
Grant Agreement: 644047

INtegrated TOol chain for model-based design of CPSs

Integration of Tool Chain Extension Modules
with the COE

Deliverable Number: D5.3a

Version: 1.0

Date: 2017

Public Document

http://into-cps.au.dk

D5.3a - Integration of Modules with the COE (Public)

Contributors:

Carl Gamble, UNEW
Victor Bandur, AU
Oliver Möller, VSI

Editors:

Carl Gamble, UNEW

Reviewers:

Julien Ouy, CLE
Etienne Brosse, ST
Frederik Foldager, AI

Consortium:

Aarhus University AU Newcastle University UNEW
University of York UY Linköping University LIU
Veri�ed Systems International GmbH VSI Controllab Products CLP
ClearSy CLE TWT GmbH TWT
Agro Intelligence AI United Technologies UTRC
Softeam ST

2

D5.3a - Integration of Modules with the COE (Public)

Document History

Ver Date Author Description

0.0 2017-08-25 Carl Gamble Skeleton Structure
0.1 2017-10-24 Carl Gamble Contributors and

Reviewers added
0.2 2017-10-30 Carl Gamble and Oliver Möller DSE and MC/TA

added
0.3 2017-10-31 Victor Bandur Code Generation

added
0.4 2017-10-31 Carl Gamble Title corrected
0.5 2017-11-02 Carl Gamble Introduction added,

ready for review
1.0 2017-12-12 Carl Gamble Internal review com-

ments addressed

3

D5.3a - Integration of Modules with the COE (Public)

Abstract

The deliverable is limited to highlighting the interactions between the tool
chain extension modules and the COE and INTO-CPS Application. These
modules include design space exploration, model checking and test automa-
tion, and code generation. Details of the functionality of these modules
may be found in deliverables D5.3e DSE [Gam17], D.3c `Implementation of a
Model Checking Component for Global Model Checking' citeINTOCPSD5.3c,
and D5.3d `FMI-Compliant Code Generation in the INTO-CPS Tool Chain'
[BHPG17].

4

D5.3a - Integration of Modules with the COE (Public)

Contents

1 Introduction 6

2 DSE 6

2.1 Con�guration and Launch of DSE 7
2.2 Simulation on local machine 7
2.3 Simulation on Cloud services 8

3 Model Checking and Test Automation 11

4 Code Generation 13

5 Conclusions 13

6 List of Acronyms 14

5

D5.3a - Integration of Modules with the COE (Public)

Figure 1: Outline connections between DSE and the INTO-CPS application
and COE

1 Introduction

When the project description of action (DOA) was penned, this deliverable
was added to describe how the modules developed in work package 5 had been
integrated `into' the COE. At the time the DOA was written it was not clear
exactly what form the �nal INTO-CPS tool chain would take and so it was
considered that the work package 5 modules could actually be packaged in or
compiled into the COE, however, in the end the tools maintained their own
identity in their own packages and so were not `integrated' into one package
as such. Instead, this deliverable describes the interactions between the Work
Package 5 modules and both the COE and the INTO-CPS Application. The
structure of the deliverable starts with the design space exploration (DSE)
scripts from task T5.1, then presents the model checking and test automation
support from tasks T5.2 and T5.3 before concluding with a brief statement
about code generation from T5.4.

2 DSE

The DSE functionality exists as a collection of python scripts and so is not
compiled into INTO-CPS application or the COE, there are, however, links
between these three. Essentially, the INTO-CPS application is able to create
DSE con�guration �les and then make use of the DSE scripts to perform
DSE, then the DSE scripts in turn make use of the COE to actually run the
simulations, Figure 1.

The following subsections outline the interactions with the DSE scripts. It
starts with the interaction with the INTO-CPS application and then de-
scribes the two di�erent interactions that take place with the COE depending
on whether DSE will make use of the user's local machine to run simulations
or if they are making use of the cloud. The latter two sections only look at
how the COE is used, for full details on the di�erent operating modes for

6

D5.3a - Integration of Modules with the COE (Public)

Figure 2: Sequence diagram of the interaction between the INTO-CPS ap-
plication and the DSE scripts

DSE please see deliverable D5.3e [Gam17].

