
}

}

return s o r t e dL i s t ;
}
� �
The ability to choose the level of abstraction for any given specification not
only facilitates a refinement-based approach to software development, but
makes the method easy to use by system developers with very different ex-
pertise, from purely mathematical to fully focused on programming.

Refinement is crucial to code generation. Essentially, a code generator must
embody a refinement strategy which is applied without human intervention
in seemingly one step. The easiest way to implement a code generator is
to keep the source language as concrete as possible. The example above
demonstrates that, whereas the abstract specification of the sorting proce-
dure can be implemented in any way that is correct wrt the post-condition,
the concrete specification is a lot more direct, in that it provides unequivocal
guidance toward the implementation of a bubble sort. It is important to note
that it is the meaning of the specification that is essential. Its presentation,
whether abstract or concrete, is a matter of practicality. Implementation of
any other correct sorting procedure would satisfy the concrete specification,
but the bubble sort is easiest to derive from the specification. The Overture
C code generator starts from a restricted subset of VDM-RT that makes such
derivation easiest.
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5.2 Semantics of VDM-RT

The semantics of VDM-RT adopted by the Overture C code generator is
fully documented in INTO-CPS deliverables D2.1b [FCL+15] and D2.2b
[FCC+16]. The semantic work is rooted in Hoare and He’s Unifying Theories
of Programming (UTP) [HJ98]. Here we give a brief overview of the most
important aspects of the semantics.

Features of VDM-SL The expression language of VDM-RT forms the
basic mathematical core of the language. The mathematical vocabulary is
standard and ranges over basic number domains, the Boolean domain, sets,
sequences, maps etc. Expressions can refer to state variables, but they do not
admit non-deterministic constructs, such as underspecified choice between
values (e.g. VDM-RT’s let-be-such-that construct.) Therefore, expression
evaluation is deterministic modulo specification state, that is, an expression
evaluated in the context of an instance of a class will always be deterministic
relative to that object’s state. The semantics of the expression language of
VDM-RT is therefore assumed to be the standard mathematical one, and a
direct semantic mapping into UTP expressions is assumed.

Features of VDM++ The feature of VDM++ of primary interest to code
generation is object orientation. The semantics defines nine fundamental
conditions governing the structure of a valid object-oriented specification in
VDM++. Later, we show that the code emitted by the Overture C code
generator is in conformance with these conditions, with a few justifiable
exceptions. In brief, the conditions are:

• OO1: The special class Object is always a class of the system.

• OO2: Every class of the system has a superclass, except for Object.

• OO2a: Every class other than Object may have multiple direct super-
classes.

• OO3: Every class has Object as a (not necessarily direct) superclass.

• OO3a: Cycles are not allowed in the case of multiple inheritance.
That is, if class C inherits from classes A and B, then A and B may
not themselves be in an inheritance relationship.

• OO4: Every class must define at least one attribute.

• OO4a: Every class must define an invariant.
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• OO5: Attribute names are unique across classes.

• OO6: Each attribute is either of basic type, or of the type of one of
the classes existing in the system.

These healthiness conditions form part of a theory of classes and object-
orientation to which the semantics of VDM++ proper must conform. Further
to the conditions on the static structure of an object-oriented specification,
conditions are placed on object (class instance) behaviour. The effect of these
conditions is as follows.

Upon creation of an instance of a class, all the attributes inherited from its
superclasses are collected and associated with the instance being created.
They are assigned default values nondeterministically for basic types and
null references for class types. Access to overridden attributes along an in-
heritance chain (e.g. C inherits from B and B inherits from A) is resolved
to the nearest overriding attribute in the chain.

In the presence of multiple inheritance, it is possible for several superclasses
to define the same function or operation, creating ambiguity for the class
inheriting from both simultaneously. Listing 1 illustrates this situation in
VDM++.

Listing 1: Method declaration ambiguity in multiple inheritance context.�
class A

operations
public op : ( ) ==> bool
op ( ) ==

return true
end A

class B
operations
public op : ( ) ==> bool
op ( ) ==

return fa l se
end B

class C i s subclass of B, A
end C

class D
instance variables

obj : C := new C( ) ;

operations
public t e s top : ( ) ==> bool
t e s top ( ) ==

return obj . op ( ) ;
end D
� �
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The semantics dictates that in this circumstance a choice be made arbi-
trarily from the multiple definitions of the function or operation. However,
Overture does not allow this sort of ambiguity in the specification (Overture
considers the specification in Listing 1 invalid), eliminating both this and the
more general problem of diamond inheritance. In a code generation context,
therefore, this choice does not have to be made. The decision to disallow
such specifications in Overture reflects a refinement of the semantics, and so
consistency between semantics, existing tool support and tool support under
development is maintained.

Features of VDM-RT The two additional features provided by VDM-
RT, namely timing information and facilities for distributed architectures,
are treated separately in Section 5.4.

5.3 Achieving Translation

The priority of the translation strategy is to remain faithful to the VDM-RT
semantics described above. The strategy therefore assumes that VDM-RT
specifications have been validated using Overture’s various facilities. This
section describes the strategy and the two sides of the translation mecha-
nism, the implementation of the strategy and the native C support library.
This section focuses specifically on the fundamental features of VDM, those
provided by VDM-SL and VDM++. Section 5.4 discusses the translation of
the additional features provided by VDM-RT.

5.3.1 Native Support Library

Implementations generated from VDM-RT models consist of two parts, the
generated code and a native support library9. The native library is fixed and
does not change during the code generation process. We illustrate its design
here by means of very simple generated VDM models.

9The design of the native library is based on the following four sources:
http://www.pvv.ntnu.no/~hakonhal/main.cgi/c/classes/, accessed 2016-09-22.
http://www.eventhelix.com/RealtimeMantra/basics/

ComparingCPPAndCPerformance2.htm, accessed 2016-09-22.
http://www.go4expert.com/articles/

virtual-table-vptr-multiple-inheritance-t16616/, accessed 2016-09-22.
http://www.go4expert.com/articles/virtual-table-vptr-t16544/, accessed 2016-
09-22.
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The native library provides a single fundamental data structure in support
of all the VDM-RT data types, called TypedValue. The complete definition
is shown in Listing 2 (excerpt from previous work on integrating Overture
with the TASTE toolset [FVB+16].) A pointer to TypedValue is #defined
as TVP, and is used throughout the implementation.

Listing 2: Fundamental code generator data type.�
typedef enum {

VDM INT, VDMNAT, VDMNAT1, VDMBOOL, VDMREAL, VDMRAT, VDMCHAR, VDM SET,
VDM SEQ, VDMMAP, VDMPRODUCT, VDMQUOTE, VDMTOKEN, VDMRECORD, VDM CLASS

} vdmtype ;

typedef union TypedValueType {
void∗ ptr ; // VDM SET, VDM SEQ, VDM CLASS, VDMMAP, VDMPRODUCT
int in tVal ; // VDM INT, VDM INT1 and VDMTOKEN
bool boolVal ; // VDMBOOL
double doubleVal ; // VDMREAL
char charVal ; // VDMCHAR
unsigned int quoteVal ; // VDMQUOTE

} TypedValueType ;

struct TypedValue {
vdmtype type ;
TypedValueType value ;

} ;

struct Co l l e c t i o n {
struct TypedValue∗∗ value ;
int s i z e ;
int bu f s i z e ;

} ;
� �
An element of this type carries information about the type of the VDM value
represented and the value proper. For space efficiency, the value storage
mechanism is a C union.

Members of the basic, unstructured types int, char, etc. are stored directly
as values in corresponding fields. Due to subtype relationships between cer-
tain VDM types, for instance nat and nat1, fields in the union can be reused.
Functions to construct such basic values are provided:

• TVP newInt(int)

• TVP newBool(bool)

• TVP newQuote(unsigned int)

• etc.

All the operations defined by the VDM language manual on basic types are
implemented one-to-one. They can be found in the native library header file
VdmBasicTypes.h.
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Members of structured VDM types, such as seq and set, are stored as refer-
ences, owing to their variable size. The ptr field is dedicated to these. These
collections are represented as arrays of TypedValue elements, wrapped in the
C structure Collection. The field size of Collection records the number
of elements in the collection, whereas the field buf size records the length
of the pre-allocated buffer used for storage. Naturally, collections can be
nested. At the level of VDM these data types are immutable and follow
value semantics. But internally they are constructed in various ways. For
instance, internally creating a fresh set from known values is different from
constructing one value-by-value according to some filter on values. In the
former case a new set is created in one shot, whereas in the latter an empty
set is created to which values are added. Several functions are provided for
constructing collections which accommodate these different situations.

• newSetVar(size t, ...)

• newSetWithValues(size t, TVP*)

• newSeqWithValues(size t, TVP*)

• etc.

These rely on two functions for constructing the inner collections of type
struct Collection at field ptr:

• TVP newCollection(size t, vdmtype)

• TVP newCollectionWithValues(size t, vdmtype, TVP*)

The former creates an empty collection that can be grown as needed by
memory re-allocation. The latter wraps an array of values for inclusion in a
TVP value of structured type. All the operations defined in the VDM language
manual on structured types are implemented one-to-one. They can be found
in the header files VdmSet.h, VdmSeq.h and VdmMap.h.

VDM’s object orientation features are fundamentally implemented in the
native library using C structs. In brief, a class is represented by a struct

whose fields represent the fields of the class. The functions and operations
of the class are implemented as functions associated with the corresponding
struct.

Consider the following example VDM specification.

Listing 3: Example VDM model.�
class A
instance variables

private i : int := 1 ;
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operations
public op : ( ) ==> int
op ( ) ==

return i ;
end A
� �
The code generator produces the two files A.h and A.c, shown below.

Listing 4: Corresponding header file A.h.�
#include ”Vdm. h”
#include ”A. h”

#define CLASS ID A ID 0

#define ACLASS struct A∗

#define CLASS A Z2opEV 0

struct A
{

VDM CLASS BASE DEFINITIONS(A) ;

VDM CLASS FIELD DEFINITION(A, i ) ;

} ;

TVP Z1AEV(ACLASS t h i s ) ;

ACLASS A Constructor (ACLASS) ;
� �
The basic construct is a struct containing the class fields and the class
virtual function table:

Listing 5: Macro for defining class virtual function tables.�
#define VDM CLASS FIELD DEFINITION( className , name) \

TVP m##className## ##name

#define VDM CLASS BASE DEFINITIONS( className ) \
struct VTable ∗ ##className## pVTable ; \
int ##className## id ; \
unsigned int ##className## r e f s
� �

The virtual function table contains information necessary for resolving a
function call in a multiple inheritance context as well as a field which receives
a pointer to the implementation of the operation op.

