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Abstract

This deliverable discusses the details of a hardware-in-the-loop setup, which
connects a fan coil unit controller running on an embedded device with model-
based tests. All relevant steps, that is, the generation of FMUs, the gener-
ation of tests, and the execution of the tests, are performed using tools and
techniques developed within the course of the INTO-CPS project. The de-
liverable further contains an outlook on how industrial-scale testing could
benefit from the applied techniques.
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1 Introduction

One of the significant advantages of system development based on co-simula-
tion is decoupling of the system components. Whilst the overall system design
may be coupled, the different components that constitute the overall system
are coupled only through their external interfaces, which provide access to
the inputs and outputs of the system. This conceptual form of decoupling is
advantageous in many regards, for example:

• Components are interchangeable so that it is possible to execute fully
implemented components together with simulations of component mod-
els. It is often the case that different components have reached different
implementation levels. The ability to execute and evaluate the imple-
mentation of some components on the integration level, even though
the overall system may be far away from being complete, is invaluable
in industrial practice.

• The communication layer, which handles the interchange of information
on the external interfaces of the system components, allows a spatial
separation of the different testing components. For example, an avion-
ics cabin controller installed in Germany could interact with sensors
located in France, as long as the communication layer provides the
required infrastructure.

• Additional components can easily be plugged into the system. For
example, test oracles can directly be connected to the overall system
without influencing the behavior of the system at all, because the only
connection to the co-simulated system is in reading its interfaces.

The FMI 2.0 standard [Blo14] among some others, has had some immense
success in recent years as it provides a framework for the interaction between
system components of different kind. In particular, it defines the interfaces
of the system-wide communication mechanisms, without detailing how these
should be implemented.

This document describes an instantiation of the FMI 2.0 standard in the
INTO-CPS project using different components for HiL testing, and discusses
the interplay of various components and tools. The Co-Simulation Orchestra-
tion Engine (COE) provides the signal distribution and coordination between
two components, an implementation of a fan-coil unit (FCU) running on a
Raspberry 3 embedded device, and a test driver generated from a test model
using RTT-MBT [PVL11, Pel13] running on a PC.
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In theory, HiL testing of embedded systems is simple. In practice, how-
ever, the task turns out to be challenging due to the interaction between
different components via external interfaces, and often also timing issues,
which often lead to unpredictable test results. Approaching HiL testing via
a co-simulation setup provides a separation of concerns, which may lead to
more stable HiL testing of independent components. A single FMU becomes
responsible for the interaction with the embedded device, whereas the com-
munication between the different FMUs is provided via the COE. Each FMU
is responsible only for communication with one embedded device, but there
is no direct dependency on communication with other hardware devices. The
situation is depicted in Fig. 1 for one test driver and one embedded device,
but the setup may of course be extended to an arbitrary number of test
drivers and devices, which still are only connected via FMI 2.0.

The remainder of this document is laid out as follows. First, Sect. 2 presents
details of the overall setup, followed by a description of which kind of be-
haviors were actually simulated and tested in Sect. 3. The deliverable then
concludes with a presentation of related work in Sect. 4 and a discussion in
Sect. 5.

2 Co-Simulation Setup

This section discusses the overall setup used for HiL co-simulation of the
FMU in the sense that it describes both, the model used to generate the im-
plementation of the FCU running on a Raspberry Pi 3 device (cp. Sect. 2.1),
and the test model, from which test stimulations were derived (cp. Sect. 2.2).
The overall experiment setup is depicted in Fig. 1. A standard computer —
the host — is running the COE, the test driver FMU, and a FMU based on
20-sim 4C which maintains the connection between the host and the embed-
ded device.

2.1 FCU Controller Implementation

This section describes the FCU controller model used for HiL co-simulation.
The controller is a CT Proportional Integral (PI) controller in the back cal-
culation anti-windup scheme as shown in Fig. 2. Two implementations of
the controller have been developed, one using Simulink and one using Dy-
mola. The controller is identical in both versions. The Simulink version,
however, was developed for co-simulation in the building case study, whereas
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Figure 1: Overall setup of the co-simulation environment.

the Dymola version is used for HiL co-simulation. For background infor-
mation about the building case study and additional details about the pur-
pose and functionality of the FCU and its controller, refer to Deliverable
D1.3d [CAB+17].