2.1 Con�guration and Launch of DSE

The interactions between the INTO-CPS application and the DSE scripts
have two distinct elements, Figure 2. The �rst element is the editing of DSE
con�guration �les, these con�guration govern all aspects of the DSE process
including the design parameters to sweep over, the choice of search algorithm,
the means by which designs are evaluated and ranked, and several others.
Details of how DSE con�gurations are created and edited may be found in
the user manual, D4.3a [BLL+17].

The second interaction between the application and the DSE scripts is the
launching of the DSE process. Since the DSE scripts are not compiled into
the application and are standalone Python scripts, once a user is happy with a
con�guration and they click the launch button, the application then launches
the DSE scripts, passing them the required arguments so they may �nd the
INTO-CPS project workspace and con�guration �les. Details of how DSE
is launched from the application may be found in, D4.3a [BLL+17], while
details of the command line arguments passed to the scripts may be found
in D5.3e [Gam17].

2.2 Simulation on local machine

When running DSE on the user's machine, the DSE scripts assume that there
is an instance of the COE running and that it has the permissions needed

7

D5.3a - Integration of Modules with the COE (Public)

Figure 3: Activity diagram of the interaction between the DSE scripts and
the COE

to expand FMUs as needed. As such, the scripts do not need to launch the
COE or interact directly with the FMUs.

The interaction between the DSE scripts and the COE is shown in Figure 3.
The outline sequence is that the DSE scripts request a session number from
the COE, it then uses the sessions key when transmitting the simulation
con�guration to the COE, launching the simulation and �nally retrieving
the raw simulation results.

The interaction sequence is implemented in a single Python script, the coehandler.py,
making use of the curl application to interact with the COE's http inter-
face.

2.3 Simulation on Cloud services

As described in D5.3e on DSE [Gam17], scripts have been developed that
permit the running of multiple parallel simulations runs by making use of
the HTCondor software system. While the governance of the DSE process
takes place on a local machine, the HTCondor computation nodes may be
deployed on cloud services with as many replications are as needed.

When running a DSE in the cloud we face a di�erent environment and this
a�ects how the simulation process is controlled. When the search algorithm
has determined the simulations that should be run, these are distributed
among the available compute nodes and the execution on each node is con-
trolled by a Windows batch �le. An example of such a batch �le is shown
in Figure 4 and the process is outlined graphically in Figure 7. The use of a

8

D5.3a - Integration of Modules with the COE (Public)

Figure 4: An example of the batch �le controlling interaction with the COE
on the cloud

Figure 5: An example of the batch �le controlling interaction with the COE
on the cloud

Windows batch �le in dictated in the case of the example by the deployment
of the HTCondor compute nodes onto Windows based hosts. The compute
nodes could be deployed onto Linux or OS X, in which case the batch �le
would need to be altered accordingly.

The �rst task of the batch �le is to expand an archive �le containing extracted
FMUs and the `objective programs' that compute the objective values (Fig-
ure 4, lines 1 � 3). The extracted FMUs are necessary since the permissions
given to condorHT on the compute nodes do not allow any process to write
to the normal `temp' folders. To work around this we make use of a COE fea-
ture that means if, in the multi-model con�guration �le, it is passed a folder
name (Figure 5) rather than an FMU �le name (Figure 6) it will assume that
folder contains an already extracted FMU. The HTCondor compute nodes
used in the example did not have Python installed and so the objective pro-
grams used here take the place of the normal Python scripts that compute
simulation objective results when running simulations locally.

The second step is to copy the required multi-model con�guration �le so it
is the correct location for the COE to read (Figure 4, line 5)(Details on why

9

D5.3a - Integration of Modules with the COE (Public)

Figure 6: An example of the batch �le controlling interaction with the COE
on the cloud

Figure 7: Sequence diagram of the interaction between the DSE scripts and
the COE in a cloud context

this is required may be found in D5.3e).