Listing 6: Virtual function table.�
typedef TVP (∗ Virtua lFunct ionPo inte r ) ( void ∗ s e l f , . . . ) ;

struct VTable
{

// F i e l d s used in the case o f mu l t i p l e inhe r i t ance .
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int d ;
int i ;

V i r tua lFunct ionPo inte r pFunc ;
} ;
� �
The rest of the important parts of the implementation consist of the function
implementing op(), the definition of the virtual function table into which this
slots and the complete constructor mechanism.

Listing 7: Corresponding implementation file A.c.�
#include ”A. h”
#include <s t d i o . h>
#include <s t r i n g . h>

void A f r e e f i e l d s ( struct A ∗ t h i s )
{

vdmFree ( th i s−>m A i ) ;
}

stat ic void A free ( struct A ∗ t h i s )
{
−−th i s−> A re f s ;
i f ( th i s−> A re f s < 1)
{

A f r e e f i e l d s ( t h i s ) ;
f r e e ( t h i s ) ;

}
}

/∗ A. vdmrt 6:9 ∗/
stat ic TVP Z2opEV(ACLASS th i s )
{

/∗ A. vdmrt 8:10 ∗/
TVP r e t 1 = vdmClone ( newBool ( t rue ) ) ;

/∗ A. vdmrt 8:3 ∗/
return r e t 1 ;

}

stat ic struct VTable VTableArrayForA [ ] =
{
{0 , 0 , ( ( Vi r tua lFunct ionPo inte r ) Z2opEV ) ,} ,

} ;

ACLASS A Constructor (ACLASS t h i s p t r )
{

i f ( t h i s p t r==NULL)
{

t h i s p t r = (ACLASS) mal loc ( s izeof ( struct A) ) ;
}

i f ( t h i s p t r !=NULL)
{

t h i s p t r−> A id = CLASS ID A ID ;
t h i s p t r−> A re f s = 0 ;
t h i s p t r−> A pVTable=VTableArrayForA ;
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t h i s p t r−>m A i= NULL ;
}

return t h i s p t r ;
}

// Method fo r c r ea t i ng new ” c l a s s ”
stat ic TVP new ( )
{

ACLASS ptr=A Constructor (NULL) ;

return newTypeValue (VDM CLASS,
(TypedValueType )
{ . ptr=newClassValue ( ptr−> A id ,

&ptr−> A re f s ,
( freeVdmClassFunction)&A free ,
ptr ) } ) ;

}

/∗ A. vdmrt 1:7 ∗/
TVP Z1AEV(ACLASS th i s )
{

TVP bu f = NULL;

i f ( t h i s == NULL)
{

bu f = new ( ) ;

t h i s = TO CLASS PTR( buf , A) ;
}

return bu f ;
}
� �
TO CLASS PTR merely unwraps values and can be ignored for now.

Construction of an instance of class A starts with a call to Z1AEV. An instance
of struct A is allocated and its virtual function table is populated with the
pointer to the implementation of op(), Z2opEV. The latter name is a result
of a name mangling scheme implemented in order to avoid name clashes in
the presence of inheritance10. A header file called MangledNames.h provides
the mappings between VDM model identifiers and mangled names in the
generated code. This mapping aids in writing the main function. The scheme
used is ClassName identifier. Listing 8 shows the contents of the file for
the example model.

Listing 8: File MangledNames.h.�
#define A op Z2opEV

10The name mangling scheme is based on the following sources:
https://en.wikipedia.org/wiki/Name_mangling, accessed 2016-09-28.
http://www.avabodh.com/cxxin/namemangling.html, accessed 2016-09-28.
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#define A A Z1AEV
� �
By default, the code generation process provides an empty main.c file such
that it is possible to compile the generated code initially. It will, of course,
be completely inert. The following example populated main.c file illustrates
how to make use of the generated code.

Listing 9: Example main.c file.�
#include ”A. h”

int main ( )
{

TVP a in s t an c e = Z1AEV(NULL) ;
TVP r e s u l t ;

r e s u l t = CALL FUNC(A, A, a in s tance , CLASS A Z2opEV ) ;

p r i n t f ( ”Operation op r e tu rn s : %d\n” , r e su l t−>value . intVal ) ;

vdmFree ( r e s u l t ) ;
vdmFree ( a i n s t an c e ) ;

return 0 ;
}
� �
Had the class A contained any values or static fields, the very first calls into
the model would have been to A const init() and A static init(). The
main.c file also contains helper functions that aggregate all these calls into
corresponding global initialization and tear-down functions. As this is not
the case here, an instance of the class implementation is first created, together
with a variable to store the result of op. The macro CALL FUNC carries out
the necessary calculations for calling the correct version of Z2opEV in the
presence of inheritance and overriding (not the case here).

Listing 10: Macros supporting function calls.�
#define GET STRUCT FIELD( tname , ptr , f i e l d t yp e , f i e ldname ) \

(∗ ( ( f i e l d t y p e ∗ ) ( ( ( unsigned char∗) ptr ) + \
o f f s e t o f ( struct tname , f i e ldname ) ) ) )

#define GET VTABLE FUNC( thisTypeName , funcTname , ptr , id ) \
GET STRUCT FIELD( thisTypeName , ptr , struct VTable ∗ , \

##funcTname## pVTable ) [ id ] . pFunc

#define CALL FUNC( thisTypeName , funcTname , c las sValue , id , a rgs . . . ) \
GET VTABLE FUNC( thisTypeName , \

funcTname , \
TO CLASS PTR( c lassValue , thisTypeName ) , \
id ) \

(CLASS CAST(TO CLASS PTR( c lassValue , thisTypeName ) , \
thisTypeName , \
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funcTname ) , ## args )
� �
The result is assigned to result, which is then accessed according to the
structure of TVP. The function vdmFree is the main memory cleanup function
for variables of type TVP.

5.3.2 Translating Features of VDM-SL

In this section we discuss how the basic features of VDM-RT, those contained
in the subset VDM-SL, are translated to C.

Basic data types Instances of the fundamental data types of VDM-SL
(integers, reals, characters etc.) translate directly to instances of type TVP

with the appropriate field of the union structure TypedValueType set to the
value of the instance. They are instantiated using the corresponding con-
structor functions newInt(), newBool() etc. introduced above. Operations
on fundamental data types preserve value semantics by always allocating
new memory for the result TVP instance and returning the corresponding
pointer.

Structured types. Like basic types, aggregate types such as sets and
maps are treated in exactly the same way. The support library provides
both the data type infrastructure as well as the operations on aggregate
types such that translation is rendered straightforward. For example, the
definition�
a : set of int := {1} union {2} ;
� �
translates directly to�
TVP a = vdmSetUnion ( newSetVar (1 , newInt ( 1 ) ) , newSetVar (1 , newInt ( 2 ) ) ) ;
� �
where newSetVar() is one of the several special-purpose internal construc-
tors. The translation strategy is similar for sequences and maps. Value
semantics for these immutable data types is maintained in the same way as
for the basic data types.

Quote types Quote types such as that shown in Listing 11 are treated at
the individual element level. Each element is assigned a unique number via
a #define directive, as shown in Listing 12.
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Listing 11: Quote type example.�
class QuoteExample

types

public QuoteType = <Val1> | <Val2> | <Val3>

end QuoteExample
� �
Listing 12: Quote type example translation.�

. . .

#ifndef QUOTE VAL1
#define QUOTE VAL1 2658640
#endif /∗ QUOTE VAL1 ∗/

#ifndef QUOTE VAL2
#define QUOTE VAL2 2658641
#endif /∗ QUOTE VAL2 ∗/

. . .
� �
Union types. The decision to keep run-time type information for every
variable of type TVP obviates the need for a translation strategy for union
types.

5.3.3 Translating Features of VDM++

Classes Earlier we introduced the mechanism of C structures used to rep-
resent classes. Translation of a model class is therefore straightforward, with
each class receiving its own specific struct. As illustrated in Listings 4 and
7 above, each class receives its own pair of C header and implementation
files. Most importantly, the header file contains the definition of the cor-
responding class struct and the declarations of the interface functions for
this struct. These include the top-level constructor and initialization and
cleanup functions for class values and static field declarations. The im-
plementation (.c) file contains the constructor mechanism, the definition of
the virtual function table of the class and the implementations of the class’s
functions and operations. The virtual function table is constructed in ac-
cordance with the inheritance hierarchy in which the class belongs (this is
discussed below). Class values definitions and static fields are implemented
as global variables. Their definitions are also inserted in the implementation
file, along with initializer and cleanup functions to be called, respectively,
when the implementation starts and terminates.
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Inheritance The effect of inheritance is to augment the definition of the
inheriting class with the features of the parent class, modulo overriding. In
our struct-based implementation of classes and objects, the traits of the
base class are copied into the struct corresponding to the inheriting class.
Therefore, the struct of the inheriting class duplicates the fields and virtual
function table of the base class. It is important to note here that the mean-
ing of qualifiers such as protected is lost when such inheritance hierarchies
are translated. However, the generated code is meant to be used as a black
box, and access to these definitions should not circumvent the existing in-
frastructure put in place in the original model (e.g. accessing a private field
manually rather than through the accessor operations defined in the model.
Correct access is ensured by Overture.

Consider the translation of the model with inheritance shown in Listing 13.
Despite its cumbersome length, we provide the listing of the complete trans-
lation so that the reader may also gain familiarity (at his/her own pace) with
all the elements of the generated code.

Listing 13: Inheritance example.�
class A
instance variables
public f i e l d A : int := 0 ;

operations
public opA : int ==> int
opA( i ) == return i ;
end A

class B i s subclass of A
operations
public opB : ( ) ==> ( )
opB ( ) == skip ;
end B

class C
instance variables
b : B := new B( ) ;

operations
public op : ( ) ==> int
op ( ) == return b . opA(b . f i e l d A ) ;
end C
� �
The six files A.h, A.c, B.h, B.c, C.h and C.c reproduced below make up the
complete translation.

