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Abstract

This deliverable details the state of the INTO-CPS tool chain code generation
capability at the end of project year 2. Code generation is spread across
the three tools OpenModelica, 20-sim and Overture. With respect to FMI,
all tools have the ability to export standalone FMUs. The focus of this
deliverable is on code generation in the context of the latter.



D5.2¢ - INTO-CPS Code Generation (Public) INTO-CPS =2

Contents
(1__Introduction| 6
2 Background and Related Work| 6
2.1 Modelical . . . . . . . .. 6
2.2 SIDOPS+ and Bond Graphs| . . . . . ... ... ... .. ... 7
R3 VDM . . . . oo 9
(3 FMI Code Generation with OpenModelical 9
4_FMI Code Generation with 20-siml 12
[4.1 Code Generation Principles, . . . . ... ... ... ... ... 12
[4.2  Code Generation Capabilities| . . . . .. ... ... ... ... 14
[4.3 FMU Capabilities| . . . . . .. ... .. ... ... ... ..., 15
4.4 3D Animation Viewer EMUl . . . .. ... ... 16
b __FMI Code Generation with Overturel 17
.1 VDM and Code Generationl . . . . ... ... .. ... .... 17
6.2 Semantics of VDM-RT] . . . . . ... o000 19
(5.3 Achieving Translation| . . . . ... ... ... ... .. .... 21
[>.4 Translating Features of VDM-RT| . . . . .. ... .. ... .. 42
[5.5  Ambiguities Not Addressed by the Semantics|. . . . . . . . .. 54
[5.6 Implementation as Overture Plugin| . . . . . . ... ... ... 55
6 FMU Compilation Service| 56
(7__Conclusions| 56



D5.2¢ - INTO-CPS Code Generation (Public) INTO-CPS =2

1 Introduction

This deliverable describes the maturing code generation capability of the
INTO-CPS tool chain at the end of project year 2. Code generation is spread
across the three tools OpenModelica [Linl5|, 20-sim [Conl3] and Overture
[LBET10]. In comparison to the code generation capabilities of OpenModel-
ica and 20-sim, which rely on code generation for simulation, Overture’s C
code generator was developed from scratch for INTO-CPS. This has resulted
in a corresponding emphasis on Overture’s code generator in this deliver-
able.

2 Background and Related Work

This section introduces the three modelling notations Modelica, bond graphs
and VDM, and some existing work on code generation for each. Citations
for these formalisms are given herein.

2.1 Modelica

Modelica [FE98|, [Fri04] is an object-oriented, equation-based language for
conveniently modelling complex physical systems containing, e.g., mechani-
cal, electrical, electronic, hydraulic, thermal, control, electric power or process-
oriented subcomponents. The Modelica language supports continuous, dis-
crete and hybrid time simulations.

The Modelica language has been designed to allow tools to automatically gen-
erate efficient simulation code with the main objective of facilitating exchange
of models, model libraries, and simulation specifications. The definition of
simulation models is expressed in a declarative manner, modularly and hier-
archically. Various formalisms can be expressed in the more general Modelica
formalism. In this respect Modelica has a multi-domain modeling capability
which gives the user the possibility to combine electrical, mechanical, hy-
draulic, thermodynamic etc. model components within the same application
model.

Several tools exist that support code generation from the Modelica language.
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These are the commercial tools Dymold][| SimulationXP? and MapleSinf¥; and
the open-source tools OpenModelicaf] and JModelica’l Most of these tools
generate C or C++ code and can also generate FMUs.

2.2 SIDOPS+ and Bond Graphs

SIDOPS (Structured Interdisciplinary Description Of Physical Systems) is
a computer language developed for the description of models and submod-
els of physical systems [Bro90]. It is designed to express bond-graph mod-
els that describe domain-independent engineering systems. 20-sim uses the
SIDOPS+ version of the language, the key features of which are discussed
below.

SIDOPS+ [BB97] enhances support for organizing complex systems as a hi-
erarchy of submodels by separating the interface of a model from its specifica-
tion. This enables the creation of different specifications for one interface. In
addition, SIDOPS+ supports different representations of model descriptions
within three abstraction levels [BB97]:

e At the technical component level, models describe networks of devices
which are represented by component graphs.

e At the physical concept level, models capture the physical processes of
a system and can be expressed using graphical formalisms.

e At the mathematical level, models provide the quantitative description
of the physical processes, written in the form of acausal equations or
sequential statements (computer code) that calculate output variable
values from the input variables.

All representations are port-based networks, meaning that the connection
points between model elements is the location where exchange of informa-
tion (signals) or power takes place. As a result, it is possible to map one
representation to another without losing consistency. Similar to Modelica,
the SIDOPS+ language supports continuous, discrete and hybrid time sim-
ulations by offering special functions for determining the sample interval for

"http://http://www.modelon.com/products/dymola/.
Zhttp://www.simulationx.com/.
3http://www.maplesoft.com/products/maplesim/.
“http://www.openmodelica.org/.
Shttp://jmodelica.org/.
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discrete-time variables that are linked through equations, and for creating
continuous signals out of discrete input signals.

In 20-sim a model can be defined graphically, similar to drawing an engineer-
ing schematic, or using equations based on the SIDOPS+ language. Such
models can be used to simulate and analyze the behaviour of multi-domain
dynamic systems using, e.g., mechanical, electrical, hydraulic, thermal and
control components.

Systems can be modelled in 20-sim using a variety of modelling formalisms:
e Block diagrams
e Bond graphs
e Iconic diagrams
e Mathematical equations
e System descriptions (state space, transfer function)
Different formalisms can be freely combined within one model (mixed model).

Graphical models in 20-sim are built from pre-built library blocks or custom-
made blocks. These blocks are called “submodels”. They are implemented
using either a graphical representation or equations.

Using graphical implementations inside submodels allows for hierarchical
modelling. 20-sim supports unlimited levels of hierarchy in the model. The
highest hierarchical levels in the model typically consist of graphical models
(state space models, block diagrams, bond graphs or components). The low-

est level in the hierarchy is always formed by equation models written in the
SIDOPS+ language.

20-sim supports ANSI-C and C++ code generation for a large part of the
SIDOPS+ language. The focus for the code generator is on generating code
with real-time capabilities. Other tools that can generate code from bond
graphs include CAMP-GH, which generates MATLAB code; MSlﬂ which can
generate C and MATLAB code; and PSM++E| which can generate Pascal
code.

Shttp://www.bondgraph. com.
"http://www.lorsim.be.
8http://www.raczynski.com/pn/pn.htm.
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2.3 VDM

The Vienna Development Method (VDM) [Bjo79] is a formal software devel-
opment notation and method based on formal proof of specification proper-
ties. The core specification language of VDM is called VDM-SL. Specifica-
tions written in VDM-SL are based on a central system state. Modifications
to the state define the overall behaviour of the system being specified. The
facilities of the language include fundamental types such as R and N, func-
tion and operation pre- and post-conditions, state invariants, user-defined
types with invariants and so on.

The first level of development of VDM sees a move from VDM-SL to the
language VDM++, an object-oriented extension. In VDM++ it is possi-
ble to make use of class-based structuring of specifications such that por-
tions can be reused across specifications, just as encapsulation can be ex-
ploited for reuse in object-oriented programming languages. Indeed, object-
orientation in VDM++ was inspired by object-orientation in programming
languages.

The second expansion of the language results in the dialect VDM-RT. Be-
side all the object-oriented features of VDM++, VDM-RT adds facilities
for capturing timing behaviour and specifying distributed system architec-
tures.

Code generation for the various dialects of the (VDM) is implemented in two
VDM support tools. The original VDMTools [CSK07, [FLS08| implements
Java and C++ code generators for VDM-++. The follow-up open-source
alternative, Overture, provides a Java code generator and a C code generator
that is currently under active development. The target language for the
Overture code generators is VDM-RT), specifically its features for distributed
architectures.

3 FMI Code Generation with OpenModelica

OpenModelica is an open-source Modelica-based modeling and simulation
environment. Modelica is an object-oriented, equation based language to
conveniently model and simulate complex multi-domain physical systems.
The OpenModelica environment supports graphical composition of Modelica
models. Models are simulated via translation to FMU, C or C+4 code.
Compilation of Modelica models in OpenModelica happens in several phases
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Figure 1: OpenModelica compilation phases.

[Sjo15] (see also Figure |1)):

e Frontend - removes object orientation structures and builds the hybrid
Differential Algebraic Equations (DAE) system to be solved.

e Backend - the hybrid DAE system is index reduced, transformed to
causal form (sorted), and optimized.

e Codegen - the optimized system of equation is transformed to FMU, C
or C++ code using a template language.

We now describe briefly the design principles behind code generation in the
OpenModelica simulator. The OpenModelica simulator transforms Modelica
code into different lower level languages that can be compiled into executable
code. Currently OpenModelica can generate C, C++ JavaScript code. Ad-
ditionally, the OpenModelica simulator can generate FMUs compliant with
both FMI 1.0 and 2.0 for model exchange and co-simulation.

The transformation from Modelica into executable code consists of several
phases (see also Figure [2):

e Flattening - removal of object orientation from the Modelica language
and creation of a hybrid DAE system.

e Basic Optimization - optimization of the hybrid DAE system, index
reduction, matching, equation sorting, causalization.

10
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e Advanced Optimization - more optimization of the system of equations,
alias elimination, tearing, common sub-expression elimination, etc.

e Independent Simulation Code - the final system of equations is trans-

formed into an independent simulation code structure.

e Code Generation - the Independent Simulation Code structure is given
to several templates which can generate code in different languages,
currently C, C++, JavaScript. The templates can also package FMUs.

e Simulation - the code is compiled into a standalone executable from
the generated code and executed.

DAELow

data structures for representing

solved equation code

TemplateEngine

r 3

L Languagel
Language?

- LanguageN

A 4

Runtime Languagel

Generated Code

Runtime Language2

Runtime LanguageN

Linking

A 4

Executable

Figure 2: OpenModelica code generation using templates.

The code generation templates are written in the OpenModelica template

language Susan [FPSP(9].