The FCU implementation is wrapped into FMUs and the following FMI ports
are available for the FCU model to control the plant according to the user
preferences:

RAT_sp: This input port enables setting the desired temperature for the
room (the set-point). It should be connected to an FMU representing
user preferences.

Room_Temp: This input port abstracts a temperature sensor and enables
setting the measured temperature in the room. It is connected to the
plant.

VSD_Fan: This output port indicates the speed at which the FCU fan should
spin. It is connected to the plant.

cool_valve: This output port indicates the opening of the FCU coil valve.
It is connected to the plant.

The model used for HiL co-simulation was re-developed in Dymola from
the existing model. In order to use HiL co-simulation, the model must be
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Figure 2: Dymola model of FCU controller.

exported as a source code FMU. The exporter for the Simulink model — we
use FMI Toolbox for MATLAB/Simulink with the FMI Coder Addon from
Modelon1 — does not support exporting of source code FMUs, only binaries.
As such, we use Dymola, whose FMU export capabilities support exporting
source code FMUs. Once generated, the FMU is imported into 20-sim 4C
via the 20SimParser that parses the source code FMU and creates a valid
20-sim 4C project. Once configured, 20-Sim 4C is able to cross compile the
source code for the ARM architecture, which is required to push the code
onto a Raspberry Pi 3 board (see Fig. 3) as a periodic task. The board
is equipped with Raspbian Linux OS and the Xenomai 2.6.5 framework to
enable real-time capabilities.

To enable full HiL capabilities, it is necessary to generate a toolwrapper
FMU that acts as interface between the co-simulation FMU and the FMU
running on the Raspberry Pi. This enables executing the controller code on
an actual hardware platform while maintaining the plant (and its thermal
physics models) running in a simulation.

1http://www.modelon.com/products/fmi-tools/
fmi-toolbox-for-matlabsimulink/
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Figure 3: The Raspberry Pi 3 board used for HiL co-simulation.
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2.2 FCU Test Model

This test model is developed for HiL co-simulation and corresponds to the
FCU controller in Dymola as shown in Fig. 2. It is a PI controller and
working in the cooling mode. From this aspect, the controller as well as the
test model in this document are much different from the controller and the
test model in the FCU pilot study which is given in Sect. 4 of the deliverable
D3.6 [MGP+17].

In this test model, test automation is applied to the FCU controller. Note,
however, that the plant is not included in the test model. Therefore, the
system under test (SUT) of this test model is the PI controller, which is orig-
inally implemented in Dymola as a continuous-time PI controller. In order
to model it in RT-Tester, its specification is discretized and implemented as
a state machine.

Subsequently, we present the test model in SysML, and test input simulation
by a state machine diagram.

2.2.1 Test Model

Similar to other test models, this SysML model consists of a SUT and a
test environment (TE) as shown in Fig. 4. These components are used to
represent the different building blocks of model-based testing: The SUT
component represents the specified behavior of the controller, whereas the
TE component describes environmental constraints. These components are
represented by the blocks SystemUnderTest and TestEnvironment.
Both components have two ports with Observables and Stimuli inter-
faces, respectively. The connection diagram between them is illustrated in
Fig. 5.

2.2.2 SystemUnderTest Component

In Fig. 5, Stimuli represents the inputs to SystemUnderTest, namely
RAT_sp and Room_Temp. Likewise, Observables denotes the outputs
from SystemUnderTest, namely cool_valve and VSD_Fan. The mean-
ing of these signals is described in Sect. 2.1. The SystemUnderTest con-
sists only of a Controller component. The architecture structure diagram
of SystemUnderTest is shown in Fig. 6. The state machine diagram of the
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Figure 4: Architecture structure diagram of the FCU test model

FCU controller, implemented as the state machine fcuCTRL is illustrated in
Fig. 7.