Listing 14: File A.h.�
// The templa te f o r c l a s s header
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#ifndef CLASSES A H
#define CLASSES A H

#define VDMCG

#include ”Vdm. h”

// inc lude types used in the c l a s s
#include ”A. h”

#define CLASS ID A ID 0
#define ACLASS struct A∗

#define CLASS A Z3opAEI 0

struct A
{

VDM CLASS BASE DEFINITIONS(A) ;

VDM CLASS FIELD DEFINITION(A, f i e l d A ) ;
VDM CLASS FIELD DEFINITION(A, numFields ) ;

} ;

TVP Z1AEV(ACLASS t h i s ) ;

void A con s t i n i t ( ) ;
void A const shutdown ( ) ;
void A s t a t i c i n i t ( ) ;
void A stat ic shutdown ( ) ;

void A f r e e f i e l d s (ACLASS) ;
ACLASS A Constructor (ACLASS) ;

#endif /∗ CLASSES A H ∗/
� �
Listing 15: File A.c.�

#include ”A. h”
#include <s t d i o . h>
#include <s t r i n g . h>

void A f r e e f i e l d s ( struct A ∗ t h i s )
{

vdmFree ( th i s−>m A fie ld A ) ;
}

stat ic void A free ( struct A ∗ t h i s )
{
−−th i s−> A re f s ;
i f ( th i s−> A re f s < 1)
{

A f r e e f i e l d s ( t h i s ) ;
f r e e ( t h i s ) ;

}
}

stat ic TVP Z17 f i e l d I n i t i a l i z e r 2EV (){
TVP r e t 1 = vdmClone ( newInt ( 0 ) ) ;

return r e t 1 ;
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}

stat ic TVP Z17 f i e l d I n i t i a l i z e r 1EV (){
TVP r e t 2 = vdmClone ( newInt ( 1 ) ) ;

return r e t 2 ;
}

stat ic TVP Z3opAEI (ACLASS th i s , TVP i ){
TVP r e t 3 = vdmClone ( i ) ;

return r e t 3 ;
}

void A con s t i n i t ( ){
numFields 1 = Z1 7 f i e l d I n i t i a l i z e r 1EV ( ) ;

return ;
}

void A const shutdown (){
vdmFree ( numFields 1 ) ;

return ;
}

void A s t a t i c i n i t ( ){

return ;
}

void A stat ic shutdown (){

return ;
}

stat ic struct VTable VTableArrayForA [ ] ={

{0 , 0 , ( ( Vi r tua lFunct ionPo inte r ) Z3opAEI ) ,} ,
} ;

ACLASS A Constructor (ACLASS t h i s p t r )
{

i f ( t h i s p t r==NULL)
{

t h i s p t r = (ACLASS) mal loc ( s izeof ( struct A) ) ;
}

i f ( t h i s p t r !=NULL)
{

t h i s p t r−> A id = CLASS ID A ID ;
t h i s p t r−> A re f s = 0 ;
t h i s p t r−> A pVTable=VTableArrayForA ;

t h i s p t r−>m A fie ld A= Z17 f i e l d I n i t i a l i z e r 2EV ( ) ;
}

return t h i s p t r ;
}

stat ic TVP new(){
ACLASS ptr=A Constructor (NULL) ;
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return newTypeValue (VDM CLASS, (TypedValueType )
{ . ptr=newClassValue ( ptr−> A id , &ptr−> A re f s , \

( freeVdmClassFunction)&A free , ptr ) } ) ;
}

TVP Z1AEV(ACLASS th i s ){
TVP bu f = NULL;

i f ( t h i s == NULL )
{

bu f = new ( ) ;

t h i s = TO CLASS PTR( buf , A) ;
}

return bu f ;
}

TVP numFields 1 = NULL ;
� �
Listing 16: File B.h.�

#ifndef CLASSES B H
#define CLASSES B H

#define VDMCG

#include ”Vdm. h”
#include ”A. h”
#include ”B. h”

#define CLASS ID B ID 1

#define BCLASS struct B∗

#define CLASS B Z3opBEV 0

struct B
{

VDM CLASS BASE DEFINITIONS(A) ;

VDM CLASS FIELD DEFINITION(A, f i e l d A ) ;
VDM CLASS FIELD DEFINITION(A, numFields ) ;

VDM CLASS BASE DEFINITIONS(B) ;

VDM CLASS FIELD DEFINITION(B, numFields ) ;
} ;

TVP Z1BEV(BCLASS t h i s ) ;

void B con s t i n i t ( ) ;
void B const shutdown ( ) ;
void B s t a t i c i n i t ( ) ;
void B stat ic shutdown ( ) ;

void B f r e e f i e l d s (BCLASS) ;
BCLASS B Constructor (BCLASS) ;

#endif /∗ CLASSES B H ∗/
� �
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Listing 17: File B.c.�
#include ”B. h”
#include <s t d i o . h>
#include <s t r i n g . h>

void B f r e e f i e l d s ( struct B ∗ t h i s )
{
}

stat ic void B f r e e ( struct B ∗ t h i s )
{
−−th i s−> B r e f s ;
i f ( th i s−> B r e f s < 1)
{

B f r e e f i e l d s ( t h i s ) ;
f r e e ( t h i s ) ;

}
}

stat ic void Z3opBEV(BCLASS th i s ){
{

// Skip
} ;

}

void B con s t i n i t ( ){
return ;

}

void B const shutdown (){
return ;

}

void B s t a t i c i n i t ( ){
return ;

}

void B stat ic shutdown (){
return ;

}

stat ic struct VTable VTableArrayForB [ ] ={

{0 , 0 , ( ( Vi r tua lFunct ionPo inte r ) Z3opBEV) ,} ,
} ;

BCLASS B Constructor (BCLASS t h i s p t r )
{

i f ( t h i s p t r==NULL)
{

t h i s p t r = (BCLASS) mal loc ( s izeof ( struct B) ) ;
}

i f ( t h i s p t r !=NULL)
{

A Constructor ( (ACLASS)CLASS CAST( th i s p t r ,B,A) ) ;

t h i s p t r−> B id = CLASS ID B ID ;
t h i s p t r−> B r e f s = 0 ;
t h i s p t r−> B pVTable=VTableArrayForB ;

}
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return t h i s p t r ;
}

stat ic TVP new(){
BCLASS ptr=B Constructor (NULL) ;

return newTypeValue (VDM CLASS, (TypedValueType )
{ . ptr=newClassValue ( ptr−> B id , &ptr−> B re f s , \

( freeVdmClassFunction)&B free , ptr ) } ) ;
}

TVP Z1BEV(BCLASS th i s ){
TVP bu f = NULL;

i f ( t h i s == NULL )
{

bu f = new ( ) ;
t h i s = TO CLASS PTR( buf , B) ;

}

Z1AEV( ( (ACLASS) CLASS CAST( th i s , B, A) ) ) ;

return bu f ;
}
� �

Listing 18: File C.h.�
#ifndef CLASSES C H
#define CLASSES C H

#define VDMCG

#include ”Vdm. h”
#include ”B. h”
#include ”C. h”

#define CLASS ID C ID 2

#define CCLASS struct C∗

#define CLASS C Z2opEV 0

struct C
{

VDM CLASS BASE DEFINITIONS(C) ;

VDM CLASS FIELD DEFINITION(C, b ) ;
VDM CLASS FIELD DEFINITION(C, numFields ) ;

} ;

TVP Z1CEV(CCLASS t h i s ) ;

void C con s t i n i t ( ) ;
void C const shutdown ( ) ;
void C s t a t i c i n i t ( ) ;
void C stat ic shutdown ( ) ;

void C f r e e f i e l d s (CCLASS) ;
CCLASS C Constructor (CCLASS) ;
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#endif /∗ CLASSES C H ∗/
� �
Listing 19: File C.c.�

#include ”C. h”
#include <s t d i o . h>
#include <s t r i n g . h>

void C f r e e f i e l d s ( struct C ∗ t h i s )
{

vdmFree ( th i s−>m C b ) ;
}

stat ic void C free ( struct C ∗ t h i s )
{
−−th i s−> C r e f s ;
i f ( th i s−> C r e f s < 1)
{

C f r e e f i e l d s ( t h i s ) ;
f r e e ( t h i s ) ;

}
}

stat ic TVP Z17 f i e l d I n i t i a l i z e r 4EV (){
TVP r e t 4 = vdmClone ( Z1BEV(NULL) ) ;

return r e t 4 ;
}

stat ic TVP Z17 f i e l d I n i t i a l i z e r 3EV (){
TVP r e t 5 = vdmClone ( newInt ( 1 ) ) ;

return r e t 5 ;
}

stat ic TVP Z2opEV(CCLASS t h i s ){
TVP embeding 1 = GET FIELD(A, A, GET FIELD PTR(C, C, th i s , b ) , f i e l d A ) ;

TVP r e t 6 = vdmClone (CALL FUNC(B, A, GET FIELD PTR(C, C, th i s , b ) , \
CLASS A Z3opAEI , embeding 1 ) ) ;

return r e t 6 ;
}

void C con s t i n i t ( ){
numFields 2 = Z1 7 f i e l d I n i t i a l i z e r 3EV ( ) ;

return ;
}

void C const shutdown (){
vdmFree ( numFields 2 ) ;

return ;
}

void C s t a t i c i n i t ( ){
return ;

}

void C stat ic shutdown (){
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return ;
}

stat ic struct VTable VTableArrayForC [ ] ={

{0 , 0 , ( ( Vi r tua lFunct ionPo inte r ) Z2opEV ) ,} ,
} ;

CCLASS C Constructor (CCLASS t h i s p t r )
{

i f ( t h i s p t r==NULL)
{

t h i s p t r = (CCLASS) mal loc ( s izeof ( struct C) ) ;
}

i f ( t h i s p t r !=NULL)
{

t h i s p t r−> C id = CLASS ID C ID ;
t h i s p t r−> C r e f s = 0 ;
t h i s p t r−> C pVTable=VTableArrayForC ;

t h i s p t r−>m C b= Z17 f i e l d I n i t i a l i z e r 4EV ( ) ;
}

return t h i s p t r ;
}

stat ic TVP new(){
CCLASS ptr=C Constructor (NULL) ;

return newTypeValue (VDM CLASS, (TypedValueType )
{ . ptr=newClassValue ( ptr−> C id , &ptr−> C re f s , \

( freeVdmClassFunction)&C free , ptr ) } ) ;
}

TVP Z1CEV(CCLASS th i s ){
TVP bu f = NULL;

i f ( t h i s == NULL )
{

bu f = new ( ) ;

t h i s = TO CLASS PTR( buf , C) ;
}

return bu f ;
}

TVP numFields 2 = NULL ;
� �
The duplication of the elements of A can be seen in the definition of struct
B in B.h. The listing for C.c illustrates the mechanism by which a call to an
inherited operation on an instance of B is achieved. The macro CALL FUNC is
the primary function and method call mechanism. It uses information about
the type of the object on which the operation is invoked, as well as the class in
which the operation is actually defined, to calculate a function pointer offset
in the correct (duplicated) virtual function table of the instance of B. The
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class in which the operation is originally defined (A in this case) is calculated
by scanning the chain of superclasses of B and choosing the nearest definition.
This method satisfies semantics of calls of inherited operations.