11
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As with the other INTO-CPS tools, OpenModelica’s code generation capa-
bility is employed in generating FMI 1.0 and 2.0 FMUs for co-simulation.
Currently only the forward Euler method of integration is available in the
generated FMUs. These are source code FMUs which contain all the nec-
essary source code files to be compiled for any target. With INTO-CPS,
specifically for embedded targets, this process is facilitated by 20-sim 4C.
This capability is currently under development.

4 FMI Code Generation with 20-sim

FMI code generation from 20-sim builds upon the application’s existing code
generation toolbox. 20-sim can generate ANSI-C and C++ code from a
graphical or equation model. The generated code is passed to 20-sim 4C, a
rapid prototyping application that takes the generated model code as input,
combines it with target-specific code and prepares it for execution on a real-
time target.

The main design principle behind the separation between 20-sim and 20-sim
4C is that a model should be independent of the actual target on which
it should run. A model should contain only the necessary information of
the target relevant for the simulation and no details specific or relevant to
code generation. A typical 20-sim model contains no information about the
intended target. The model can contain behavioural details about the target,
such as the accuracy of an analog-to-digital converter, but detailed knowledge
about the actual chip used and how to read values from this converter is not
necessary for the simulation and is therefore not part of the model. As a
consequence, 20-sim is not able, on its own, to produce standalone C-code
that can access specific hardware. It can only generate standalone C-code
that includes the model behaviour. This is enough for generating FMUs but
not for running them on actual hardware.

4.1 Code Generation Principles

The 20-sim ANSI-C/C++ code is generated based on all SIDOPS+ equations
inside the model. Figure [3|shows the flowchart of the 20-sim code generation
process. The processing phase in 20-sim takes the graphical or equation
model, flattens the model and translates it into a hybrid Differential Algebraic
Equation (DAE) system. This DAE system is transformed into a causal form

12
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Figure 3: Flowchart of code generation from 20-sim.

(set of sorted equations). These sorted equations are then further optimized
for both simulation and code generation purposes.

20-sim uses code generation templates to generate code for different purposes.
One of these templates is the standalone FMU export template (for both FMI
1.0 and 2.0). 20-sim translates the optimized sorted equations into several
blocks of ANSI-C code (e.g. initialization code, static equations, dynamic
equations). These blocks are all stored in a token dictionary. Based on

13
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the token dictionary and the selected code generation template, the actual
code is produced by means of a token replacement step. An example of the
generated code can be found in deliverable D5.1d [HLGT15] (Section 6.2,
Listing 3).

The FMU export template contains all functions that are required by the
FMI 1.0 and/or 2.0 standard. These functions call the pre-defined 20-sim
model functions for initialization, calculate steps and terminate. Besides
20-sim generated model functions, the template contains several pre-defined
helper functions that implement ANSI-C versions of the SIDOPS+ language
functions not directly supported in ANSI-C. Examples include matrix sup-
port functions, Table file read functionality and motion profile calculation
functions. The latest version of the 20-sim Standalone FMU template can
be found on GitHub:

https://github.com/controllab/fmi-export-20sim.

4.2 Code Generation Capabilities

Only a subset of the 20-sim modelling language elements can be exported as
ANSI-C or C++ code. The exact supported features depend on the chosen
template and its purpose. The main purpose of the 20-sim code generator is
to export control systems. Therefore the focus is on executing the generated
code on “bare-bone” targets (i.e. without operating system support, such as
Arduino) or as a real-time task under a real-time operating system.

The following features are not, or are only partially supported for code gen-
eration in all templates. The FMI export template has no specific real-time
goal, therefore this template supports more features than the other code
generation templates.

e Hybrid models: Models that contain both discrete- and continuous-
time sections cannot be generated at once. However, it is possible to
export the continuous and discrete blocks separate.

e External code: Calls to external code are not supported. Examples
are: DLL(), DLLDynamic () and the MATLAB functions.

e Variable delays: The tdelay() function is not supported due to the
requirement for dynamic memory allocation.

e Event functions: timeevent(), frequencyevent() statements are
ignored in the generated code.

14
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e Fixed-step integration methods: Fuler, Runge-Kutta 2 and Runge-
Kutta 4 are supported.

e Variable-step integration methods: Vode-Adams and Modified Back-
ward Differential Formula (MeBDF) are currently only available in
the development FMI export template found on GitHub at https://
github.com/controllab/fmi-export-20sim (branch: MeBDF1i). The
variable step-size methods are not supported for all other code-generation
templates due to their real-time constraints.

e Implicit models: Models that contain unsolved algebraic loops are
not supported.

e File I/O: The 20-sim “Table2D” block is supported for FMU export.
All other file-related functions are not supported.

4.3 FMU Capabilities

The FMI standard allows for many optional features. Here we summarize
the most important characteristics of FMUs exported from 20-sim. Feature
support includes the following:

e (Co-simulation FMUs for both FMI 1.0 and FMI 2.0.
e Standalone FMUs.

e Real-time capability (when not using file I/O and variable step-size
integration methods).

e Multi-instance support.

e Support for both fixed-step-size and variable step-size methods.
e F'MUs which include source code.

e Access to all model parameters and internal model variables.

e Dynamic memory allocation (canNotUseMemoryManagementFunctions
= false).

W

e Structured variable naming support (hierarchy using “.” and arrays
using “[ 17).

The following FMI features are not yet supported, but planned:
e Getting and setting the complete FMU state;

15
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e Getting partial derivatives;

e Definition of used units;

4.4 3D Animation Viewer FMU

During the first year of the INTO-CPS project, it became clear that signal
plots of a co-simulation experiment are not always the best way to check
and represent the results. For multiple case studies, there was a clear wish
for a 3D visualization of the co-simulation results similar to the existing 3D
animation feature of 20-sim. A standalone 3D animation FMU has been
developed to allow visualization during the co-simulation. Figure [ shows an
example of this FMU for the INTO-CPS line-follower case study.

W

ECIEERIE = |

Figure 4: 3D animation FMU

20-sim can export an existing 3D animation plot as scenery XML (details
can be found in deliverable D4.2a [BLLT16].) Based on this XML code and
pre-built animation DLLs (Windows 32- and 64-bit only) one can manually
generate a standalone 3D animation FMU. The limitation of the current
3D animation FMU is that the animation follows the co-simulation speed.
When the co-simulation is slower or faster than real-time, the animation will
follow the same speed. Ongoing work is to address this by converting the
FMU to a tool-wrapper FMU that stays open after the actual co-simulation

16
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experiment. A replay option is planned to replay the animation at real-time
speed using recorded data from the co-simulation.

5 FMI Code Generation with Overture

Code generation capability development for Overture was split into two
stages. Unlike 20-sim and OpenModelica, which had mature code genera-
tion capabilities at the beginning of the INTO-CPS project, code generation
to C for Overture had to be developed from scratch. The first step was to
develop the code generation capability proper, the second to extend this to
export of standalone FMUs. This section describes the design and implemen-
tation of the C code generator. This discussion is further divided into two
parts. The first is concerned with code generation for the basic expression
language of VDM-SL and the object-oriented features of VDM++, whereas
the other deals specifically with code generation of the distribution features

of VDM-RT.

5.1 VDM and Code Generation

VDM can be used to specify systems at a very abstract level, as well as at a
level that is concrete enough to be transliterated to any imperative program-
ming language. Constructs such as pre- and post-conditions, state invariants
and non-determinism facilitate the former, whereas constructs such as local
variable declarations, assignments and loops facilitate the latter.

For instance, consider the following two specifications of a sorting algorithm,
one very abstract, the other very concrete:

\

abstractSort (unsortedList : seq of int) sortedList : seq of int
pre true
post permutations(unsortedList, sortedList) and
forall i, j in set inds sortedList &
i <= j => sortedList (i) <= sortedList (j);

concreteSort : (seq of int) =—> (seq of int)

concreteSort (unsortedList) =—

(
dcl sortedList : seq of int := unsortedList;
dcl tmp : int;

for all i in set inds sortedList do
for all j in set inds sortedList do
if sortedList(j) >= sortedList(i) then

(

17
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tmp := sortedList (1);
sortedList (1) sortedList (j);
sortedList (j) := tmp;

);

return sortedList;

)

The former assumes the existence of a function that confirms whether two
sequences of integers are permutations of each other:

L[permutations : seq of int * seq of int —> bool J

The abstract specification conveys its meaning very clearly in terms of the
relationship that the resulting state must bear to the starting state. It forms
a very clear starting point for implementation in any programming language.
The meaning of the concrete specification is perhaps not as easily gleaned,
as it has an imperative flavour. But it is intentionally constructed like an
imperative program, such that it can be easily transliterated into, say, a Java

implementation:
p

private static List<Integer> concreteSort(List<Integer> unsortedList)

{
List<Integer> sortedList = unsortedList;
Integer tmp;

for(int i = 0; 1 < sortedList.size(); i++)
{
for(int j = 0; j < sortedList.size (); j++)

{

if (sortedList.get(j) >= sortedList.get(i))

tmp = sortedList.get(i);
sortedList.set (i, sortedList.get(j));
sortedList.set(j, tmp);
}
}
}

return sortedList;

\& Y

The ability to choose the level of abstraction for any given specification not
only facilitates a refinement-based approach to software development, but
makes the method easy to use by system developers with very different ex-
pertise, from purely mathematical to fully focused on programming.

Refinement is crucial to code generation. Essentially, a code generator must
embody a refinement strategy which is applied without human intervention
in seemingly one step. The easiest way to implement a code generator is
to keep the source language as concrete as possible. The example above

18
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demonstrates that, whereas the abstract specification of the sorting proce-
dure can be implemented in any way that is correct wrt the post-condition,
the concrete specification is a lot more direct, in that it provides unequivocal
guidance toward the implementation of a bubble sort. It is important to note
that it is the meaning of the specification that is important. Its presentation,
whether abstract or concrete, is a matter of practicality. Implementation of
any other correct sorting procedure would satisfy the concrete specification,
but the bubble sort is easiest to derive from the specification. The Overture
C code generator starts from a restricted subset of VDM-RT that makes such
derivation easiest.