In the diagram,

• Setup is used to initialize constant variables;

• After Setup, the state machine resides in the Waiting state most of
the time;

• Then every one second, it starts to calculate PID variables again:

– At first, the inputs RAT and RATSP are copied to local variables
to make sure all subsequent computations refer to same values of
RAT and RATSP.

– Then, uP, uI, and other local variables are computed for future
use.

– Next, the multiply of the gain K and the summation of uP and uI
is calculated and assigned to y0.

– Subsequently, a limiter is applied to y0 to get the final output y.

– Finally, y0 and y are used to compute the gain track uG, and
y is used to compute the output cool_valve and VSD_Fan
respectively in PostUpdate.
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Figure 5: Connection diagram of the FCU test model

Figure 6: Architecture structure diagram of the SystemUnderTest com-
ponent
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Figure 7: State machine diagram of fcuCTRL
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2.2.3 TestEnvironment Component

In the beginning, the automatically generated test cases from a test model
using RTT-MBT did not match up with our expectations because the envi-
ronment description was too coarse, which resulted in unrealistic behavior
of the environment. Frequent discontinuities in temperature changes, which
usually evolve continuously, are an exemplar of such a unrealistic behav-
ior. In order to provide a reasonable input to co-simulation, it is possible
to encapsulate a list of real data in an FMU using tools such as 20-sim or
OpenModelica. However, RTT-MBT cannot automatically include this data
in the test case generation process, which is based on SMT solving. How-
ever, RTT-MBT allows to use a state machine to specify the input sequence
in TestEnvironment of the test model.

We used this mechanism to specify the input sequence by defining a state
machine in a block TESim of the TestEnvironment component. The ar-
chitecture structure diagram of TestEnvironment is given in Fig. 8.

Figure 8: Architecture structure diagram of TestEnvironment component

The state machine diagram of TESim is shown in Fig. 9. Initially, Room_Temp
is set to 30°C and RAT_sp to 22°C. Then, every minute Room_Temp is de-
creased by 0.4°C till it is 1°C below RAT_sp. This will take fifty minutes.
After that, every ten minutes RAT_sp is decreased by 1°C and Room_Temp
is increased by 2.5°C to make Room_Temp still slightly higher than RAT_sp.
Therefore, the outputs of cool_valve and VSD_Fan are activated.

The specified input sequence by the state machine diagram and expected
outputs are illustrated in Fig. 10, which depicts both, the inputs (RAT_sp
and Room_Temp) and the outputs (VSD_Fan and cool_valve). Since the
FCU is working in the cooling mode, Room_Temp is set to be higher than
RAT_sp in order to activate the valve and the fan.

With this test input, test automation could evaluate how the SUT and the
test model response to it, including the opening of the valve and the speed
of the fan, and compare the difference from their behaviours.
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Figure 9: State machine diagram of TESim component

Figure 10: Sequence of input values for the room air temperature set point
(RAT_sp), the room air temperature (Room_Temp), and the speed of the
FCU fan (VSD_Fan) and the opening of the fan coil valve (cool_valve)
generated from the test model using RTT-MBT. See Sect. 2.1 for a descrip-
tion of the units of the signals.

16



D5.3b - HiL Co-Simulation (Public)

3 Simulation Details

The approach described in this document applies HiL testing as described
in Sect. 2.2 to the SUT described in Sect. 2.1, which is a different scenario
compared to what is described in [MGP+17]. The expected behavior of the
SUT from the perspective of the generated test model is depicted in Fig. 10
and has already been discussed in the previous section.

By way of contrast, this section focusses on the execution results, how the re-
actions of the real FCU running on the Raspberry deviate from the expected
behavior, and how this affects the testing verdicts. It comes to no surprise
that the behavior of the FCU controller based on the Dymola running on
the Raspberry Pi, which is shown in Fig. 11, deviates from the expected be-
havior. Even though both the implementation model and the test model are
based on the same specification, they have been implemented by different
engineers using different modeling formalism. Whereas the Dymola-based
implementation is based on a continuous-time model, the test model is based
on a discrete-event abstraction expressed as a collection of state machines. It
is therefore interesting to observe that the overall tests have passed and no
failures have been detected. However, there are still deviations that warrant
discussion.