Polymorphism Overture limits polymorphism, the overloading of opera-
tions and functions. Overloaded operations and functions can only be dis-
tinguished by Overture’s type system only if they differ in their parameter
types. Operations differing only in return type can not be distinguished,
rendering the following example definition illegal:�
class Overloading

operations

public op : bool ==> ( )
op ( a ) == skip ;

public op : bool ==> bool
op ( a ) == return true ;

end Overloading
� �
Polymorphism is implemented by way of a name mangling scheme, whereby
the name generated for any operation or function is augmented with tags
representing its parameter types. For instance, the name of the following
operation�
public theOperat ion : int ∗ bool ∗ char ==> real
� �
is generated as Z12theOperationEIBC. The mangled name can be decom-
posed as follows:

• Z: prepended to all mangled names.

• 12: number of characters in the original name.

• theOperation: the original name.

• E: separator between name and parameter type tags.

• I: int parameter.

• B: bool parameter.

• C: char parameter.
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Function and operation overriding In single inheritance scenarios, op-
eration/function overriding is achieved in a simple way by choosing the over-
riding implementation closest in the inheritance chain to the class to which
the object on which the operation is invoked belongs. This is in accordance
with the corresponding semantics. In multiple inheritance scenarios, Over-
ture does not allow ambiguity leading to a choice of implementation. For
instance, the following model is illegal in Overture:�
class A
operations
public op : ( ) ==> bool
op ( ) ==

return true
end A

class B
operations
public op : ( ) ==> bool
op ( ) ==

return fa l se
end B

class C i s subclass of B, A
end C
� �
This forces the model developer to eliminate all such ambiguity, reducing the
scenario to that of single inheritance.

5.3.4 Memory Management

The code generation platform on which the C code generator is based was
originally designed to target languages with implicit memory management,
such as Java. In the context of C, this poses great difficulty in explicitly
freeing allocated memory. For example, the VDM expression�
1 + 2 + 3
� �
translates to the following, independent of context:�
vdmSum( newInt ( 1 ) , vdmSum( newInt ( 2 ) , newInt ( 3 ) ) )
� �
Because none of the intermediate values are assigned to TVP variables, none
of the memory allocated here can be accessed and freed once the outer invo-
cation of vdmSum() terminates. This is only a simple illustrative example of
the difficulty in dealing with allocated memory explicitly.

We solve this problem using a bespoke garbage collection (GC) strategy that
is meant to obviate the need for explicit calls to vdmFree() anywhere in
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the generated code. All functions that allocate memory on the heap have
corresponding GC-aware versions, such that intermediate values allocated as
in the example above can be reclaimed in bulk with a call to the GC when
it is known to be safe to do so.

The garbage collector is kept simple by the specific structure of models in
INTO-CPS. Due to the FMI approach of stepping simulations, an FMI step
corresponds, in the VDM world, to one execution of a periodic task. It
is known that all variables that are allocated during one execution either
update class fields, which are not subject to garbage collection by design, or
are otherwise intermediate. In this pattern of execution it is natural to invoke
the garbage collector each time the periodic task has finished executing.

The time and memory performance of this prototype garbage collection strat-
egy has been summarily assessed using the VDM model shown in Listing
20.

Listing 20: Collatz conjecture model.�
class Co l l a t z
instance variables
va l : int ;

operations
public Co l l a t z : int ==> Co l l a t z
Co l l a t z ( v ) ==

val := v ;

public run : ( ) ==> ( )
run ( ) ==

i f va l = 1 then
return

e l s e i f va l mod 2 = 0 then
va l := va l div 2

else
va l := 3 ∗ va l + 1 ;

end Co l l a t z
� �
The Collatz conjecture states that the sequence of natural numbers calculated
above always ends in 1, for any starting natural number greater than 111. The
model is designed such that the starting number is fixed when the class is
instantiated, and each time the method run() is invoked it calculates the next
number in the Collatz sequence, if the sequence has not yet converged.

The assessment compares the memory performance of the code generator
on this model without memory management, its performance using garbage
collection, and its performance in the ideal case where all allocated memory

11http://https://en.wikipedia.org/wiki/Collatz_conjecture.
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is freed explicitly. The results are summarized in Figure 4 for initial value of
77,031, which is known to take 350 steps to converge.

Figure 4: Memory performance of three implementations.

Without any memory management, memory usage increases into the megabyte
range by the time the sequence converges. Memory usage in the ideal case
tops out at around 300 bytes, whereas with the garbage collection scheme
in place it tops out at around 900 bytes. A version of the generated code
modified such that its total execution time can be observed (essentially by
repeating the procedure thousands of times) yields an increase from 300 ms
total execution time in the current and ideal cases, to 310 ms for the imple-
mentation with garbage collection.

The garbage collection scheme has been proven to perform adequately for
INTO-CPS case studies deployed on embedded microcontrollers, both PIC32
(32-bit) and ATmega (8-bit).

5.3.5 Supported Features

The Overture code generator does not fully support post-condition and in-
variant checking, lambda expressions, file I/O and full pattern matching.
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5.4 Distributed Architectures in VDM-RT

In this section we discuss code generation support for architectures involv-
ing distribution modelled in VDM-RT. Section 5.4.1 revisits the principles
governing modelling of distributed architectures using VDM-RT. Moreover,
it recaps the analysis carried out by the code generator in order to support
distributed embedded architectures (DES), as was described in the Year 2
version of this deliverable [BHPG16]. Afterwards, Section 5.4.2 gives con-
crete guidelines for limiting VDM-RT models as well as motivating them, in
order to generate support for distributed embedded systems. Section 5.4.3
provides a minimal example illustrating the main principles for designing
distribution into a VDM-RT model. Moreover, we show both the VDM-
RT model and highlight the main parts of the distribution-specific C code.
Finally, Section 5.4.4 shows how the code generator has been applied in or-
der to realise the INTO-CPS railway interlocking case study from ClearSy
(confidential model), which is further described in deliverable D1.3b [OL17].
Additionally, we show various plots that validate the generated C code for the
non-public ClearSy model. Support for distributed architectures, discussed
below in more detail, is also described in [BTJHL17].

5.4.1 VDM-RT Distribution

In VDM-RT, distribution is modelled inside a special class called a system

definition. Therefore, distribution is decoupled from the main functionality
described by normal classes, and is only introduced by the special system
definition. This allows easy architectural changes, as well as making a dis-
tributed system more holistic. Consequently, the code generator needs to
analyse the system definition and provide supporting code for distribution
based on this analysis. Inside this definition the implicit classes CPU and BUS

are used to model a distributed architecture. The CPU class models an inde-
pendent processor unit or a computation node, and objects can be deployed
to them, that is, specified to execute on them. Hence every CPU instance
corresponds to an individual processor or computation node in the C code
implementation of a VDM-RT model. The BUS class is used to model a com-
munication channel between CPUs. However, in VDM-RT a BUS does not
specify a hardware bus type, only an abstract representation. So in order
to enable the user to interface with a proprietary driver (as is the case with
ClearSy’s interlocking model, described in Section 5.4.4), the code genera-
tor allows the user to provide drivers for a given hardware communication
bus, for example a UART (Universal Asynchronous Receiver/Transmitter) or
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CAN (Controller Area Network) bus, possibly together with a protocol.

As discussed in Deliverable D5.2c, the code generator automatically generates
support for model-level distribution, i.e. it provides correct dispatching of
remote calls to a concrete user-defined communication protocol/driver (called
send bus) as well as providing a dispatcher in order to handle incoming
remote calls (called getRes). The former enables dispatching with respect to
the modelling inside the system definition towards a specific bus hardware
protocol/driver implementation. The latter enables each CPU to handle
possible incoming calls and ensures that the correct method of a local object
is invoked. Both functions have standardised interfaces, hence allowing easier
interfacing with the low-level aspect of an implementation. Additionally,
both functions are generated when the C code for the system definition class
is generated. Hence the developer can implement the low-level aspects of
communication, while the code generator provides the model-level support.
During code generation of the architecture modelled in VDM-RT, the relevant
information must be extracted from the system class definition and used
for generation of each computation node. This includes generating each
CPU as its individual executable with its deployed objects, and generating
correct dispatching of remote calls based on the connection between nodes,
as specified in the system class.

Finally, another aspect is the serialisation and de-serialisation of informa-
tion to be sent across the network. As described in Deliverable D5.2c, the
Abstract Syntax Notation One (ASN.1)12 notation could be used for seriali-
sation of data types. In particular, research has been carried out as part of
VDM2C on using the ASN.1 compiler developed by the European Space Agency
(ESA), as found at https://github.com/ttsiodras/asn1scc. This tool is
especially made to target embedded platforms. Subsequently this tool is re-
ferred to as asn1.exe, and is supported for development under Linux, Mac
OSX and Windows platforms. Additionally, work has been carried out to
create converters between the TVP structure used in our VDM-RT C code
generator and the corresponding data types in ASN.1 [FVB+16], referred to
as asn2tvp13. As a consequence a TVP value can be converted to an ASN.1
representation, serialized and sent across the network. When received, this
data can be de-serialized, and converted back to TVP values. In compari-

12An overview is available at
https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One.

13The work for mapping between TVP and ASN.1 [FVB+16] is available at https:

//github.com/tfabbri/DataModellingTools, and a script for installation on Linux
and Mac OSX can be found at https://raw.githubusercontent.com/tfabbri/

DataModellingTools/vdm-b-mapper/dmt/vdm_tests/INSTALL.sh.
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son, generic message representations such as XML or JSON can be used, but
these require generic parsers at run-time, causing memory and CPU over-
head. Note that we allow developers to interface with their own serialisation
functions, similar to what is allowed for communication drivers, in order to
provide additional flexibility when targeting resource-constrained embedded
devices. For this reason, serialization can be added depending on need, as
an underlying layer, supporting the low-level implementation.

The approach to using our code generator together with the ANS.1 notation
and corresponding tools is illustrated in Figure 5, together with activities in-
volved (names indicated on top of arrows) that are further discussed below.
Again, note the overall approach: the code generator emits C code based on
functionality and model architecture, while the developer is allowed to add
proprietary network drives associated with each bus as captured inside the
system definition. Such an approach not only allows the developer to both
use custom drivers, but furthermore to consider non-idealised communica-
tion. So while the model is idealised, with this approach the developer can
handle the actual low-level aspects of communication. Finally, with the tool
vdm2asn (contained inside our VDM2C), an ASN.1 data file can be obtained.
This file can then be used to generate specialised encoders/decoders in C
code as well as mapping functions between ASN.1 types in C code and TVPs
using the tools asn1.exe (developed by ESA) and asn2tvp (work presented
in [FVB+16]). Additionally, note that we provide a distribution run-time
(similar to the run-time library of the functional code) based on ASN.1 us-
ing the ESA asn1.exe tool, which provides serialisation and de-serialisation
for basic types, such as integers, reals, booleans and quotes. However, for
more specialised types, such as records, a specific ASN.1 file needs to be
used to generate the encoding, and then asn2tvp can be used to generate
the mapping functions. The approach using ASN.1 has been applied for se-
rialisation in both the minimal example as well as the ClearSy case study.
With respect to Figure 5, we discuss in more in detail below initialisation
support of distributed systems, as well as generated architecture awareness
support.