With the FMUs and objective programs extracted, the batch �le may then
launch the COE in `one shot' mode (Figure 4, line 9). This is a special
mode where the COE is passed the path to a �le containing the simulation
con�guration and also the path the �le it should create to store the simulation
results.

Finally, the batch �le is responsible for executing the programs that process
the raw simulation result to compute the objective values (Figure 4, lines 13
� 15). Once the objective values are stored in a JSON formatted �le, the
batch �le completes, this triggers the exit behaviour of the condor scripts
that transfers the simulation results back to the host controlling the search.
The user has the option of returning either just the objective results or ob-
jective results and the raw simulation results by adjusting a script governing
submission of 'jobs' to the HTCondor system.

10

D5.3a - Integration of Modules with the COE (Public)

Figure 8: Selection of COE-Run con�guration from the RTTUI3

3 Model Checking and Test Automation

For test automation (TA), the COE is the central engine that executes a test
run (i.e., a COE experiment).

By convention, the �rst FMU that contributes to this run is the test driver,
which de�nes the stimuli and performs the check operation that determine
the result of the test execution.

A test execution requires the following ingredients.

1. a test FMU

2. one or more FMU constituting the system under test

(some may be simulations or generated simulations here)

3. a step size

4. the test duration (timeout).

As for the test duration, the test FMU also should determine this, since
it needs to �nish the sequence of prepared stimuli. Therefor the value for

11

D5.3a - Integration of Modules with the COE (Public)

this should usually be �auto�, i.e., determined by the �default experiment
duration� declared by the �rst FMU.

Figure 8 shows how to invoke a test execution in the example project �three
water tank�. The screen-shot is taken from the RT-Tester graphical user
interface; alternatively, this operation can also be started from the INTO-
CPS Application.

The important utility that is installed together with the examples is the
python script �run-COE.py�. The command above is expanded to a script
invocation as shown in Figure 9.

../utils/run-COE.py RTT_TestProcedures/TP-BCS

RTT_TestProcedures/SUT1

RTT_TestProcedures/SUT2

RTT_TestProcedures/SUT3

RTT_TestProcedures/SUT_controller

--timeout auto

--stepsize 0.01

Figure 9: Translation of the user dialogue to Script invocation.

For typical test projects, all the FMUs are created within the RT-Tester tool
(either as SUT wrapper, as Simulation, or as Mock-up). In this case, the
name and type of the interface variables is de�ned by the test model and
therefore unique for all involved FMUs. Then the connection diagram can
be automatically derived by the utility script �run-COE.py�.

In situations where one or more FMUs originate from another context, this
mapping can be de�ned explicitly via a JSON formatted �le. �run-COE.py�
then requires the additional command line option

--connections=JSON_FILE_WITH_DEFINITIONS

The full list of command line options is listed in Figure 10.

The COE is not directly involved with evaluation of the test results - this is
perfomed by RT-Tester mechanisms that inspect the output of the test FMU.
For example, the observed behavior with respect to some model elements is
compared to the expected behaviour. For matches, a PASS is generated
and for mismatches a FAIL. Unreached situations remain INCONCLUSIVE.
This evaluation can be mapped to the connected (SUT-)requirements. This
is shown in Figure 11.

For Model-Checking operations, the COE is not involved.

12

D5.3a - Integration of Modules with the COE (Public)

4 Code Generation

The COE makes use of code generation [BHPG16] only indirectly. The sim-
ulation tools Overture, 20sim and OpenModelica can all export their models
to C. This code is wrapped with an FMI-compliant layer, producing stan-
dalone FMUs. The code is compiled for the platform on which the COE
is executing, and the resulting FMU can be used as a drop-in replacement
for the corresponding tool-wrapper FMU. During co-simulation, the COE in-
teracts with standalone FMUs in the same way as with tool-wrapper FMUs,
but because they are compiled and not interpreted, standalone FMUs usually
execute much faster.

5 Conclusions

This deliverable was originally intended to show how the tool-chain modules
were integrated with the COE, however, as described the integration of the
modules did not take place in the way envisaged when the project descrip-
tion of action was constructed. Instead the deliverable has described how
those modules make use of the COE and are made use of by the INTO-CPS
Application.