5.2 Semantics of VDM-RT

The semantics of VDM-RT adopted by the Overture C code generator is
fully documented in INTO-CPS deliverables D2.1b [FCL™15] and D2.2b
[FCCT16]. The semantic work is rooted in Hoare and He’s Unifying Theories
of Programming (UTP) [HJ98]. Here we give a brief overview of the most
important aspects of the semantics.

Features of VDM-SL The expression language of VDM-RT forms the
basic mathematical core of the language. The mathematical vocabulary is
standard and ranges over basic number domains, the Boolean domain, sets,
sequences, maps etc. Expressions can refer to state variables, but they do not
admit non-deterministic constructs, such as underspecified choice between
values (e.g. VDM-RT’s 1let-be-such-that construct.) Therefore, expression
evaluation is deterministic modulo specification state, that is, an expression
evaluated in the context of an instance of a class will always be deterministic
relative to that object’s state. The semantics of the expression language of
VDM-RT is therefore assumed to be the standard mathematical one, and a
direct semantic mapping into UTP expressions is assumed.

Features of VDM++ The feature of VDM++ of primary interest to code
generation is object orientation. The semantics defines nine fundamental
conditions governing the structure of a valid object-oriented specification in
VDM++. Later, we show that the code emitted by the Overture C code
generator is in conformance with these conditions, with a few justifiable
exceptions. In brief, the conditions are:

e OOL1: The special class Object is always a class of the system.

19
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e O02: Every class of the system has a superclass, except for Object.

e O0O2a: Every class other than Object may have multiple direct super-
classes.

e 003: Every class has Object as a (not necessarily direct) superclass.

e O03a: Cycles are not allowed in the case of multiple inheritance.
That is, if class C' inherits from classes A and B, then A and B may
not themselves be in an inheritance relationship.

e O0O4: Every class must define at least one attribute.
e O0O4a: Every class must define an invariant.
e OO5: Attribute names are unique across classes.

e O0G6: Each attribute is either of basic type, or of the type of one of
the classes existing in the system.

These healthiness conditions form part of a theory of classes and object-
orientation to which the semantics of VDM-++4 proper must conform. Further
to the conditions on the static structure of an object-oriented specification,
conditions are placed on object (class instance) behaviour. The effect of these
conditions is as follows.

Upon creation of an instance of a class, all the attributes inherited from its
superclasses are collected and associated with the instance being created.
They are assigned default values nondeterministically for basic types and
null references for class types. Access to overridden attributes along an in-
heritance chain (e.g. C' inherits from B and B inherits from A) is resolved
to the nearest overriding attribute in the chain.

In the presence of multiple inheritance, it is possible for several superclasses
to define the same function or operation, creating ambiguity for the class
inheriting from both simultaneously. Listing [1] illustrates this situation in
VDM-++.

Listing 1: Method declaration ambiguity in multiple inheritance context.

p
class A

operations
public op : () => bool
op() —
return true
end A

class B
operations

20
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public op : () => bool
op() =

return false
end B

class C is subclass of B, A
end C

class D
instance variables

obj : C := new C();

operations

public testop : () => bool
testop () =
return obj.op();
end D
\. J

The semantics dictates that in this circumstance a choice be made arbi-
trarily from the multiple definitions of the function or operation. However,
Overture does not allow this sort of ambiguity in the specification (Overture
considers the specification in Listing[l|invalid), eliminating both this and the
more general problem of diamond inheritance. In a code generation context,
therefore, this choice does not have to be made. The decision to disallow
such specifications in Overture reflects a refinement of the semantics, and so
consistency between semantics, existing tool support and tool support under
development is maintained.

Features of VDM-RT The two additional features provided by VDM-
RT, namely timing information and facilities for distributed architectures,
are treated separately in Section [5.4]

5.3 Achieving Translation

The priority of the translation strategy is to remain faithful to the VDM-RT
semantics described above. The strategy therefore assumes that VDM-RT
specifications have been validated using Overture’s various facilities. This
section describes the strategy and the two sides of the translation mecha-
nism, the implementation of the strategy and the native C support library.
This section focuses specifically on the fundamental features of VDM, those
provided by VDM-SL and VDM-++. Section discusses the translation of
the additional features provided by VDM-RT.
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5.3.1 Native Support Library

Implementations generated from VDM-RT models consist of two parts, the
generated code and a native support library’] The native library is fixed and
does not change during the code generation process. We illustrate its design
here by means of very simple generated VDM models.

The native library provides a single fundamental data structure in support
of all the VDM-RT data types, called TypedValue. The complete definition
is shown in Listing [2| (excerpt from previous work on integrating Overture
with the TASTE toolset [FVBT16].) A pointer to TypedValue is #defined
as TVP, and is used throughout the implementation.

Listing 2: Fundamental code generator data type.

rtypedef enum {
VDM.INT, VDMNAT, VDM.NATI, VDMBOOL, VDM REAL,
VDM_RAT, VDM.CHAR, VDMSET, VDMSEQ, VDMMAP,
VDM_PRODUCT, VDM.QUOTE, VDM.RECORD, VDM.CLASS

} vdmtype;
typedef union TypedValueType {
void* ptr; // VDM.SET, VDM.SEQ, VDM.CLASS,
// VDMMAP, VDM_PRODUCT
int intVal; // VDM_INT and INTI
bool boolVal; // VDM-BOOL
double doubleVal; // VDM_REAL
char charVal; // VDM.CHAR

unsigned int uintVal; // VDM.QUOTE
} TypedValueType;

struct TypedValue {
vdmtype type;
TypedValueType value;

} k)

struct Collection {
struct TypedValuexx value;
int size;

s

(S

An element of this type carries information about the type of the VDM value
represented and the value proper. For space efficiency, the value storage
mechanism is a C union.

9The design of the native library is based on the following four sources:
http://www.pvv.ntnu.no/~hakonhal/main.cgi/c/classes/|, accessed 2016-09-22.
http://www.eventhelix.com/RealtimeMantra/basics/
ComparingCPPAndCPerformance2.htm, accessed 2016-09-22.
http://www.godexpert.com/articles/
virtual-table-vptr-multiple-inheritance-t16616/, accessed 2016-09-22.
http://www.godexpert.com/articles/virtual-table-vptr-t16544/, accessed 2016-
09-22.
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Members of the basic, unstructured types int, char, etc. are stored directly
as values in corresponding fields. Due to subtype relationships between cer-
tain VDM types, for instance nat and nat1, fields in the union can be reused.
Functions to construct such basic values are provided:

TVP newInt(int)

e TVP newBool(bool)
e TVP newQuote(unsigned int)
e clc.

All the operations defined by the VDM language manual on basic types are
implemented one-to-one. They can be found in the native library header file
VdmBasicTypes.h.

Members of structured VDM types, such as seq and set, are stored as refer-
ences, owing to their variable size. The ptr field is dedicated to these. These
collections are represented as arrays of TypedValue elements, wrapped in the
C structure Collection. The field size of Collection records the number
of elements in the collection. Naturally, collections can be nested. At the
level of VDM these data types are immutable and follow value semantics.
But internally they are constructed in various ways. For instance, inter-
nally creating a fresh set from known values is different from constructing
one value-by-value according to some filter on values. In the former case a
new set is created in one shot, whereas in the latter an empty set is created
to which values are added. Several functions are provided for constructing
collections which accommodate these different situations.

e newSetVar(size t, ...)

e newSetWithValues(size_t, TVPx*)
e newSeqWithValues(size_t, TVPx)
e cic.

These rely on two functions for constructing the inner collections of type
struct Collection at field ptr:

e TVP newCollection(size_t, vdmtype)
e TVP newCollectionWithValues(size t, vdmtype, TVP*)

The former creates an empty collection that can be grown as needed by
memory re-allocation. The latter wraps an array of values for inclusion in a
TVP value of structured type. All the operations defined in the VDM language

23



D5.2¢ - INTO-CPS Code Generation (Public) INTO-CPS =2

manual on structured types are implemented one-to-one. They can be found
in the header files VdmSet .h, VdmSeq.h and VdmMap.h.

VDM’s object orientation features are fundamentally implemented in the
native library using C structs. In brief, a class is represented by a struct
whose fields represent the fields of the class. The functions and operations
of the class are implemented as functions associated with the corresponding
struct.

Consider the following example VDM specification.
Listing 3: Example VDM model.

p

class A

instance variables
private i : int := 1;

operations

public op : () => int
op() =
return i;

end A
\. J

The code generator produces the two files A.h and A.c, shown below.

Listing 4: Corresponding header file A.h.

p
#include "Vdm.h”
#include 7A.h”

#define CLASS_ID_A_ID 0

#define ACLASS struct Ax

#define CLASS_A__Z20pEV 0

struct A
VDM_CLASS_BASE_DEFINITIONS (A);
VDM_CLASS_FIELD_DEFINITION (A, i );

s

TVP _Z1AEV (ACLASS this_);

ACLASS A_Constructor (ACLASS);
I\ J

The basic construct is a struct containing the class fields and the class
virtual function table:

Listing 5: Macro for defining class virtual function tables.

#define VDM_CLASS_FIELD_DEFINITION (className , name) \
TVP m ##className#H# #HH#name
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#define VDM_CLASS_BASE DEFINITIONS(className) \
struct VTable % _##tclassName## pVTable; \
int _##className##_id; \
unsigned int _##className##_refs

The virtual function table contains information necessary for resolving a
function call in a multiple inheritance context as well as a field which receives
a pointer to the implementation of the operation op.

Listing 6: Virtual function table.

p
typedef TVP (xVirtualFunctionPointer)(void * self, ...);

struct VTable

{

//Fields used in the case of multiple inheritance.
int d;
int i;

VirtualFunctionPointer pFunc;

s

(S

The rest of the important parts of the implementation consist of the function
implementing op (), the definition of the virtual function table into which this
slots and the complete constructor mechanism.

Listing 7: Corresponding implementation file A.c.