Clearly, the shapes of the concrete signal flows for the output signals VSD_Fan
and cool_valve appear very similar to the expected outputs given in
Fig. 10. There are some significant deviations though. For example, the
expected value of VSD_Fan in the middle of the graph drops to 0, whereas
the FCU actually sets it to a value in the order of 0.8 units. For an analy-
sis, a test engineer then has to examine the log files, which are automatically
generated by the RT-Tester test system, and evaluate in detail whether the
deviations in the actual behavior from the expected behavior actually indi-
cates potential defects in the SUT. An excerpt of such a log file, which stores
the timestamps at which certain signal values have been observed, is given
in Fig. 12. It may then be necessary to update the test configuration so that
only smaller signal latencies and tolerances are allowed.

4 Related Work

HiL simulation and testing has been applied within a variety of distinct use-
cases and areas, where simulation as well as test validation is involved, sup-
porting rapid prototyping as well as — ideally — improved cost effectiveness.
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Figure 11: Sequence of interface values observed from executing the FCU
on the Raspberry Pi against the generated test data, which shows how the
interface values evolve over time. See Sect. 2.1 for a description of the units
of the signals.

timestep 1716000 {
"VSD_Fan" 6.282869
}

timestep 1717000 {
"VSD_Fan" 6.274869,
"cool_valve" 0.627487
}

timestep 1718000 {
"VSD_Fan" 6.266869
}

Figure 12: Excerpt of the signal log generated from the concrete test execu-
tion

18
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Below we highlight the different areas as well as general HiL technologies to-
gether with tools, which support such testing during prototyping.

Areas of HiL research include automotive [GPDSV06, FFHS06a], Unmanned-
Aerial-Vehicles (UAVs) [CCLD09], wind energy systems [LSS+06], electric
drives [Bou08, SKP12]. In [FFHS06b] they discuss key facets of enabling
such HiL simulation during development, where they in particular consider
how a control validation tool is integrated as part of a system development
approach. The facets these authors highlight include hardware/software in-
tegration, proper modelling as well as sensor and actuator fidelity. Similarly,
in [Han96] the authors approach HiL simulation as part of a specific tool
set, and the authors in [ISS99] present HiL simulation as part of design and
testing of engine control systems. Hence in all of the above work cited, a com-
bination of co-simulation (HiL in this case) together with test cases plays a
key enabling technology as a means of fast prototyping towards a realisation
of a cyber-physical system.

Since it can be important to have HiL capabilities integrated within the
same tool chain, commercial tools such as Matlab/Simulink2, dSpace3 and
RT-Tester4 support such efforts within their tool. In general, a drawback for
HiL simulation can be that models cannot be reused between different tool
chains unless they standardise and agree upon model simulation semantics
between the different involved tools. This is, however, one of the goals of the
FMI 2.0 standard [Blo14], which supports such facets of reusability between
models within a HiL setting. Hence using our INTO-CPS co-simulation
FMI engine, where similar usage of FMI is applied compare to works such
as [BMK+16, BCWS11, CS12], we demonstrate integration of co-simulation
together with testing capabilities within a HiL simulation setup.

An attempt to standardize the interface between tools and models for HiL
scenarios is made by the ITEA project Advanced Co-Simulation Open Sys-
tem Architecture (ACOSAR)5. Similar to the FMI standard, an Advanced
Co-Simulation Interface (ACI) is being defined, which contains a protocol
for exchanging messages between Advanced Co-Simulation Units (ACUs),
and a communication API. State-of-the-art for different domains, simulation
scenarios (discrete-event, continuous, hybrid, real-time), languages, tools or

2See https://se.mathworks.com/help/physmod/simscape/ug/
hardware-in-the-loop-simulation-workflow.html

3See https://www.dspace.com/en/inc/home/products/systems/
ecutest.cfm

4See https://www.verified.de
5See http://www.acosar.eu/
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standards was collected in an ACOSAR deliverable document [LRV+16]. Re-
lease of the initial public version of the ACI standard is planned for mid 2018.
Similar to FMI, the main motivation for developing the ACI standard is the
reuse of interface definitions, substitution of tools with and models with real
test benches, and exchangeability of communication protocols.