13

D5.3a - Integration of Modules with the COE (Public)

References

[BHPG16] Victor Bandur, Miran Hasanagic, Adrian Pop, and Marcel
Groothuis. FMI-Compliant Code Generation in the INTO-CPS
Tool Chain. Technical report, INTO-CPS Deliverable, D5.2c, De-
cember 2016.

[BHPG17] Victor Bandur, Miran Hasanagic, Adrian Pop, and Marcel
Groothuis. FMI-Compliant Code Generation in the INTO-CPS
Tool Chain. Technical report, INTO-CPS Deliverable, D5.3d,
December 2017.

[BLL+17] Victor Bandur, Peter Gorm Larsen, Kenneth Lausdahl, Casper
Thule, Anders Franz Terkelsen, Carl Gamble, Adrian Pop, Eti-
enne Brosse, Jörg Brauer, Florian Lapschies, Marcel Groothuis,
Christian Kleijn, and Luis Diogo Couto. INTO-CPS Tool Chain
User Manual. Technical report, INTO-CPS Deliverable, D4.3a,
December 2017.

[Gam17] Carl Gamble. Comprehensive DSE Support. Technical report,
INTO-CPS Deliverable, D5.3e, December 2017.

6 List of Acronyms

AU Aarhus University
CLE ClearSy
CLP Controllab Products B.V.
COE Co-simulation Orchestration Engine
DSE Design Space Exploration
ENUM Enumeration and Scoring
FMU Functional Mockup Unit
PROV-N The Provenance Notation
ST Softeam
SUT System Under Test
TA Test Automation
TWT TWT GmbH Science & Innovation
UNEW University of Newcastle upon Tyne
UTRC United Technology Research Center
UY University of York
VSI Veri�ed Systems International

14

D5.3a - Integration of Modules with the COE (Public)

WAM Weighted Additive Method
WP Work Package

15

D5.3a - Integration of Modules with the COE (Public)

Usage: run-COE.py TestProc1 TestProc2 [TestProc3, ...]

Starts an test execution with two FMUs that are (from RT-Tester perspective)

RTT6 test procedures wrapped in FMUs.

TestProc1 : The test driver (directing stimulation and checking)

TestProc2,3,... : The system under test (SUT)

which is compared to the expected behaviour

The COE will check whether all inputs/outputs fit together; it is a user

obligation to contruct the TestProcs such that the corresponding FMU

interfaces constitute a closed system.

Options:

--version show program's version number and exit

-h, --help show this help message and exit

-t DURATION, --timeout=DURATION

define the duration of the run (in seconds). If this

value is set to 'auto', then the duration is taken

from the DefaultExperiment of the first FMU (+ 1.0

second slack added).

-s DURATION, --stepsize=DURATION

define the step size the COE shall use (in seconds),

default: 0.1. If this value is set to 'auto', then the

step size is taken from the DefaultExperiment of the

first FMU.

-p PORT, --port=PORT define the port to connect with the COE

-c, --query-coe-version

Query the version of the COE, display it and exit

-i FILE, --io-config=FILE

Point to an override *.json file that defines the COE

configuration; needs to map "connections",

-C FILE, --connections=FILE

Point to an override *.json file that defines

connections as connections["<input>"] = [<output>*]

The <input>/<output> is strucutured as

fmuName.instanceName.varName The data from this file

will be used in the COE run *instead* of the derived

connections[]. The place holders @GUID_TP1@,

@GUID_TP2@, ... can be used to reference the

respective GUID of the respective TestProc.

--verbose Print all debugging output

Figure 10: Command line options to modi�y the COE invokation.

16

D5.3a - Integration of Modules with the COE (Public)

Figure 11: RT-Tester Test-Automation result, requirements may be PASS,
FAIL, or INCONCLUSIVE (i.e., untried).

17

	Introduction
	DSE
	Configuration and Launch of DSE
	Simulation on local machine
	Simulation on Cloud services

	Model Checking and Test Automation
	Code Generation
	Conclusions
	List of Acronyms