#include "A.h”
#include <stdio.h>
#include <string.h>

void A _free_fields (struct A xthis)

vdmFree(this—>m_A_i);

}

static void A _free(struct A xthis)

{

—this—>_A _refs;
if (this—>_A_refs < 1)

A _free_fields (this);
free (this);

}

/% A.vdmrt 6:9 x/
static TVP _Z20pEV (ACLASS this)

{
/* A.vdmrt 8:10 =/

TVP ret_1 = vdmClone(newBool(true));

/x A.vdmrt 8:8 x/
return ret_1;
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static struct VTable VTableArrayForA [] =

{0,0,((VirtualFunctionPointer) _Z2opEV),},

)

ACLASS A_Constructor (ACLASS this_ptr)

{
if (this_ptr==NULL)
this_ptr = (ACLASS) malloc(sizeof(struct A));
}
if (this_ptr!=NULL)
this_ptr—>_A_id = CLASS_ID_A_ID;
this_.ptr—>_A_refs = 0;
this_ptr —>_A_pVTable=VTableArrayForA ;
this_ptr—>m_A_i= NULL ;
}
return this_ptr;
}

// Method for creating mew ”class”
static TVP new ()

ACLASS ptr=A_Constructor (NULL);

return newTypeValue (VDM_CLASS,
(TypedValueType)
{.ptr=newClassValue (ptr—>_A_id ,
&ptr—>_A _refs ,
(freeVdmClassFunction)& A _free

ptr)});

/* A.vdmrt 1:7 x/
TVP _Z1AEV (ACLASS this)

{
TVP __buf = NULL;

if (this = NULL)

__buf = new();
this = TO_.CLASS_PTR(--buf, A);
}
return __buf;
}
NS

TO_CLASS_PTR merely unwraps values and can be ignored for now.

Construction of an instance of class A starts with a call to _Z1AEV. An instance
of struct A is allocated and its virtual function table is populated with the
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pointer to the implementation of op(), Z20opEV. The latter name is a result
of a name mangling scheme implemented in order to avoid name clashes in
the presence of inheritancd| A header file called MangledNames.h provides
the mappings between VDM model identifiers and mangled names in the
generated code. This mapping aids in writing the main function. The scheme
used is ClassName_identifier. Listing [§] shows the contents of the file for
the example model.

Listing 8: File MangledNames.h.
#define A_op _Z20pEV
#define A_A _Z1AEV

By default, the code generation process provides an empty main.c file such
that it is possible to compile the generated code initially. It will, of course,
be completely inert. The following example populated main. c file illustrates
how to make use of the generated code.

Listing 9: Example main. c file.

-
#include ”"A.h”
int main()

{
TVP a_instance = _Z1AEV (NULL);

TVP result;
result = CALLFUNC(A, A, a_instance, CLASS_A__Z20pEV);
printf(” Operation_op_returns:_._.%d\n”, result—>value.intVal);

vdmFree(result );
vdmFree(a_instance );

return 0;

}

(S

Had the class A contained any values or static fields, the very first calls into
the model would have been to A_const_init() and A_static_init(). The
main.c file also contains helper functions that aggregate all these calls into
corresponding global initialization and tear-down functions. As this is not
the case here, an instance of the class implementation is first created, together
with a variable to store the result of op. The macro CALL_FUNC carries out
the necessary calculations for calling the correct version of _Z20pEV in the
presence of inheritance and overriding (not the case here).

10The name mangling scheme is based on the following sources:
https://en.wikipedia.org/wiki/Name_mangling, accessed 2016-09-28.
http://www.avabodh.com/cxxin/namemangling.html, accessed 2016-09-28.
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Listing 10: Macros supporting function calls.

#define GET_STRUCT_FIELD (tname, ptr, fieldtype , fieldname) \
(#((fieldtype *)(((unsigned charx)ptr) + \
offsetof (struct tname, fieldname))))

#define GET_VTABLEFUNC(thisTypeName ,funcTname, ptr,id) \
GET_STRUCT_FIELD (thisTypeName , ptr ,struct VTablex, \
F#tuncTname##_pVTable ) [id |. pFunc

#define CALLFUNC(thisTypeName ,funcTname, classValue ,id, args... ) \
GET.VTABLEFUNC( thisTypeName, \
funcTname, \
TO_CLASS PTR(classValue ,thisTypeName), \
id) \
(CLASS_CAST(TO-CLASS_PTR(classValue ,thisTypeName), \
thisTypeName, \

funcTname) , ## args)
\. J

The result is assigned to result, which is then accessed according to the
structure of TVP. The function vdmFree is the main memory cleanup function
for variables of type TVP.

5.3.2 Translating Features of VDM-SL

In this section we discuss how the basic features of VDM-RT, those contained
in the subset VDM-SL, are translated to C.

Basic data types Instances of the fundamental data types of VDM-SL
(integers, reals, characters etc.) translate directly to instances of type TVP
with the appropriate field of the union structure TypedValueType set to the
value of the instance. They are instantiated using the corresponding con-
structor functions newInt (), newBool() etc. introduced above. Operations
on fundamental data types preserve value semantics by always allocating
new memory for the result TVP instance and returning the corresponding
pointer.

Structured types. Like basic types, aggregate types such as sets and
maps are treated in exactly the same way. The support library provides
both the data type infrastructure as well as the operations on aggregate
types such that translation is rendered straightforward. For example, the
definition

(a : set of int := {1} union {2}; J
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translates directly to

(TVP a = vdmSetUnion(newSetVar (1, newlnt (1)), newSetVar(l, newlnt (2))); J

where newSetVar () is one of the several special-purpose internal construc-
tors. The translation strategy is similar for sequences and maps. Value
semantics for these immutable data types is maintained in the same way as
for the basic data types.

Quote types Quote types such as that shown in Listing [11] are treated at
the individual element level. Each element is assigned a unique number via
a #define directive, as shown in Listing [12]

Listing 11: Quote type example.

class QuoteExample
types
public QuoteType = <Vall> | <Val2> | <Val3>

end QuoteExample

Listing 12: Quote type example translation.

#ifndef QUOTE.VALL
#define QUOTEVALL 2658640
#endif /+« QUOTE.VALI %/

#ifndef QUOTE_VAL2
#define QUOTE_VAL2 2658641
#endif /« QUOTE.VAL2 x/

§... )

Union types. The decision to keep run-time type information for every
variable of type TVP obviates the need for a translation strategy for union

types.

5.3.3 Translating Features of VDM+4-+

Classes Earlier we introduced the mechanism of C structures used to rep-
resent classes. Translation of a model class is therefore straightforward, with
each class receiving its own specific struct. As illustrated in Listings [4] and
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above, each class receives its own pair of C header and implementation
files. Most importantly, the header file contains the definition of the cor-
responding class struct and the declarations of the interface functions for
this struct. These include the top-level constructor and initialization and
cleanup functions for class values and static field declarations. The im-
plementation (.c) file contains the constructor mechanism, the definition of
the virtual function table of the class and the implementations of the class’s
functions and operations. The virtual function table is constructed in ac-
cordance with the inheritance hierarchy in which the class belongs (this is
discussed below). Class values definitions and static fields are implemented
as global variables. Their definitions are also inserted in the implementation
file, along with initializer and cleanup functions to be called, respectively,
when the implementation starts and terminates.

Inheritance The effect of inheritance is to augment the definition of the
inheriting class with the features of the parent class, modulo overriding. In
our struct-based implementation of classes and objects, the traits of the
base class are copied into the struct corresponding to the inheriting class.
Therefore, the struct of the inheriting class duplicates the fields and virtual
function table of the base class. It is important to note here that the mean-
ing of qualifiers such as protected is lost when such inheritance hierarchies
are translated. However, the generated code is meant to be used as a black
box, and access to these definitions should not circumvent the existing in-
frastructure put in place in the original model (e.g. accessing a private field
manually rather than through the accessor operations defined in the model.
Correct access is ensured by Overture.

Consider the translation of the model with inheritance shown in Listing
Despite its cumbersome length, we provide the listing of the complete trans-
lation so that the reader may also gain familiarity (at his/her own pace) with
all the elements of the generated code.

Listing 13: Inheritance example.

-
class A

instance variables

public field_A : int := 0;
operations

public opA : int —> int
opA(i) == return i;

end A

class B is subclass of A
operations
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public opB : () => ()
opB() = skip;
end B

class C
instance variables
b : B := new B();

operations

public op : () => int

op() = return b.opA(b.field_-A);
end C
(S

The six files A.h, A.c, B.h, B.c, C.h and C. c reproduced below make up the
complete translation.

Listing 14: File A.h.

-
// The template for class header
#ifndef CLASSES_A_H_

#define CLASSES_A_H_

#define VDM.CG

#include ”Vdm.h”

//include types used in the class
#include ”"A.h”

extern TVP numFields_1;

#define CLASS_ID_A_ID 0
#define ACLASS struct Ax

#define CLASS_A__Z3opAEI 0
struct A
VDM_CLASS_BASE_DEFINITIONS (A);

VDM_CLASS_FIELD_DEFINITION (A, field _A );
VDM_CLASS_FIELD_DEFINITION (A, numFields );

}7
TVP _Z1AEV (ACLASS this_);

void A_const_init ();

void A_const_shutdown ();
void A_static_init ();
void A_static_shutdown ();

void A _free_fields (ACLASS);
ACLASS A_Constructor (ACLASS);

#endif /x CLASSES_A_H. %/
\
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Listing 15: File A.c.