5 Concluding Discussion & Future Work

This deliverable shows that the INTO-CPS tool-chain is feasible for the chal-
lenging task of HiL simulation and testing, which is generally challenging
due to complex (and sometimes unstable) interfaces to embedded devices
and rather unpredictable timings. Most importantly, we have shown that
it is possible to combine the different tools from the INTO-CPS project to
straightforwardly perform HiL simulation and testing, simply by exchanging
the FMUs that communicate with each other via the COE.

In other deliverables of the INTO-CPS project, it has already been shown
that the INTO-CPS approach allows simulation of different components from
different tools and modelling formalisms. This deliverable thus provides a
missing piece by showing the feasibility of the framework to the combination
of HiL testing/simulation and purely simulated components.

Co-simulation and testing of systems whose components are encapsulated via
FMUs [PBL+17] provides compelling directions for future work. Industrial-
scale test benches are often suffering from the fact that some tasks have to
be executed at a very high frequency, but producing little output, whereas
other tasks only need to be performed sporadically or with a much lower
period. A real-world example of such a scenario is the detection of analogue
audio connections between handset phones involved in a system. Technically,
the detection can be achieved via real-time Fourier analysis. While there is
significant amounts of analogue input data and computation time involved,
the output data is changing only very infrequently; connections between
handsets are not built up and closed in the order of milliseconds, but rather
seconds or even minutes.

Industrial test benches are often composed of different nodes, where some of
these nodes are dedicated only to the computationally expensive tasks. It
turns out to be possible to wrap the test and simulation functionality run-
ning on these high-performance nodes in FMUs containing a COE themselves.
One high-performance node then executes one single top-level FMU, which
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Figure 13: Possible FMI-based setup for the integration of high-frequency
and low-frequency FMUs in test benches.

internally executes a COE with several inner FMUs at a high frequency.
Other nodes in the test bench may be similarly structured, but the exchange
of information between the different top-level FMUs is performed at a much
lower frequency. This situation is depicted in Fig. 13. Node #1 is internally
running a COE encapsulated in an FMU (Top-Level FMU #1), which is
communicating with FMU #2 running on Node #2 via a COE running on a
master node. Inner COE #1 communicates internally with Inner FMU #1
and Inner FMU #2 at a high frequency, whereas the external communica-
tion with FMU #2 takes place at a much lower frequency using the COE
running on the master node. The application of such architectures for HiL
co-simulation and testing appears extremely promising for industrial-scale
test benches, and also supports the separation of concerns.
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A List of Acronyms

20-sim Software package for modelling and simulation of dynamic systems
ACA Automatic Co-model Analysis
AST Abstract Syntax Tree
AU Aarhus University
BDD Binary Decision Diagram
BMC Bounded Model Checking
CLE ClearSy
CLP Controllab Products B.V.
COE Co-simulation Orchestration Engine
CPS Cyber-Physical Systems
CT Continuous-Time
DE Discrete Event
DESTECS Design Support and Tooling for Embedded Control Software
DSE Design Space Exploration
FMI Functional Mockup Interface
FMI-Co Functional Mockup Interface – for Co-simulation
FMI-ME Functional Mockup Interface – Model Exchange
FMU Functional Mockup Unit
HiL Hardware-in-the-Loop
LTL Linear Temporal Logic
MC Model Checking
RTT-MBT RT-Tester Model Based Test Case Generator
SAT SATisfiable Boolean formula,

a symbolic representation of terms that can/should evaluate to true
SMT Satisfiability Modulo Theories, i.e., a SAT formula interpreted

over a logical theory (here, this describes a system design)
ST Softeam
SysML Systems Modelling Language
TWT TWT GmbH Science & Innovation
UML Unified Modelling Language
UNEW University of Newcastle upon Tyne
UTRC United Technologies Research Center
UY University of York
VSI Verifdied Systems International
WP Work Package
XML Extensible Markup Language
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