Initialisation During the initialisation process the resources for each node
are created. With respect to architecture, this especially refers to alloca-
tion of distributed objects from the system class. For this reason the code
generator is required to support set up before functional execution for each
embedded device. Due to the imposed VDM-RT modelling guidelines, as de-
scribed below, it can exploit knowledge of deployment in order to establish
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Figure 5: Activities involved for distributed code generation.

awareness of local and remote objects inside the system definition. During
the code generation process, each distributed object is assigned a unique
number ID, ensuring DES-wide identification for all. Then, with respect to
each node, local objects are instantiated as normal instances, e.g. TVP type
VDM CLASS, while remote objects become of type VDM INT instantiated with
their unique ID. This is generated in the form of an initialisation method
that sets up both local and remote distributed objects with respect to a
given node. For example, if the node is called cpu1, the code generator emits
an initialisation method for it as cpu1 init(). Furthermore, this method
gets the set up invocations of local objects inside the system constructor
(see Listing 25). Hence, the common TVP allows having a dispatch macro
to wrap the CALL FUNC macro in order to decide whether to dispatch a call
as local or remote, as shown in Listing 21. For this listing, note that a re-
mote object is passed to the generic method called send bus. This method
is generated based on the architecture, and is further discussed below.

Listing 21: DIST CALL macro which dispatches between local and remote
invocations.�
#define DIST CALL( sTy , bTy , obj , supID , nrArgs , funID , args . . . )
( ( obj−>type==VDM CLASS) ? CALL FUNC(sTy , bTy , obj , funID , ## args ) :

send bus ( obj−>value . intVal , funID , supID , nrArgs , ## args ) )
� �
Overall the presented initialisation approach allows to set up a global ref-
erence to an object independently of its location, and additionally without
the need to obtain an actual memory reference on the given node during
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initialisation. Consequently this exploits both the location and distribution
transparency features provided in the VDM-RT model more directly. How-
ever, another way to achieve distinction between local and remote objects
would be to extend a location transparent RMI technology with an initiali-
sation algorithm which sets up and obtains the correct references. Such an
approach has been applied in [HLTJ15] for the VDM-RT to Java code gen-
erator using the Java RMI technology [Sun00]. For VDM2C, the CORBA
middleware [OMG02] would be a similar solution. Using such an RMI tech-
nology requires a more sophisticated initialisation functionality, as it requires
exchange of references during system set up. For example in [HLTJ15] where
Java RMI is used, an initialisation algorithm is generated under the assump-
tion of a global database for exchange of references. Having an arbitrary net-
work structure, and no such database, makes it even more involved. When
targeting embedded systems, in addition, a specific middleware technology
would limit the generated code in two ways: first, it might not easily allow
use of proprietary bus drivers as this technology relies on its own infras-
tructure. Second, it would introduce large performance as well as memory
overhead, since it is a general-purpose technology that is not particularly
suited for embedded devices. For these reasons, and to further gain full con-
trol of RMI, support for this feature is implemented as an extension of the
VDM2C runtime library.

Architectural Awareness Above we discussed the routing of invocation
with respect to object deployment. While local calls are handled as a regu-
lar calls, remote calls are routed to the generic send bus method, with the
signature shown in Listing 22.

Listing 22: Signature of send bus function.�
TVP send bus ( int objID , int funID , int supID , int nrArgs , . . . )
� �
This method needs to forward the remote call to the correct bus in accor-
dance with the VDM-RT system architecture, e.g. calling the user-defined
driver. In order to support such functionality, the code generator needs to
extract relevant information from the system definition together with an al-
gorithm to emit architecture support code. Particularly, routing is achieved
using the architecture defined by the CPU and BUS constructs, together with
the deployment of objects. Listing 23 illustrates the algorithm to dispatch
with respect to the analysis; internally the code generator analyses various
relations: set of objects deployed to a node (cpuToObjs), set of BUSses con-
nected to each node (busToCpus) and the set of nodes connected to each
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BUS (cpuToBusses). With respect to a computation node, the generate

method basically emits a switch functionality for each bus that is based on
a set of objects that can be reached by the given bus. In this way send bus

forwards the remote call to a function with the exact name as in the model
together with a standardised parameter list, which enables the user-defined
low-level communication driver to be linked.

Listing 23: Pseudocode for algorithm which generates send bus functionality
for each CPU from a VDM-RT model.�
cpuToBusses : Map[ cpu −> { s e t o f bus } ]
busToCpus : Map[ bus −> { s e t o f cpus } ]
cpuToObjs : Map[ cpu −> { s e t o f ob j e c t } ]

for each cpu do
for each bus in cpuToBusses ( cpu )

for each cpu con in ( busToCpus ( bus )\ cpu )
generate ( bus , cpuToObjs ( cpu con ) )
� �

Another facet of architectural awareness is the ability to handle an incoming
remote invocation, e.g. when send bus initiates a call from another CPU.
The code generator supports this by emitting the method getRes, having a
standardised interface as well (Listing 24), which ensures correct dispatching
to the local object resource.

Listing 24: Signature of getRes function.�
TVP getRes ( int objID , int funID , int supID , int nrArgs , TVP args [ ] )
� �
This functionality is provided by using the knowledge of locally deployed
objects, e.g. cpuToObjs, to generate switch functionality based on the unique
IDs of distributed objects. Since both send bus and getRes are related to
the architecture, they are generated as part of the emission of the system

definition.

Simulation in VDM-RT: Once a VDM-RT model has been constructed,
it can for example be validated by means of simulation, where the VDM
interpreter [LLB11] makes use of the object deployment inside the system

definition in order to determine when network communication is required.
This supports a holistic approach towards architecture validation and explo-
ration independently from the overall functionality. For example trying to
access an object without having a communication channel yields an error by
the interpreter, providing early design feedback when modelling a distributed
architecture. In order to facilitate a simulation of a model of a System Under
Development (SUD), the context in which it appears, i.e. its environment,
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also needs to be modelled. However, since we are only interested in the pre-
cise performance of the SUD, VDM-RT includes a concept of a virtual CPU
and a virtual BUS that are both infinitely fast. Consequently, for simulation
purposes all objects not deployed to a computing node automatically get
placed on the virtual CPU connected to all other computing nodes via the
virtual BUS. Finally, since we are targeting an implementation of a DES, it
is also worth noting that communication in a VDM-RT context is considered
at an abstract level, i.e. it is idealised, so no messages are lost.

5.4.2 VDM-RT Modelling Guidelines

A systematic process for gradually introducing complexity towards a VDM-
RT model exists [LFW09]. However, this process is not sufficient for auto-
matic generation of code in a distributed context. For this reason we put in
place modelling guidelines to constrain the way VDM-RT is used, such that
code generation can be achieved. Within this context existing guidelines
are consulted, such as MISRA C [MIR04] for embedded systems together
with similar literature for general distributed systems principles [CDK05].
In addition, these guidelines extend upon the principles described in previ-
ous work [HLTJ15], which involves a code generator supporting distributed
Java-based systems using Java RMI as the underlying technology. Conse-
quently, from a development perspective, a more abstract VDM-RT model
might gradually be transformed such that it complies with the guidelines,
and enables efficient generation of code.

The following modelling guidelines can be divided into two parts, namely
architecture structure considerations and a notation subset definition. The
structure is solely for the system definition, as it attempts to standardise the
architecture model. On the other hand, the subset is imposed on the archi-
tecture definition together with the normal classes of a VDM-RT model, and
inspired by combining established practices for both object oriented design
in embedded as well as distributed systems.

From the perspective of a typical embedded control system consisting of con-
trollers that use sensors and actuators, Listing 25 presents the structure to
follow when defining an architecture in VDM-RT (this structure is inspired
by the more generic model called System used in the INTO-CPS Year 2
VDM-RT semantics deliverable, D2.2b [FCC+16]). The first part consists
of instantiating actuator and sensor objects to which controller objects can
obtain a reference as part of their creation. These objects are referred to as
distributed objects, which defines objects that might initiate network com-
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munication. Next, the system architecture is modelled using the CPU and
BUS constructs. Finally, the constructor of the system class contains the de-
ployment of objects to nodes. Inside this constructor we allow invocation of
methods on distributed objects, for set-up purposes, as long as these do not
invoke other distributed objects, in order to avoid possible network communi-
cation during system start-up. This restriction makes the DES initialisation
automatable. Moreover, network communication inside an instance might
be initiated in two ways: (1) all distributed objects are accessible directly in
the entire model (e.g. Sys‘controller.method()), since they are declared
as public static; (2) using the object references that are passed during
instantiation as shown in Listing 25 for controllers.

Listing 25: Structure for the ideal system definition in VDM-RT.�
system Sys

instance variables
−− Actuators
public stat ic act1 1 : Actuator 1 = new Actuator 1 ( . . . ) ,
. . .
public stat ic act1 k1 : Actuator n = new Actuator n ( . . . ) ,

−− Sensors
public stat ic s en1 l 1 : Sensor 1 = new Sensor 1 ( . . . ) ,
. . .
public stat ic s en1 ln : Sensor n = new Sensor n ( . . . )

−− Con t ro l l e r s
public stat ic c t r l 1 : Ct r l 1 :=

new Ctr l 1 ( act1 1 , . . . , act1 k1 , sen1 1 , . . . , s e n1 l 1 ) ;
. . .
public stat ic c t r l n : Ct r l n :=

new Ctr l n ( actn 1 , . . . , actn kn , senn 1 , . . . , s enn ln ) ;

−− CPUs
public stat ic cpu 1 : CPU := new CPU( sp1 , s1 ) ;
. . .
public stat ic cpu n : CPU := new CPU( spn , sn ) ;

−− BUSses
public stat ic bus 1 : BUS :=

new BUS (bp1 , b1 , cpu subse t 1 ) ;
. . .
public stat ic bus n : BUS :=

new BUS (bpn , bn , cpu subset n ) ;

operations
public System : ( ) ==> System
(

act1 1 . setup ( . . . )
. . .
c t r l n . setup ( . . . )

cpu1 . deploy ( ac t1 1 )
. . .
cpun . deploy ( c t r l n ) ;

) ;
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end Sys
� �
Together with the structure shown in Listing 25, the following modelling
guidelines are presented in order to be exploited by the code generator, e.g.
enable it to automate the generation of code (below we consider our SUD as
the part of the VDM-RT model which should be generated and deployed to
hardware platforms):

(1) All objects related to the SUD have to be instantiated inside
the system definition:

This enables the code generator to know the exact location of all dis-
tributed objects, which it can exploit during analysis in order to gen-
erate architectural support for each node.