#include 7A.h”
#include <stdio.h>
#include <string.h>

void A _free_fields (struct A xthis)

vdmFree(this —>m_A _field_A);
}

static void A _free(struct A xthis)

{
—this—>_A _refs;
if (this—>_A_refs < 1)

A _free_fields (this);
free (this);

}

static TVP _Z17fieldInitializer2EV (){
TVP ret-1 = vdmClone(newInt (0));

return ret_1;

}

static TVP _Zl17fieldInitializer1EV (){
TVP ret_2 = vdmClone(newInt (1));

return ret_2;

}

static TVP _Z30pAEI(ACLASS this, TVP i){
TVP ret_3 = vdmClone(i);

return ret_3;

}

void A_const_init (){
numFields.1 = _Z17fieldInitializer1EV ();
return ;

}

void A_const_shutdown (){
vdmFree(numFields_1);

return ;

}

void A_static_init (){

return ;

}

void A_static_shutdown (){

return ;

}
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static struct VTable VTableArrayForA [] ={

{0,0,((VirtualFunctionPointer) _Z3opAEI),},

i

ACLASS A_Constructor (ACLASS this_ptr)

{
if (this_ptr==NULL)
this_ptr = (ACLASS) malloc(sizeof(struct A));
}
if (this_ptr!=NULL)
this_ptr—>_A_id = CLASS_ID_A_ID;
this_ptr—>_A_refs = 0;
this_ptr —>_A_pVTable=VTableArrayForA;
this_ptr—>m_A _field_ A= _Z17fieldInitializer2EV ();
}
return this_ptr;
}

static TVP new(){
ACLASS ptr=A_Constructor (NULL);

return newTypeValue (VDM_CLASS, (TypedValueType)
{ .ptr=newClassValue(ptr—>_A_id, &ptr—>_A_refs, \
(freeVdmClassFunction)& A _free, ptr)});

}

TVP _Z1AEV (ACLASS this){
TVP __buf = NULL;

if ( this = NULL )

__buf = new();
this = TO_.CLASSPTR(.-_buf, A);
}
return __buf;
}
TVP numFields_-1 = NULL ;
NS

Listing 16: File B.h.

#ifndef CLASSES_B_H_
#define CLASSES_B_H_

#define VDM.CG
#include "Vdm.h”
#include 7A.h”
#include ”"B.h”

#define CLASS_ID_B_ID 1

#define BCLASS struct Bsx

33




D5.2¢ - INTO-CPS Code Generation (Public) INTO-CPS =2

#define CLASS_B__Z3opBEV 0

struct B

{
VDM_CLASS_BASE_DEFINITIONS (A ) ;

VDM_CLASS_FIELD_DEFINITION (A, field _A );
VDM_CLASS_FIELD_DEFINITION (A, numFields );

VDM_CLASS_BASE_DEFINITIONS (B);

VDM_CLASS_FIELD_DEFINITION (B, numFields ) ;
s

TVP _Z1BEV (BCLASS this_);

void B_const_init ();

void B_const_shutdown ();
void B_static_init ();
void B_static_shutdown ();

void B_free_fields (BCLASS);
BCLASS B_Constructor (BCLASS);

#endif /« CLASSES_B_.H_ x/
S

Listing 17: File B.c.

-
#include ”"B.h”
#include <stdio.h>
#include <string.h>

void B_free_fields (struct B xthis)

{
}

static void B_free(struct B xthis)

{

—this—>_B_refs;
if (this—>_B_refs < 1)

B_free_fields (this);
free (this);

}

static void _Z3opBEV(BCLASS this){

{
// Skip

)

void B_const_init (){
return ;
}

void B_const_shutdown (){
return ;
}
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void B_static_init (){
return ;
}

void B_static_shutdown (){
return ;
}

static struct VTable VTableArrayForB [] ={

{0,0,((VirtualFunctionPointer) _Z3opBEV),},

)

BCLASS B_Constructor (BCLASS this_ptr)

{
if (this_ptr—NULL)

this_.ptr = (BCLASS) malloc(sizeof(struct B));

}
if (this_ptr!=NULL)
A _Constructor ((ACLASS)CLASS_CAST (this_ptr ,B,A));

this_ptr—>_B_id = CLASS_.ID_B_ID;
this_ptr—>_B_refs = 0;
this_ptr —>_B_pVTable=VTableArrayForB;

}

return this_ptr;

}

static TVP new (){
BCLASS ptr=B_Constructor (NULL);

return newTypeValue (VDM_CLASS, (TypedValueType)
{ .ptr=newClassValue(ptr—>_B_.id, &ptr—>_B_refs, \
(freeVdmClassFunction)&B_free , ptr)});

}

TVP _Z1BEV (BCLASS this){
TVP __buf = NULL;

if ( this = NULL )

__buf = new();
this = TO_.CLASSPTR(.-_buf, B);
}
_Z1AEV (((ACLASS) CLASS_.CAST(this, B, A)));
return __buf;
}
\S

Listing 18: File C.h.

#ifndef CLASSES_C_H_
#define CLASSES_C_H_

#define VDM.CG
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#include "Vdm.h”
#include ”"B.h”

#include "C.h”

extern TVP numFields_2;
#define CLASS_ID_C.ID 2
#define CCLASS struct Cx
#define CLASS_C__Z20pEV 0
struct C

VDM_CLASS_BASE_DEFINITIONS (C) ;

VDM_CLASS_FIELD_DEFINITION (C,b ) ;
VDM_CLASS_FIELD_DEFINITION (C, numFields );

s
TVP _ZI1CEV (CCLASS this_);

void C_const_init ();

void C_const_shutdown ();
void C_static_init ();
void C_static_shutdown ();

void C_free_fields (CCLASS);
CCLASS C_Constructor (CCLASS);

#endif /+ CLASSES.C_H. %/
\

Listing 19: File C.c.

#include ”"C.h”
#include <stdio.h>
#include <string.h>

void C_free_fields (struct C xthis)

vdmFree(this—>m_C_b);

}

static void C_free(struct C xthis)

{

—this—>_C_refs;
if (this—>_C_refs < 1)

C_free_fields (this);
free (this);

}

static TVP _Z17fieldInitializerdEV (){
TVP ret_4 = vdmClone(_Z1BEV(NULL));

return ret_4;

}

static TVP _Z17fieldInitializer3EV (){
TVP ret_5 = vdmClone(newInt (1));
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return ret_5;

}

static TVP _Z20pEV (CCLASS this){
TVP embeding.l = GET.FIELD(A, A, GET_FIELD_PTR(C, C, this, b), field_A);

TVP ret_6 = vdmClone(CALLFUNC(B, A, GET_FIELD PTR(C, C, this, b), \
CLASS_A__Z30pAEI, embeding_1));

return ret_6;

}

void C_const_init (){
numFields_ 2 = _Z17fieldInitializer3EV ();
return ;

}

void C_const_shutdown (){
vdmFree (numFields_2);

return ;
}
void C_static_init (){
return ;
}
void C_static_shutdown (){
return ;
}
static struct VTable VTableArrayForC [] ={

{0,0,((VirtualFunctionPointer) _Z20pEV),},

)

CCLASS C_Constructor (CCLASS this_ptr)

{
if (this_ptr==NULL)
this_ptr = (CCLASS) malloc(sizeof(struct C));
}
if (this_ptr!=NULL)
this_ptr—>_C_.id = CLASS_.ID_C_.ID;
this_ptr—>_C_refs = 0;
this_ptr —>_C_pVTable=VTableArrayForC;
this_ptr—>m_C_b= _Z17fieldInitializer4dEV ();
}
return this_ptr;
}

static TVP new(){
CCLASS ptr=C_Constructor (NULL);

return newTypeValue (VDM_CLASS, (TypedValueType)
{ .ptr=newClassValue(ptr—>_C_id, &ptr—>_C_refs, \

37




D5.2¢ - INTO-CPS Code Generation (Public) INTO-CPS =2

(freeVdmClassFunction)&C_free , ptr)});

}

TVP _Z1CEV (CCLASS this){
TVP __buf = NULL;

if ( this = NULL )
__buf = new();

this = TO_CLASS_PTR(__buf, C);
}

return __buf;

}

TVP numFields_.2 = NULL ;
\. J

The duplication of the elements of A can be seen in the definition of struct
B in B.h. The listing for C.c illustrates the mechanism by which a call to an
inherited operation on an instance of B is achieved. The macro CALL_FUNC is
the primary function and method call mechanism. It uses information about
the type of the object on which the operation is invoked, as well as the class in
which the operation is actually defined, to calculate a function pointer offset
in the correct (duplicated) virtual function table of the instance of B. The
class in which the operation is originally defined (A in this case) is calculated
by scanning the chain of superclasses of B and choosing the nearest definition.
This method satisfies semantics of calls of inherited operations.

Polymorphism Overture limits polymorphism, the overloading of opera-
tions and functions. Overloaded operations and functions can only be dis-
tinguished by Overture’s type system only if they differ in their parameter
types. Operations differing only in return type can not be distinguished,
rendering the following example definition illegal:

-
class Overloading
operations

public op : bool =—> ()
op(a) = skip;

public op : bool ==> bool
op(a) = return true;

end Overloading
\. J

Polymorphism is implemented by way of a name mangling scheme, whereby
the name generated for any operation or function is augmented with tags
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representing its parameter types. For instance, the name of the following
operation

(public theOperation : int % bool % char =—> real

J

is generated as _Z12theOperationEIBC. The mangled name can be decom-
posed as follows:

e _7Z: prepended to all mangled names.
e 12: number of characters in the original name.

e thelOperation: the original name.

E: separator between name and parameter type tags.

I: int parameter.

B: bool parameter.

C: char parameter.

Function and operation overriding In single inheritance scenarios, op-
eration/function overriding is achieved in a simple way by choosing the over-
riding implementation closest in the inheritance chain to the class to which
the object on which the operation is invoked belongs. This is in accordance
with the corresponding semantics. In multiple inheritance scenarios, Over-
ture does not allow ambiguity leading to a choice of implementation. For
instance, the following model is illegal in Overture:

class A
operations
public op : () = bool
op() =
return true
end A

class B
operations
public op : () = bool
op() =
return false
end B

class C is subclass of B, A
end C
\S

This forces the model developer to eliminate all such ambiguity, reducing the
scenario that of single inheritance.
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5.3.4 Memory Management

Currently the code generator attempts to manage memory usage by emit-
ting calls to vdmFree () based on the role of new TVP variables. The level
of abstraction of VDM-RT from which the code generation process starts
means that the strategies for freeing all allocated TVP values are difficult to
implement. For example, the VDM expression

(s |

currently translates to the following, independent of context:

(vdeum( newInt (1), vdmSum(newlInt(2), newlnt(3))) J

Because none of the intermediate values are assigned to TVP variables, none
of the memory allocated here can be accessed and freed once the outer invo-
cation of vdmSum() terminates. This is only a simple illustrative example of
the difficulty in dealing with allocated memory explicitly. Work is ongoing
to implement memory freeing strategies such that memory allocated as in
this example can be freed at the appropriate place with corresponding calls
to vdmFree ().

A parallel effort aims to develop a garbage collection strategy that is meant
to obviate the need for explicit calls to vdmFree () anywhere in the generated
code. All functions that allocate memory on the heap have been modified to
accept the address of the memory location from which the allocated memory
is referenced (a pointer to TVP). A table is kept recording the relationship
between these two locations. When allocating intermediate memory as in
the example above, a null pointer is passed indicating that this memory is
safe to reclaim once the containing statement has finished executing.

When the memory reclamation mechanism is executed, the value at each
referencing location is checked against the corresponding address held in the
allocation table. If these are not the same, then the memory in question
can no longer be accessed from the corresponding location, and a call to
vdmFree () is executed on it. If these values are the same then it is assumed
that the reference is still in some scope, and therefore the memory referenced
by it is still in use. The problem of variable scoping is handled based on the
assumption that the evolution of the call stack will eventually overwrite local
variables holding references to allocated memory. For example, assume that
a function allocates a newInt () to variable ni. The variable ni is allocated
on the call stack. The garbage collector is passed the address of ni through
the call to newInt (). When the function exits, the stack pointer is modified
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such that the next function invocation will make use of the same stack space.
When this happens, there is a high probability that the value at the address
of ni will be overwritten. This probability increases with subsequent function
calls.

This garbage collector is kept simple by the specific structure of models in
INTO-CPS. Due to the FMI approach of stepping simulations, an FMI step
corresponds, in the VDM world, to one execution of a periodic task. In this
pattern of execution it is natural to invoke the garbage collector each time
the periodic task has finished executing. This means that the user is granted
the freedom to invoke the garbage collector anywhere, but in keeping with
the philosophy that the generated code is meant as a black box, the collector
is likely invoked in the code that is (necessarily) hand-written by the user
to call into the model. As a result, the generator proper makes no decisions
on where to invoke the garbage collector, simplifying the strategy further.
This also allows the user to experiment with the granularity with which the
garbage collector is invoked.

The time and memory performance of this prototype garbage collection strat-
egy has been summarily assessed using the VDM model shown in Listing
201

Listing 20: Collatz conjecture model.

class Collatz
instance variables
val : int;

operations
public Collatz : int => Collatz
Collatz (v) =

val = v;

public run : () => ()
run() =
if val = 1 then
return
elseif val mod 2 = 0 then
val := val div 2
else
val := 3 % val + 1;
end Collatz

)

The Collatz conjecture states that the sequence of natural numbers calculated
above always ends in 1, for any starting natural number greater than ]E] The
model is designed such that the starting number is fixed when the class is
instantiated, and each time the method run () is invoked it calculates the next
number in the Collatz sequence, if the sequence has not yet converged.

Uhttp://https://en.wikipedia.org/wiki/Collatz_conjecture.
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The assessment compares the memory performance of the code generator on
this model in its current state, its performance using the prototype garbage
collection scheme, and its performance in the ideal case where all allocated
memory is freed explicitly. The results are summarized in Figure [5| for initial
value of 77,031, which is known to take 350 steps to converge.

3000 : . :

Without GC ——
With GC ——
Ideal behaviour

2500 B

2000 B

1500

Heap Usage (bytes)

1000

500

i

0 100 200 300 400 500
Running Time (ms)

Figure 5: Memory performance of three implementations.

Because explicit memory management is not yet currently working fully,
memory usage for the standard generated version of the code increases into
the megabyte range by the time the sequence converges. Memory usage in the
ideal case tops out at around 300 bytes, whereas with the garbage collection
scheme in place it tops out at around 900 bytes. A version of the generated
code modified such that its total execution time can be observed (essentially
by repeating the procedure thousands of times) yields an increase from 300
ms total execution time in the current and ideal cases, to 310 ms for the
implementation with garbage collection. Both results are promising in the
context of embedded platforms with no real-time constraints.

5.4 Translating Features of VDM-RT

VDM-RT adds two novel modelling elements to VDM++: information for
distributed architectures and timing information. This section describes as-
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pects of how both can be addressed, and what approaches are currently
taken.

5.4.1 Timing

In the context of code generation, timing information in a system model bears
careful consideration, since its role can be interpreted in two very different
ways: prescriptive or descriptive. By prescriptive we take a timing modelling
construct, such as the VDM-RT duration statement to prescribe the dura-
tion of the corresponding statement in the code-generated implementation.
Implementing this interpretation in a code generator is impossible without
guarantees about the target architecture’s timing behaviour. In very simple
implementations for basic hardware, this can come directly from the hard-
ware manufacturer. In more complex setups this can come from guarantees
made by a real-time operating system.

The second interpretation of timing information is descriptive. In this case
a faithful implementation of a VDM-RT model is observed in execution on
its target platform and timing measurements are made using the appropriate
instruments. This timing information is then fed back into the model, where
annotations are made in the corresponding places. For instance, a model may
specify the toggling of a pin on a digital I/O port. The implementation can be
measured and the time required for the pin to flip its state — a function both
of the execution speed of the controller in question, as well as of the material
properties of the hardware — can be ascertained. The statements in the model
responsible for this toggling action can then be annotated correspondingly.
Such annotations are compositional. If a model is completely annotated
with concrete timing information, then analysis can lead to predictions on
the timing behaviour of the implementation in scenarios other than those in
which it was first observed.

The C code generator is built around the latter interpretation for timing
model elements. Consequently, all timing annotations are ignored and no
effort is made on the part of the code generator to obey any timing anno-
tations. To do so would require pairing the generated code with a real-time
operating system. This is discussed briefly in Section [7]

With respect to the INTO-CPS semantics deliverable D2.2b [FCCT16], timed
and untimed semantics for VDM-RT statements are given, depending on
whether the statement in question falls under a duration annotation. Our
decision here allows us to focus on respecting only the untimed seman-
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tics.

5.4.2 Distributed Architectures in VDM-RT

This section describes the main principles of code generation for the dis-
tributed aspects of VDM-RT. Code generation of the distribution features
will be explained by means of an example illustrating the main principles.
The example is inspired by the more generic model called “System” used in
the VDM-RT semantics deliverable D2.2b [FCCT16].

As previously described, the VDM-RT dialect extends the VDM++ dialect
with support for modelling distributed systems. The distribution aspects are
captured inside the system definition, as shown in the example in Listing
Distribution modelling is supported by two implicit classes inside VDM-RT
called CPU and BUS: CPU models an independent processor, and allows ob-
ject instances to be deployed to it. Deployment in this context means that
execution of the implementation of a particular instance is carried out on a
given processor. BUS captures a communication channel, and allows CPU in-
stances to exchange information by connecting them. Both classes allow the
specification of the speed of each, execution speed for CPU and communica-
tion speed for BUS. However, in this section we focus only on the distribution
features.

Listing shows an example of modelling distribution inside the system
definition. First, two instances s1 and s2 of class Sensor are created and
afterwards they are used to initialize an instance c of the class Controller.
Second, the system architecture is modelled by creating two computational
units cpul and cpu2, of the implicit class CPU, and connecting them with a
communication channel using the implicit class BUS. Third, the instances are
deployed to the computational units, in this example s1 and c are deployed
to cpul, while s2 is deployed to cpu2. Hence the controller object ¢ will
have access to both a local object s1 (e.g. deployed to the same CPU), and
a remote object s2 (e.g. deployed to a different CPU). Objects used inside
the system definition are referred to as distributed objects and together these
definitions form the connection topology of the distributed system.

It is important to note that, with respect to FMI, the approach taken is one
model, one FMU': the type of distribution described here must be understood
as intra-FMU, and not inter-FMU. The intent is that the distributed objects
fall under the umbrella of a single FMU, not several as would be dictated by
the distribution topology.
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Listing 21: Example of distribution in VDM-RT.

system D
instance variables
public static sl : Sensor := new Sensor ();
public static s2 : Sensor := new Sensor ();
public static ¢ : Controller := new Controller (sl,s2);

cpul : CPU := new CPU(<FP>, 22E6);
cpu2 : CPU := new CPU(<FP>, 22E6);

bus : BUS := new BUS(<CSMACD>, 72E3,{cpul,cpu2});

operations

public D : () =D
D () =

(

cpul.deploy (sl);

cpul.deploy (¢);
cpu2.deploy (s2)

)i

end D

\. J

3

Listings [22] and [23] show the two classes used in Listing Sensor and
Controller, respectively. Listing [22| represents a simple sensor class reading
a constant temperature. Listing [23| shows how the objects can be invoked.
In this example sensor_local is the local object, while sensor_remote is
the remote object (based in the initialization of the object ¢ in Listing .
Both local and a remote calls are invoked as object method invocations,
e.g. as Listing |23| illustrates, both the local and remote object methods are
invoked in the same way. However, according to the VDM-RT semantics,
the remote call will be sent over the specified bus. Hence in this case the call
sensor_remote.readTemp () will be sent over the BUS instance bus, due to
the topology specified in the system definition.

Listing 22: Example of sensor class, returning a temperature value.

class Sensor

operations
public readTemp : () => int
readTemp () = return 2;

end Sensor

Listing 23: Example of controller, setting up references to sensor objects and
calling their operations.

class Controller
instance variables

sensor_local : Sensor;
sensor_remote : Sensor;
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operations

public Controller : Sensor * Sensor =—> B
Controller (sl1,s2) = (

sensor_local := sl;

sensor_remote = s2;

)

public callLoc : () ==> int
callLoc () = return sensor_local.readTemp ();

public callRem : () => int
callRem () = return sensor_remote.readTemp ();

end Controller
S

5.4.3 Aspects of Code Generating Distribution Support

Following the discussion above, the entire system architecture, with respect to
distribution especially, is captured inside the system definition in a VDM-RT
model. Based on this, we describe here the general principles for generating
support for distribution in a VDM-RT model. Three different implementa-
tion aspects for these VDM-RT constructs are highlighted: the CPU class,
the BUS class and distribution of calls.