(2) All objects related to the SUD must be deployed to user-
defined CPUs:

All instances created in the system must be deployed to explicit nodes
as created by the designer. Consequently, no objects containing system
functionality may be placed on the virtual CPU, which must only con-
tain instances that are necessary to simulate the SUD as part of model
validation using Overture. This supports the use of validation tests
during development, which are not generated by the code generator, as
they are not part of intended functionality.

(3) Two nodes should only be connected directly by at most one
bus:

It is possible to design an architecture where a specific remote object
can be reached by multiple network channels from the same device.
However, this introduces additional non-determinism in the implemen-
tation as the chosen network channel might change for the same re-
mote invocations. In fact, the VDM interpreter ensures determinism
in such a scenario by picking the same bus every time. For this reason,
this guideline aligns the model interpretation with the implementation.
Note that it is conceivable that an object can decide at run-time which
of several communication channels (potentially further implemented by
different communication technologies) to use for communication, but
this is not supported here.

VDM-RT enables introducing certain design characteristics that cannot be
realised in an actual implementation of a DES. For this reason some addi-
tional modelling guidelines are imposed focusing on both embedded as well
as distributed development guidelines for normal (non-system) classes:
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(1) Globally accessible instance variables (e.g. object state) are
disallowed:

Such a variable would require a global reference being periodically up-
dated, while also creating potential race conditions.

(2) All data of an object is accessed through access methods:
In principle, the code generator could be updated to support direct field
access. However, as we strive to provide general principles that can be
used for other technologies as well, this enforces the rule adapted by
other distributed technologies, such as CORBA and Java RMI.

(3) All collections must define a size limitation following a pre-
scribed pattern:

For collections in a VDM-RT model the size cannot be decided stati-
cally before runtime. However, working with systems that have limited
memory constraints as well as network communication, it usually is
not desirable to have unknown sizes of collections in the implemen-
tation. As a consequence, this rule enforces a range definition for all
collections using a specific modelling pattern, using the VDM-RT in-
variant construct (inv). Hence collection types are required to be re-
stricted to a range of values by following an invariant pattern: “inv
card collection <= X”, where X is a numerical value, X > 0, and
card collection is the size of the collection. This enables validation
of the device having sufficient memory. In addition, this enables effi-
cient data serialisation of data that needs to be communicated between
computing nodes.

5.4.3 Example - VDM-RT Distributed Watertank

In this subsection we present a minimal example of distribution in a VDM-
RT context. This example is inspired by the INTO-CPS pilot case study
involving the water tank controller. However, in this example we present a
distributed version in order to illustrate the distribution support, involving
a supervisor and two water tank controllers that are under the control of the
supervisor.

VDM-RT model Listing 26 shows the architecture that is created inside
the system definition. Note that the two WatertankController objects are
passed as arguments in order to be invoked in accordance with the architec-
ture of the VDM-RT model. As described above, modelling of distribution
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is supported by two implicit classes inside VDM-RT called CPU and BUS: CPU
models an independent processor, and allows object instances to be deployed
to it. Deployment in this context means that execution of the implementa-
tion of a particular instance is carried out on a given processor. BUS captures
a communication channel and allows CPU instances to exchange information
by connecting them. Hence, based on the deployment definition, a call to an
object is either local (on the same CPU) or remote (on another CPU).

Listing 26: Example of distribution in VDM-RT.�
system System
instance variables

public stat ic wC1 : WatertankControl ler := new WatertankControl ler ( ) ;
public stat ic wC2 : WatertankControl ler := new WatertankControl ler ( ) ;
public stat ic s upe rv i s o r : Superv i so r := new Superv i so r (wC1, wC2) ;

cpu1 : CPU := new CPU(<FP>, 22E6 ) ;
cpu2 : CPU := new CPU(<FP>, 22E6 ) ;
bus : BUS := new BUS(<CSMACD>, 72E3 ,{ cpu1 , cpu2 } ) ;

operations

public System : ( ) ==> System
System ( ) ==
(

cpu1 . deploy (wC1) ;
cpu1 . deploy ( supe rv i s o r ) ;
cpu2 . deploy (wC2) ;

) ;
end System
� �
Listings 27 and 28 show the two classes used in Listing 26, Watertank-

Controller and Supervisor, respectively. Listing 27 represents a simple
controller for a water tank, reading its level and setting its valve. Listing 28
shows how the objects can be invoked inside the Supervisor, which controls
the controllers without knowing their location with respect to the architecture
inside VDM-RT. In this example, with respect to the object supervisor, wc1
is the local object, while wc2 is the remote object (based on the deployment
arrangement of the objects in Listing 26). Both local and a remote calls are
invoked as object method invocations, e.g. as Listing 28 illustrates, both the
local and remote object methods are invoked in the same way. However,
according to the VDM-RT semantics, the remote call will be sent over the
specified bus.

Listing 27: Example of controller, which reads the water level and sets the
valve.�
class WatertankControl ler

instance variables
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env : Environment := new Environment ( ) ;

operations

public s tep : ( ) ==> ( )
s tep ( ) ==
(

env . s tep ( ) ;
IO ‘ p r i n t ( env . readWaterLevel ( ) ) ;
IO ‘ p r i n t ( ”\n” ) ;

) ;

public readLeve l : ( ) ==> int
readLeve l ( ) ==

return env . readWaterLevel ( ) ;

public setValve : bool ==> ( )
setValve ( va l ) ==

env . setValve ( va l ) ;

end WatertankControl ler
� �
Listing 28: Example of the supervisor that uses two watertank controllers.�
class Superv i so r

instance variables
wC1 : WatertankControl ler ;
wC2 : WatertankControl ler ;

operations

public Superv i so r : WatertankContro l ler ∗ WatertankControl ler ==> Superv i so r
Superv i so r (w1 , w2) == (

wC1 := w1 ;
wC2 := w2 ;
) ;

public s tep : ( ) ==> ( )
s tep ( ) ==
(

let l e v e l 1 = wC1. readLeve l ( ) , l e v e l 2 = wC2. readLeve l ( )
in
(

i f ( l e v e l 1 <4) then
wC1. setValve ( true ) ;

i f ( l e v e l 1 >12) then
wC1. setValve ( fa l se ) ;

i f ( l e v e l 2 <2) then
wC2. setValve ( true ) ;

i f ( l e v e l 2 >6) then
wC2. setValve ( fa l se ) ;

) ;

)

end Superv i so r
� �
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Finally, the overall VDM-RT model can be tested and validated by a simple
example as shown in Listing 29, e.g. Run() inside the World class.

Listing 29: Example of the supervisor that uses two watertank controllers�
class World

operations

−− The entry funct ion , running on CPU1 in example
public Run : ( ) ==> bool
Run ( ) ==
(

for − in [ i | i in set { 1 , . . . , 20} ] do
(

IO ‘ p r i n t ( ”Value from c o n t r o l l e r 1 : \n” ) ;
System ‘wC1. s tep ( ) ;
IO ‘ p r i n t ( ”Value from c o n t r o l l e r 2 : \n” ) ;
System ‘wC2. s tep ( ) ;
System ‘ supe rv i s o r . s tep ( ) ;

) ;

return true ;

)

end World
� �
C code In this part we only introduce the parts which need to be added
manually by the user in order to make the code run for each CPU. This
example is meant to illustrate the main functionality between invocation in-
volving network communication from a VDM-RT model. Hence one node
(CPU1) exemplifies a remote invocation, while the other node (CPU2) illus-
trates handling of an incoming call. The code generator supports dispatching
toward a bus defined in the VDM-RT model, while the HW bus implemen-
tation can be changed in the execution platform. The communication flow
between the send and receive functions indicates that the receiver CPU is
able to handle remote invocations, while also running a local execution. In
the VDM-RT semantics a CPU has a scheduler, but schedulers are not sup-
ported. For this reason, we propose a design pattern. This design pattern is
based on the case study needs, and it is a scheme to implement basic remote
handling for a CPU. The design pattern assumes there is exactly one periodic
thread running on each CPU. This is illustrated in Figure 6. However, note
that, similar to the design pattern described above, an existing scheduler
on a given platform could also be used in an implementation, by manually
scheduling needed methods (that are generated).

Generally, Figure 7 illustrates the flow between the send and receive functions
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Initialize

Receive?

Periodic
Loop

Handle
Invocation

N Y

Figure 6: Design pattern enabling a CPU to handle remote invocations while
running a periodic thread.

between two CPUs:

1. The send function sends data on a communication channel, which in-
vokes the receive function.

2. The invocation is received, and a possible result is sent back, or an
acknowledgment that the function invocation is finished.

This figure also shows that the send function is required to wait for the receive
function to handle the request, since calls in VDM-RT are synchronous by
default. Asynchronous calls are not supported by the code generator, so the
communication is required to be synchronous when implementing the specific
call.

cpu1 cpu2
sendBus(…)

Wait
for  
result

Handle
Invocation

Continue Continue

sendRes(…)

Figure 7: Flow diagram for sending data across a network.

In the following two paragraphs we introduce the manually produced files
which enable both CPUs to execute. Each of the two nodes needs to create a
hardware-specific implementation of the files bus.h and bus.c (names follow-
ing the BUS names from a VDM-RT model (see Listing 26)), as well as create
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a corresponding main function. In this example we use a simple TCP/IP set
up for the bus, in order to illustrate main functionality. In particular in
this example we assume that CPU1 will run the validation functionality as
defined inside the operation Run() shown in Listing 29.

CPU 1: First, the specific bus driver is updated, which means updating
the generated files bus.h and bus.c (name generated based on the BUS name
from the VDM-RT model shown Listing 26). Listing 30 shows how a TCP/IP
based bus is initialised and how values are sent across the network using
it. In particular, note that the automatically generated function send bus

dispatches the call to the function bus send (the prefix “bus” for the latter
function is generated based on the BUS name from the VDM-RT model shown
Listing 26), which considers the low-level aspects as discussed above. Also
note for the implementation of bus send that this allows the developer to
construct his own data protocol for a given communication channel. Finally,
an example main.c file for cpu1 is shown in Listing 31, which is a manually
implemented version of the Run function, but only invoking the two local
objects, i.e. wC1 and supervisor.