The CPU class is used to model independent processor units or computation
nodes and deploy objects to them. For this reason each CPU instance corre-
sponds to an individual processor or computation node (e.g. in a networked
cluster) in the implementation of a VDM-RT model. As a consequence, all
objects local to a given CPU must be instantiated. On the same CPU, remote
objects are represented, abstractly, as references. Furthermore, a CPU in a
VDM-RT model can be created with both speed and scheduler information.
However, in the current approach these aspects are not supported, and each
CPU is assumed to allow only sequential (though arbitrarily interleaved)
execution without scheduling.

The BUS class is used to model a communication channel between CPUs.
But in VDM-RT a BUS is an abstract representation of a communication
bus, supporting abstract protocols. It does not specify a hardware bus type.
As a consequence, the target distributed execution platform is assumed to
provide a corresponding hardware communication bus, for example a UART
(Universal Asynchronous Receiver/Transmitter) or CAN (Controller Area
Network) bus together with a possible protocol.

Distribution of method calls must be handled explicitly in the implementation
of a distributed system. As discussed above, a VDM-RT model hides whether
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an invocation is local or remote with respect to a CPU. However, supporting
this in the implementation requires dispatching between local and remote
calls for a given CPU with respect to object deployment and the system
architecture as modelled in the system class.

In the following section we use these three main concepts to describe the
basic principles for code generation support for distribution.

5.4.4 Code Generation Principles

This section describes, based the discussion above, the main principles gov-
erning VDM-RT model analysis and transformation for supporting distribu-
tion in an implementation. The main steps for the distributed code generator
can be described as follows:

e Analyze and extract information about the system architecture and
object deployment inside the system definition.

e Based on the extracted system class information, enable dispatching
of object method invocations, e.g. either as local or remote calls based
on the system architecture.

e For a local call, use the normal local call macro as shown in Listing [0
For a remote call, send the data necessary to invoke the method on
the object deployed to a given CPU across the bus specified in the
VDM-RT model.

These three points, architecture analysis, invocation dispatching and re-
mote calls, are further elaborated in the following three subsections, respec-
tively.

5.4.5 System Architecture Analysis

When generating support for the distributed aspects of a VDM-RT model,
the relevant architecture information must be extracted from the system
class definition. The following information must be extracted:

e Which CPU instances are created. This indicates the individual micro-
processors of the system, i.e. each CPU will get its own code imple-
mentation. Specifically, each CPU receives its own local representation
of the system definition, containing the objects deployed to it.
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e Which BUS instances are created. This indicates the communication
channels created in the system.

e How the objects in the system definition are deployed to each CPU in-
stance. This indicates which object has to be instantiated with respect
to the implementation of a specific CPU instance.

e How the CPU instances are connected based on the BUS instances. This
indicates the communications architecture between the different pro-
Cessors.

These four parts will in combination support the realization of a VDM-RT
model. This architecture analysis is automatically performed by the code

generator. The four points above can be illustrated using the simple example
from Listing [21}

e Two implementations will be code generated for the two CPU instances
cpul and cpu?2, respectively. Furthermore, each implementation con-
sists of a local version of the system definition, generated as a class,
containing information about local and remote objects.

e The BUS instance will be realized by a specific hardware bus, e.g. UART
or CAN bus, and a communication protocol.

e In this example the objects ¢ and s1 are deployed to the code imple-
mentation of cpul, while s2 is deployed to cpu?2.

e The CPU instances cpul and cpu2 are connected by the BUS instance
bus. Hence the communication between these two will go through the
bus instance.

This system architecture information supports the invocation dispatching
between local and remote method invocations, as discussed in the following
section.

5.4.6 Invocation Dispatching

The following subsection describes how the dispatching between a local and a
remote call, with respect to a VDM-RT model as discussed above, is handled
when code is generated. The basic idea of call dispatching is illustrated in
Figure [0 The CALL_FUNC(...) macro is wrapped in another macro which
handles the dispatching: if it is a local call then the normal function macro
is invoked, otherwise the remote dispatcher is invoked, as described further
below.
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In general, dispatching depends on the object deployment topology inside the
system definition, as discussed above. Hence this deployment information
must be used when supporting the distributed aspects of VDM-RT. Each
CPU implementation receives its own local version of the system definition,
generated as a class. This local definition contains both objects deployed to
that CPU and a map of which distributed objects are local and which are
remote relative to that CPU.

DistCall(...)

CALL_FUNC(...) sendBus(...)

Figure 6: Dispatching method call locally or remotely.

The dispatching illustrated in Figure[f]is implemented in the code generator
by giving each distributed object a unique number with respect to the system
definition in a VDM-RT model during initialization. This ensures that all
objects can be identified based on the unique ID in the whole distributed
model. The motivation for giving each distributed object a unique ID num-
ber, starting from 1, will be clarified below. These IDs are assigned based
on their order inside the system definition. Furthermore, it should be noted
that with respect to any given CPU, the deployed objects are instantiated,
while the remote objects only get an ID.

For each CPU, based on the distribution inside the system definition, a local
map is created indicating whether each object is remote or local. This map
is generated as an array of boolean variables called DM, where true indicates
a local object, and false a remote object. For example Listing [24] shows the
DM array with respect to cpul: The first position, i.e. location 0 in C arrays,
is used for locally created objects during run-time, hence this is always true.
Positions 1 to the number of distributed objects are used for indicating the
role of a distributed object based on their ID. Hence Listing [24] shows that
with respect to cpul the object with ID 1 is local (object s1), that with ID
2 is remote (object s2) and that with ID 3 is local (object c).

Listing 24: Distribution map with respect to cpul based on Listing [21]

[bool DM[4] = {true, true, false, true};

The distribution mapping inside the array DM is generated based on the sys-
tem architecture described in the VDM-RT model. This information can now
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be used for each CPU in order to dispatch a call either as local or remote.
This enables the CALL_FUNC(...) macro to be wrapped inside a dispatcher
macro, as shown in Figure [f] As a consequence, DM represents the local set
of deployed objects with respect to a CPU, as described by the VDM-RT se-
mantics, and documented in deliverable D2.2b [FCCT16]. This dispatcher is
able, based on the distribution mapping, to either perform a local or remote
call. For a local call the CALL_FUNC(...) macro is invoked. For a remote
call a function to send data across a given bus is invoked. This remote call
functionality is described in the following section.

5.4.7 Remote Method Invocation Handling

The following section describes the main principle with respect to a remote
method invocation in a VDM-RT model, corresponding to sendBus () illus-
trated in Figure[6] The code generation for the remote method invocation is
realized to provide two separate functions

1. Dispatching an object call to the correct bus based on a specific VDM-
RT model.

2. Handling an incoming call from another CPU.

Hence this functionality essentially corresponds to a send and receive function
between two CPUs, respectively. Additionally, communication in a VDM-RT
model is point-to-point and proper access is ensured by the underlying pro-
tocol. These two functions in combination enable network communications,
and are described next.

Figure [7] illustrates the flow between the send and receive functions between
two CPUs:

1. The send function sends data on a communication channel, which in-
vokes the receive function.

2. The invocation is received, and a possible result is sent back, or an
acknowledgment that the function invocation is finished.

This figure also shows that the send function is required to wait for the re-
ceive function to handle the request, since calls in VDM-RT are synchronous
by default. Currently asynchronous calls are not supported by the code
generator, so the communication is required to be synchronous when imple-
menting the specific call. This VDM-RT code generator generates support
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cpu1 cpu2
sendBus(...)
Wait Handle
for Invocation
result
sendRes(...)
Continue Continue

Figure 7: Flow diagram for sendBus() when sending data across a network.

for the high-level parts of the communications. The high-level parts for both
sending and receiving functions are discussed next.

For the send function, the generator implements dispatching for a concrete
bus depending on which object is invoked. Figure |8 shows the basic blocks
of the send function: bus dispatch, data serialization, a protocol and the
specific bus hardware (HW) API. As such the code generator supports bus
dispatching to a concrete bus API, using the unique ID, while the low-level
parts of this API can be adapted by users to their needs, as required by
the case studies. Additionally, it shall be noted that these three lower level
blocks are implemented for each concrete bus. This implementation for spe-
cific buses must capture both the specific protocol used and the actual HW
bus type (e.g. UART). So the code generator supports dispatching toward
a bus defined in the VDM-RT model, while the HW bus implementation
can be changed in the execution platform. Hence these low-level blocks may
be implemented toward user needs, providing flexibility. For example, the
protocol and hardware bus can be implemented in accordance with the user
needs. This follows from the project case studies, and additionally makes the
distribution support more flexible by allowing proprietary implementations.
However, initial support for serialization and de-serialization is provided and
discussed below.

The receive function is responsible for handling the invocation when a re-
mote call must be handled by the CPU on which the object is deployed.
This function, just like the send function, is also generated with respect to
objects deployed on specific CPUs. As such this function consists of the fol-
lowing blocks: object dispatch, data de-serialization, bus HW API. The code
generator generates object dispatch for each individual CPU that is based on
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sendBus(...)