Listing 30: Highlighted parts for bus.c for cpu1�
// I n i t i a l i s a t i o n o f a BUS dr i v e r and send f u n c t i o n a l i t y

#include ”bus . h”

byte bu f f e r [ BUF SIZE ] ;
struct sockaddr in c l i add r , s e rv addr ;
s o c k l e n t c l i l e n ;
struct hostent ∗ s e r v e r ;
int newsockfd , n , sockfd , portno ;

void bu s i n i t ( ){
portno = a to i ( ”51717” ) ;

s e r v e r = gethostbyname ( ” l o c a l h o s t ” ) ;

i f ( s e r v e r == NULL) {
f p r i n t f ( s tde r r , ”ERROR, no such host \n” ) ;
e x i t ( 0 ) ;

}

bzero ( ( char ∗) &serv addr , s izeof ( s e rv addr ) ) ;

s e rv addr . s i n f am i l y = AF INET ;

bcopy ( ( char ∗) s e rve r−>h addr ,
(char ∗)& se rv addr . s i n addr . s addr ,
s e rver−>h length ) ;

s e rv addr . s i n p o r t = htons ( portno ) ;
}
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. . .

TVP bus send ( int objID , int funID , int supID , int nrArgs , v a l i s t args ){

// 1 . Package data
byte sendArr [ BUF SIZE ] ; // Array to be send
byte b u f s i z e = ( byte ) 4 + 1 ; // Simple s e r i a l i z a t i o n o f the known types
sendArr [ 0 ] = bu f s i z e ;
sendArr [ 1 ] = ( byte ) objID ;
sendArr [ 2 ] = ( byte ) funID ;
sendArr [ 3 ] = ( byte ) supID ;
sendArr [ 4 ] = ( byte ) nrArgs ;
s e r i a l i s e ( sendArr , nrArgs , a rgs ) ; // S e r i a l i s e arguments

// 2 . Send data
sock fd = socket (AF INET , SOCK STREAM, 0 ) ;
i f ( sock fd < 0)

e r r o r ( ”ERROR opening socke t ” ) ;
i f ( connect ( sockfd , ( struct sockaddr ∗) &serv addr , s izeof ( s e rv addr ) ) < 0)

e r r o r ( ”ERROR connect ing ” ) ;
n = wr i t e ( sockfd , sendArr , BUF SIZE ) ;
i f (n < 0)

e r r o r ( ”ERROR wr i t i ng to socke t ” ) ;

// 3 . Wait f o r r e s u l t
byte bu f f e rRes [ BUF SIZE ] ;
bzero ( buf ferRes , BUF SIZE ) ;
p r i n t f ( ” Invoked func t i on with r e s u l t \n” ) ;
n = read ( sockfd , buf ferRes , BUF SIZE ) ;
i f (n < 0)

e r r o r ( ”ERROR read ing from socket ” ) ;
c l o s e ( sock fd ) ;

// 4 . De s e r i a l i s e r e s u l t and return i t
TVP re s = d e s e r i a l i s eR e s ( bu f f e rRes ) ;
return r e s ;

}
� �
Listing 31: main.c for cpu1�

#include <s t d i o . h>
#include <s t d l i b . h>
#include ”Vdm. h”
#include ”System . h”
#include ”World . h”

int main (void ) {

// Overa l l i n i t i a l i s a t i o n
vdm gc in i t ( ) ;
S y s t em s t a t i c i n i t ( ) ;
b u s i n i t ( ) ;
c pu1 i n i t ( ) ;

int i ;

for ( i =0; i <20; i++){

DIST CALL(WatertankControl ler , WatertankControl ler ,
vdmCloneGC( g System wC1 , NULL) , CLASS ID WatertankController ID , 0 ,
CLASS WatertankController Z4stepEV ) ;
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DIST CALL( Superv i sor , Superv i sor , vdmCloneGC( g System superv i sor , NULL) ,
CLASS ID Supervisor ID , 0 , CLASS Supervisor Z4stepEV ) ;

}

vdm gc ( ) ;
puts ( ” ! ! ! Done ! ! ! ” ) ;

return EXIT SUCCESS ;
}
� �
CPU 2: In this scenario cpu2 needs to handle a remote invocation, as
well as run the step of the deployed water tank controller. Listing 32 il-
lustrates especially the receive parts of the hardware driver for the network
communication channel. In particular note how the automatically generated
function getRes can be used in order to obtain a result based on the incom-
ing data. Finally, Listing 33 presents the main.c file and illustrates how a
remote invocation is handled.

Listing 32: Highligted parts of bus.c for cpu2�
// Low− l e v e l hardware s p e c i f i c to handle an incoming c a l l
void handle bus ( ){

// 1 . Read incoming data
bu s r e c i e v e ( bu f f e r , BUF SIZE ) ; // BUS s p e c i f i c

// 2 . Deconstruct data
TVP re s = bus deconstructData ( bu f f e r , BUF SIZE ) ; // General

// 3 . S e r i a l i s e the r e s u l t
byte r e sBu f f [ BUF SIZE ] ;
s e r i a l i s e R e s ( resBuf f , r e s ) ;

// 4 . Send r e s u l t back
int n ;
n = wr i t e ( newsockfd , re sBuf f , BUF SIZE ) ;
c l o s e ( newsockfd ) ;
i f (n < 0) e r r o r ( ”ERROR wr i t i ng to socke t ” ) ;

}

// Implemented by user , lower− l e v e l par t
TVP bus deconstructData ( byte∗ data , int l en ){

// 1 . User s p e c i f i c p ro t oco l data
int bu f s i z e = ( int ) data [ 0 ] ;
int objID = ( int ) data [ 1 ] ;
int funID = ( int ) data [ 2 ] ;
int supID = ( int ) data [ 3 ] ;
int nr a rg s = ( int ) data [ 4 ] ;

// 2 . Define arguments
// Define number o f max arguments
int max args = 10 ;
TVP args [ max args ] ;

// 3 . De s e r i a l i s e arguments
d e s e r i a l i s e ( data , nr args , a rgs ) ;
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// 4 . Obtain the r e s u l t from func t ion c a l l
TVP re s = getRes ( objID , funID , supID , nr args , a rgs ) ;
return r e s ;

}

// Low− l e v e l hardware s p e c i f i c
void bu s r e c i e v e ( byte ∗ bu f f e r , int l en ){

// 1 . Recieve data , b l o c k u n t i l accept
p r i n t f ( ”Rec iev ing data \n” ) ;
newsockfd = accept ( sockfd ,

( struct sockaddr ∗) &c l i add r ,
&c l i l e n ) ;

i f ( newsockfd < 0)
e r r o r ( ”ERROR on accept ” ) ;

bzero ( bu f f e r , l en ) ;

// 2 . Read incoming data
int n ;
n = read ( newsockfd , bu f f e r , len −1);
i f (n < 0) e r r o r ( ”ERROR read ing from socket ” ) ;

}
� �
Listing 33: main.c for cpu2�

#include <s t d i o . h>
#include <s t d l i b . h>
#include ”Vdm. h”
#include ”System . h”
#include ”World . h”
#include <un i s td . h>
#include <pthread . h>
#include ”bus . h”

int main (void ) {

// 1 . Garbage Co l l e c t o r and S t a t i c System c l a s s i n i t
vdm gc in i t ( ) ;
S y s t em s t a t i c i n i t ( ) ;

// 2 . BUS i n i t
bu s i n i t ( ) ;

// 3 . CPU2 i n i t
cpu2 i n i t ( ) ;

// 4 . Run−time
while (1){

TVP re t = CALL FUNC(WatertankControl ler , WatertankControl ler ,
g System wC2 , CLASS WatertankController Z4stepEV ) ;

handle bus ( ) ;
vdm gc ( ) ;

}

puts ( ” ! ! ! Done . . . CPU 2 ! ! ! ! ! ! ” ) ;

return EXIT SUCCESS ;
}
� �
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Finally, note that each individual CPU gets its own folder with a corre-
sponding CMake file, which can be used to rebuild a new executable when
the hardware bus driver has been updated in accordance with the example
presented above.

5.4.4 ClearSy - Distributed Railway Interlocking

The code generator has been used to generate the implementation of the
INTO-CPS ClearSy case study model. This case study involves distributed
interlocking of a train segment, as illustrated in Figure 8. Compared to
the minimal example, note that for this case study, every node needs to
both run a periodic thread as well as handle a remote invocation. Hence
they follow the design pattern as shown in Figure 6. Moreover, note in
Figure 8, that the entire track layout has been partitioned into five separate
modules: ZV1, ZP, ZV2, ZQ2, ZQ3. Each of these modules corresponds to an
individual embedded device, which is responsible for its own equipment, but
communicates with the other modules. This case study has been modelled
by ClearSy as a VDM-RT model, where the distribution is described in the
system definition. Finally, hardware has been developed by ClearSy, shown
in Figure 9, in order to deploy the code, as well as to enable simulation as
illustrated in Figure 10. Moreover, Figure 9 shows six independent modules,
one for Ethernet communication (largest board in the middle) when executing
test scenarios, and five for the parts of the interlocking connected as a UART
ring network. Each board is able to lock three relays for route reservation,
manipulate two switches, three track circuits and one pair of signal lights.
Hence the set up shown in Figure 9 supports Hardware-in-the-Loop (HiL
simulation) in accordance to the principles shown in Figure 10. Hence this
HiL set up makes it possible to validate that both the functionality as well as
distribution support work as expected when deployed to the hardware.

For the low-level communication, ClearSy’s existing proprietary communi-
cation drivers are used. Here is an example, as described above for the
distributed code generator, of interfacing the generated code with existing
hardware-specific drivers. For ClearSy it was necessary to deploy the gener-
ated C code to a PIC32MX440F256H micro-controller, as well as use their
safety-specific drivers for the UARTs on the micro controller. Hence each of
the five zones shown in Figure 9 is running on a PIC32MX440F256H plat-
form, and using PIC32 physical UARTs.
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Figure 8: ClearSy distributed interlocking, partitioned into five modules,
each responsible for its own equipment, but communicating with the other
modules.

Validation by scenarios The ClearSy model can be validated by means
of running various scenarios, i.e. simulating a train arriving and passing
through the entire system. Here we focus on the Q2V2 scenario, which can be
described as follows by looking at Figure 8: A train arrives at Q2 (CDV Q2),
the TC2 (remote command) is set to high to signal to establish a route from
Q2 to V2. Hence the establishment of this route requires reservation of zones
Q2, ZP and ZV2. Once the route has been established, the authorization
light on Q2 (S28) turns green. Next, the train moves to the next segment
(CDV 28), and the authorization light on Q2 turns red in order to prevent
other trains from entering the segment. This scenario is shown below as is
illustrates both the functionality as well as distribution support, as the nodes
need to communicate in accordance to the VDM-RT model.

As a means of validating the generated code, we show plots of three differ-
ent instances of the interlocking system, namely Model-in-the-Loop (MiL),
Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL). MiL corresponds
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Figure 9: ClearSy HiL platform showing the state of the system when the
Q2V2 scenario has been established.

Figure 10: Principles of set up from model simulation and hardware simula-
tion.

to running the VDM-RT model, exported as an FMU, itself as part of the
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simulation. SiL corresponds to running the generated C as an FMU in ac-
cordance to the FMI simulation semantics. Hence the SiL is just the entire
VDM-RT model generated as C code, where each CPU has its own thread of
execution. Hence showing that the SiL behaves correctly ensures that the
generated C code is behaving correctly, before considering deployment and
using hardware bus drivers. Finally, the HiL corresponds to running the dis-
tribution support of the code generator, and obtaining an executable for each
Zone (CPU in the VDM-RT model). Each of these executables can then be
deployed to the PIC32MX440F256H controller.

Note that for all the various plots MiL, SiL and HiL we focus on the first 15
seconds of simulation, as it is here that the route and the main functionality of
the distributed interlocking occurs. After the 15 seconds the train has passed
the authorisation light, which becomes red, and the train moves between the
different track segments, without any further changes to the equipment.

First, Figure 11 shows the MiL plots for the relevant variables for this par-
ticular scenario Q2V2, and is described as follows. The first sub-plot shows
the state of the three telecommands (TC) as well as the current track seg-
ment location of the train. Note that the CDV values, as seen in Figure 8,
are mapped to a unique value (e.g. track segment value 10 means CDV Q2
and track segment value 8 means CDV 28) is occupied. The second sub-plot
displays the relevant switch commands, in this case the two switches on ZV2
and one switch of ZP. As can be seen, only one of the switches of ZV2 sends
a command, which means this particular switch has to switch its current
position. The third sub-plot shows the current switch position of the train
track, and as it can be seen, the second switch of ZV2 changes its position,
as would be expected due to the command in the second sub-plot. Finally,
the fourth sub-plot displays the status of the three authorization lights. In
this case it is important to notice that the correct authorization light turns
green (AUT Q2), and it only goes to green after switching has completed.
This functionality needs both to interact with the physical switching relays,
as well as to communicate accordingly with the other modules. This func-
tionality represent some of the safety aspects in this system, so even though
each module is separate, they are required to communicate in order to safely
establish a route.

Second, Figure 12 shows the SiL, where the C code is run as a single FMU
application, and each CPU from the VDM-RT model is running in threads in
accordance to the FMI co-simulation semantics. As can be seen in Figure 12
the flow between the variables is behaving as the MiL co-simulation in Fig-
ure 11. Hence this raises confidence that the generated C code is behaving
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correctly, i.e. same as the VDM-RT model, before considering deployment
to the hardware shown in Figure 9.

Third, Figure 13 shows the execution of the generated code on the hardware
shown in Figure 9. Note that in the HiL the physical relays are build, so the
code needs to interact and lock these and send the correct messages. The first
sub-plot shows similar behaviour as MiL and SiL. For the second sub-plot we
cannot obtain the physical command to switch in order to plot it. For this
reason the second sub-plot of the command is only illustrative, and based
on the third sub-plot where the physical switch position in between states
(i.e. purple and yellow lines are both 1 in the third sub-plot). Moreover,
as can be observed, switch position values are correct compared to the MiL
and SiL results. Finally, the fourth sub-plot shows the correct authorization
light turning green. However, note that in the HiL co-simulation the actual
switching of the ZV2 switch takes longer, and needs afterwards to commu-
nicate with ZQ2 in this case. Again, note that the authorization light first
turns green once the switch is in the correct position, and turns red when
the train passes to the next segment. Note that Figure 9 shows the vari-
ous lights of the hardware when the Q2V2 scenario has been established by
sending telecommand TC2 to module ZQ2: the blue lights on ZQ2, ZP and
ZV2 indicate that the route is locked, the orange light indicates the switch
position and only the authorisation light on Q2 is green. In order to estab-
lish this route, communication messages are sent twice around the UART
ring network and are initiated by ZQ2 when the TC2 command is received,
first to check that the route can be locked on each relevant module (i.e. not
occupied), and afterwards, once they are successfully locked, module ZQ2
sends messages to the other two modules to switch the relevant switches.
Hence the HiL co-simulation runs in an embedded environment and uses
as well the garbage collector developed for embedded devices, so validating
its behaviour as well. The HiL co-simulation executed without the garbage
collector crashes only after a few executions of the control loop.

64



D5.3d - INTO-CPS Code Generation (Public)

Figure 11: MiL for scenario Q2V2, showing the initial establishment of the
Q2V2 route, and train passing the authorization light.

Figure 12: SiL for scenario Q2V2, showing the initial establishment of the
Q2V2 route, and train passing the authorization light.
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Figure 13: HiL for scenario Q2V2, showing the initial establishment of the
Q2V2 route, and train passing the authorization light.
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5.5 Ambiguities Not Addressed by the Semantics

Deliverable D2.1b lists a number of ambiguities that semantic foundations
for VDM-RT must address. The list is here reproduced. We discuss briefly
how each issue is addressed.

1. Initialization of static instance variables. Because static variables can
be used without creating an instance of the declaring class, it is not
sufficient for the generated class constructor to initialize these mem-
bers. Instead, the code generator emits initialization functions named
ClassName static init(), for static fields, and ClassName const

init() for value definitions. These initializers must be called man-
ually in the correct order. The code generator emits helper functions
which aggregate these calls in the correct order.

2. Initialization order of instance variables : Initialization starts at the
leaves of the inheritance hierarchy and proceeds upward.

3. Calling multiple explicit superclass constructors : These constructors
can be called like any other operation from within subclass construc-
tors.

4. Multiple inheritance superclass initialization: Initialization proceeds in
the order in which the superclasses are defined in the model.

5. Implicit calls to default constructors : In the generated code, default
constructors are the only way to create an instance of a class.

6. Overridden vs. local operations in superclass constructors : Subject to
the same rules as calling overridden operations.

7. Invariant checking during construction: Invariants are not supported.

8. Are constructors inheritable? Constructors are not inherited.

9. Overriding/overloading polymorphic/curried functions : Overriding, over-
loading and polymorphic functions are supported using name mangling.
Curried functions are not supported.

10. Pre-post conditions in OO state context : Pre-condition checks are sup-
ported. Post-conditions are not supported.

11. Diamond inheritance: Overture prevents model ambiguities of this
kind.
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5.6 Implementation as Overture Plugin

The C code generator is implemented as a standard Eclipse plugin to Over-
ture. It can be obtained through the Eclipse software install system from the
following URL:

http://overture.au.dk/vdm2c/master/repository

Overture facilitates development of code generators targeting standard im-
perative programming languages through a code generation platform [JLC15].
The framework introduces an intermediate representation of VDM-RT ab-
stract syntax which is amenable to relatively straightforward translation to
any imperative language. The C code generator generates code for this in-
termediate representation.

The C code generator is invoked from the context menu in the Project Ex-
plorer as shown in Figure 14.

Figure 14: Invoking the code generator.

6 FMU Compilation Service

VDM-RT models can be exported as source code FMUs using Overture’s
FMU export feature. This feature first invokes the C code generator, then
bundles a source code FMU. Aarhus University hosts an FMU cross-compilation
server which takes as input a source code FMU and returns a standalone
FMU, cross-compiled for 32- and 64-bit Windows and Linux platforms, as
well as Mac OSX. The service is available at

http://sweng.au.dk/fmubuilder

The service is most commonly accessed through the INTO-CPS Applica-
tion. Both the Overture FMU export feature and the INTO-CPS appli-
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cation are documented in the INTO-CPS user manual, Deliverable D4.3a
[BLL+17].

7 Conclusions

This deliverable captures the FMI-compliant C and C++ code generation
capability of the INTO-CPS tool chain at the end of Year 3 of the INTO-
CPS project. The three tools 20-sim, OpenModelica and Overture can now
fully integrate their code generation capabilities with the FMI requirements
of the INTO-CPS project through export of source code and stand-alone
FMUs.

The code generators of OpenModelica and 20-sim are considered mature. The
C code generator of Overture, by comparison, is relatively new, so there are a
number of avenues to explore in the immediate future. The rest of this section
is dedicated to a description of some ideas for future development.

Further development of code generation support for the distribution aspects
of VDM-RT can be addressed. Specifically, support for specific bus technolo-
gies and related protocols can be added by providing library implementations
for these.

A promising avenue for future research is timing behaviour. Recall the dis-
tinction made between descriptive and prescriptive interpretations of RT
constructs of VDM-RT. Compared to the descriptive interpretation, assum-
ing the prescriptive view for these constructs is clearly a more ambitious
approach from a code generation perspective. We believe that it is possible
to implement this interpretation in a code generator. But full support can
only be achieved in combination with a real-time operating system that can
make guarantees about the timing behaviour of the implementation. It is
conceivable that RT constructs can be code generated for specific RTOSs if
it is known what types of guarantees the RTOS can make for a given target
platform. For instance, if the best and worst case execution times of a code-
generated function can be profiled on the target controller, and the RTOS
can guarantee an upper bound on execution time given this information,
then it can be claimed that the code generator can implement a correspond-
ing duration statement placed on this function. The semantic basis for such
an approach is already provided in Deliverable D2.2b [FCC+16].

Another avenue for future development is support for run-time post-condition
and invariant violation checks. The typical workflow of developing a VDM-
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RT model involves using the Overture tool to exercise the specification to
a point where the developer is confident that a faithful implementation will
not exhibit unanticipated run-time behaviour. The most important VDM-
RT features in this endeavour are pre- and post-conditions and invariants.
For an extra layer of security, it is possible to allow for hooks in the gen-
erated code such that handlers can be called in critical cases of pre- and
post-condition and invariant violations. Currently, run-time pre-condition
failures cause the program to abort. The actions of the implementation in
such circumstances can be specific to the application, and so they are best
left to the developer to implement manually. For instance, it may be neces-
sary to reset hardware, close opened files etc. An alternative is to provide
code-generation support for the exception handling mechanism of VDM-RT
and use it to provide the necessary infrastructure where such bespoke error
handlers are necessary.
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