Bus dispatch

Serialize

Protocol

Bus HW API

Figure 8: Structure of sendBus() function.

the IDs of the distributed objects. However, the data must be de-serialized
before invoking the object dispatcher. After the data is de-serialized, the
object dispatcher is able to reconstruct the call based on the object ID num-
ber and the function number, and the function arguments received. Finally,
when the invocation is handled, the result is sent back to the invoking CPU
by the sendRes () function, as shown in Figure [7]

The communication flow between the send and receive functions indicates
that the receiver CPU is able to handle remote invocations, while also running
a local execution. In the VDM-RT semantics a CPU has a scheduler, but
this currently is not supported. For this reason, we propose a design pattern.
This design pattern is based on the case study needs, and it is a scheme to
implement basic remote handling for a CPU. The design pattern assumes
there is exactly one periodic thread running on each CPU. This is illustrated
in Figure [0

First each CPU must be initialized, i.e. initialize all local values and objects,
as described previously. Next, a check is performed to determine whether
data is waiting to be received. If yes, then it handles the invocation, else
it runs the periodic thread. Hence this design pattern is based on a polling
mechanism, i.e. periodically checking whether data can be received. However,
the handle receive function could also be implemented as an interrupt service
routine. However, this may update variables during the execution of the
periodic thread, which is not acceptable for the INTO-CPS case studies. For
this reason the design pattern shown in Figure [0 has been adopted for the
case studies for ClearSy and UTRC, which have distributed architectures.
Were an operating system available, the remote method handling could be
handled by its scheduler, similar to the scheduler semantics of a VDM-RT
CPU.
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Receive?

Periodic Handle
Loop Invocation

Figure 9: Design pattern enabling a CPU to handle remote invocations while
running a periodic thread.

Serialization The functionality described above indicates that it is neces-
sary to send data across a network. For this reason, the data must be serial-
ized and de-serialized. For the basic types of VDM-RT this serialization may
be straightforward. However, other types call for more complex serialization
and de-serialization schemes. This serialization can be achieved either by in-
troducing bespoke encoding together with encoders and decoders. However,
it can be hard to ensure that data is transferred correctly on all possible
CPUs and platforms. On the other hand, generic message representation
can be used, such as XML or JSON. However, this requires generic parsers
at run-time, causing memory and CPU overhead. Additionally, messages
are encoded in verbose representations, adding communication overhead. Fi-
nally, it is possible to use the Abstract Syntax Notation One (ASN.l)El. This
notation provides a data description language, and the ASN.1 compiler can
produce corresponding encoder and decoder functions.

With respect to the above discussion, the VDM-RT code generator will use
the ASN.1 notation as part of supporting serialization. In ASN.1, the ex-
changed data types can be described in a data description language. Initial
work has been carried out to create converters between the TVP structure
used in our VDM-RT C code generator and the corresponding data types
in ASN.1 [FVB*16]. As a consequence a TVP value can be converted to an
ASN.1 representation, serialized and sent across the network. When received,
this data can be de-serialized, and converted back to TVP values. Research
is being carried out on using the ASN.1 compiler developed by the Euro-
pean Space Agency (ESA), as found at https://github.com/ttsiodras/
asnlsccl

With respect to the INCO-CPS case studies using distribution in code gen-

12An overview is available at
https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_Onel
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eration, only basic types support is currently required. As such using this
ASN.1 notation is optional for these basic types. For this reason, serialization
can be added depending on needs, as an underlying layer, supporting the low-
level implementation. Currently, work is being carried out to convert specific
VDM types introduced in a VDM model to their ASN.1 representation in
order to generate encoders and decoders.

5.4.8 VDM-RT Model Implementation and Limitations

Since the VDM-RT notation allows great flexibility in modelling a distributed
system, it may not be possible to generate support for its implementation
unless some guidelines are followed. Some limitations and guidelines are
discussed below.

As described in the VDM-RT semantics, a VDM-RT model also has a virtual
CPU, where all resources that are not deployed to a CPU instance inside the
system definition are deployed. Furthermore, this virtual CPU is connected
to all other CPUs by a virtual bus, which is infinitely fast. The virtual CPU
and bus are useful for testing and simulation purposes, but should be lim-
ited to not containing any of the implementation of a distributed system.
Hence everything that should be part of the implementation should be de-
ployed to real CPU instances in a VDM-RT model. As such the virtual CPU
and bus can be used for testing and simulation. This also includes avoid-
ing using public static declarations outside the system definition, since
semantically they are placed on the virtual CPU. Additionally, if two CPUs
are connected by two buses, according to the VDM-RT semantics an arbi-
trary bus is chosen for any given communication. In order to avoid building
non-determinism resolution into the code generator, such structures should

be avoided in VDM-RT models.

5.5 Ambiguities Not Addressed by the Semantics

Deliverable D2.1b lists a number of ambiguities that semantic foundations
for VDM-RT must address. The list is here reproduced. We discuss briefly
how each issue is addressed.

1. Initialization of static instance variables. Because static variables can
be used without creating an instance of the declaring class, it is not
sufficient for the generated class constructor to initialize these mem-
bers. Instead, the code generator emits initialization functions named
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10.

11.

5.6

ClassName_static_init (), for static fields, and ClassName_const_
init () for value definitions. These initializers must be called man-
ually in the correct order. The code generator emits helper functions
which aggregate these calls in the correct order.

Initialization order of instance variables: Initialization starts at the
leaves of the inheritance hierarchy and proceeds upward.

Calling multiple explicit superclass constructors: These constructors
can be called like any other operation from within subclass construc-
tors.

Multiple inheritance superclass initialization: Initialization proceeds in
the order in which the superclasses are defined in the model.

Implicit calls to default constructors: In the generated code, default
constructors are the only way to create an instance of a class.

QOverridden vs. local operations in superclass constructors: Subject to
the same rules as calling overridden operations.

Invariant checking during construction: Invariants are not yet sup-
ported.

Are constructors inheritable? Constructors are not inherited.
Overriding/overloading polymorphic/curried functions: Not yet treated.

Pre-post conditions in OO state context: Pre- and post-conditions are
not yet supported.

Diamond wnheritance: Overture prevents model ambiguities of this

kind.

Implementation as Overture Plugin

The C code generator is implemented as a standard Eclipse plugin to Over-
ture. It can be obtained through the Eclipse software install system from the
following URL:

http://overture.au.dk/vdm2c/master/repository

Overture facilitates development of code generators targeting standard im-
perative programming languages through a code generation platform [JLC15].
The framework introduces an intermediate representation of VDM-RT ab-
stract syntax which is amenable to relatively straightforward translation to
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any imperative language. The C code generator generates code for this in-
termediate representation.

The C code generator is invoked from the context menu in the Project Ex-
plorer as shown in Figure

PO Proof Obligations »
"'f. UML Transformation *
Build Path L

1 Corfigure 3l ol |
Properties Alt+Ente

Figure 10: Invoking the code generator.

6 FMU Compilation Service

VDM-RT models can be exported as source code FMUs using Overture’s
FMU export feature. This feature first invokes the C code generator, then
bundles a source code FMU. Aarhus University hosts an FMU cross-compilation
server which takes as input a source code FMU and returns a standalone
FMU, cross-compiled for 32- and 64-bit Windows and Linux platforms, as
well as Mac OSX. The service is available at

http://sweng.au.dk/fmubuilder

The service can also be accessed using the INTO-CPS application. Both
the Overture FMU export feature and the INTO-CPS application are docu-
mented in the INTO-CPS user manual [BLL16].

7 Conclusions

This deliverable captures the FMI-compliant C and C++ code generation
capability of the INTO-CPS tool chain at the end of project year 2. The
three tools, 20-sim, OpenModelica and Overture, can now fully integrate
their code generation capability with the FMI requirements of the INTO-
CPS project through export of source code and stand-alone FMUs.
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The code generators of OpenModelica and 20-sim are mature, requiring
mostly development of standalone FMU export. Next steps for OpenModel-
ica include generation of code that can be deployed to embedded platforms.
On the part of 20-sim, the facilities of 20-sim 4C are being expanded to facil-
itate deployment to a growing number of embedded platforms, driven by the
project case studies. The C code generator of Overture, by comparison, is
relatively new, so there are a number of avenues to explore in the immediate
future. The rest of this section is dedicated to a description of some ideas
for future development.

Beside expanding the generator’s language coverage capabilities, currently
driven by pilot and industrial case studies, the primary target is to generate
C code with good enough memory behaviour and footprint that it can be de-
ployed on resource-constrained embedded platforms. This effort is currently
targeting PIC and ATmega microcontrollers.

Further development of code generation support for the distribution aspects
of VDM-RT will also be addressed. Specifically, we will focus on supporting
the specific bus technologies and related protocols in the case studies, by
providing library implementations of some of the lower blocks in Figure
This work will be carried out in close collaboration with the owners of the
case studies using distribution, namely UTRC and ClearSy. Furthermore,
integration of the concrete protocols together with the generated C code for
distribution will be addressed. Finally, the serialization using ASN.1 for more
complex data structures is currently being researched, and will be integrated
as well.

A promising avenue for future research is timing behaviour. Recall the dis-
tinction made between descriptive and prescriptive interpretations of RT
constructs of VDM-RT. Compared to the descriptive interpretation, assum-
ing the prescriptive view for these constructs is clearly a more ambitious
approach from a code generation perspective. We believe that it is possible
to implement this interpretation in a code generator. But full support can
only be achieved in combination with a real-time operating system that can
make guarantees about the timing behaviour of the implementation. It is
conceivable that RT constructs can be code generated for specific RTOSs if
it is known what types of guarantees the RTOS can make for a given target
platform. For instance, if the best and worst case execution times of a code-
generated function can be profiled on the target controller, and the RTOS
can guarantee an upper bound on execution time given this information,
then it can be claimed that the code generator can implement a correspond-
ing duration statement placed on this function. The semantic basis for such
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an approach is already provided in deliverable D2.2b [FCCT16].

Another avenue for future development is support for run-time pre-/post-
condition and invariant violation checks. The typical workflow of developing
a VDM-RT model involves using the Overture tool to exercise the specifica-
tion to a point where the developer is confident that a faithful implementa-
tion will not exhibit unanticipated run-time behaviour. The most important
VDM-RT features in this endeavour are pre- and post-conditions and invari-
ants. For an extra layer of security, it is possible to allow for hooks in the
generated code such that handlers can be called in critical cases of pre- and
post-condition and invariant violations. The actions of the implementation
in such circumstances can be specific to the application, and so they are best
left to the developer to implement manually. For instance, it may be neces-
sary to reset hardware, close opened files etc. An alternative is to provide
code-generation support for the exception handling mechanism of VDM-RT
and use it to provide the necessary infrastructure where such bespoke error
handlers are necessary.
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