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Abstract

This deliverable documents the implementation of the model checking com-
ponent that has been developed as an extension to RT-Tester and its model-
based test case generator (RTT-MBT) to support the verification of multi-
models. The model checker can be used to verify Linear Temporal Logic
(LTL) queries using bounded model checking and supports tailored abstrac-
tions that allow the analysis of multi-models consisting of both continuous-
time and discrete-event models.
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1 Introduction

In model checking (MC), the behavior of a system or program is formally
specified as a model that describes how state changes as the system (and
time) progresses. All paths through this model are then exhaustively checked
against the system requirements, which are typically expressed in some tem-
poral logic. A typical query, which could be passed to a model checker, is
“The system never reaches a bad state”, and the task of verifying this query
is then left to the model checker.

1.1 Model Checking Primer

This approach, however, may lead to state explosion since the number of
states in a system is exponential in the number of system variables, the
sizes of their domains, and the number of concurrent components. Because
of the computational complexity of model, there has been much interest in
improving model checking using the following techniques, or combinations
thereof:

Symbolic Model Checking represents states and transitions of a system
symbolically, for example, as Boolean formulae. This approach en-
ables states that share some commonality to be represented without
duplicating their commonality. Classically, binary decision diagrams
(BDDs) have been used for this representation, but SAT-based meth-
ods have become popular due to the impressive progress in SAT and
SMT solving.

Bounded Model Checking (BMC) examines the transition relation of
a system only up to a certain path length, the bound, as opposed to
traditional unbounded model checking. The technique is therefore often
applied for bug hunting rather than system verification. However, it is
important to note that BMC can too be applied for verification if an
appropriately large bound is chosen.

Abstraction is based on the key idea of abstracting away from the detailed
nature of states. A model checker then operates over classes of states
which are related in some sense, rather than individual states. If the
number of classes is small, then all paths through the system can be
examined without incurring the problems of state explosion. However,
abstraction inevitably leads to a loss in precision, and false positives
may thus occur.
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1.2 Model Checking in INTO-CPS

A major goal of the INTO-CPS project is to develop a framework that sup-
ports the development and analysis of cyber-physical systems whose behavior
is expressed as a multi-model, which provides the behavioral model required
to apply model checking. This setting directly leads to two important obser-
vations that affect the implementation of model checking in INTO-CPS:

Concurrency The multi-model consists of a possibly large number of inde-
pendent components operating in parallel.

Domains The variable domains and computations used in the multi-model
may be both, discrete event (DE) or continuous time (CT), and both
kinds of sub-models may be combined in a single multi-model.

This setting clearly necessitates the combination of symbolic model checking
methods with abstraction. The abstractions developed for model checking in
INTO-CPS have been described in [BM15]. The key idea of abstraction in
INTO-CPS is to abstract a continuous time modelMCT into a discrete event
modelMDE such thatMDE is an over-approximation ofMCT . This abstrac-
tion mechanism is integrated into a SAT-based bounded model checker for
SysML state charts. This model checker has become part of the RT-Tester
Model-Based Test Case Generator (RTT-MBT).

1.3 Requirements

This deliverable is based on and aims at implementing the following high
level requirements from [LPH+15].

0005 and 0032 Model checking shall be applied to a co-simulation config-
uration, rather than stand-alone state charts, and hence the outputs
of this requirement flow into the model checking functionality of RTT-
MBT. In particular, this requires that the abstracted CT models need
to be integrated into the co-simulation environment as well so as to
replace the original behavior.

0032 DE models, which are part of a configured co-simulation environment,
shall be supported using BMC techniques.

0033 and 0034 This requirement is the key scope of this deliverable, as it
specifies that RTT-MBT must support DE abstractions of CT models.
Further, DE abstractions of CT models shall be handled as if they
originally were DE models. To do so, the DE abstractions should be
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specified in the same formalism as originary DE models, and can thus
be supported by RTT-MBT with as little integration effort as possible.

0036 and 0037 The model checker shall be able to represent a counterex-
ample trace if a violation of the property checked was detected. Such a
counterexample trace is invaluable for fixing the implementation [CV03].

0107 The model checking functionality shall be configurable and executable
via the INTO-CPS Application.

1.4 Outline

The remainder of this document is structured as follows. First, Sect. 2 dis-
cusses related techniques that have been described in the literature. This
section is followed by a description of the model checking techniques imple-
mented in RTT-MBT in Sect. 3. The practical application of the RTT-MBT
model checker, that is, its configuration and invocation via the command-line
interface, and the configuration items for model checking in INTO-CPS are
described in Sect. 4. Finally, Sect. 5 provides a conclusion.

2 Related Work

This section discusses various important contributions to the areas of (sym-
bolic) model checking, bounded model checking and abstract interpretation,
which have to some extent been incorporated in the INTO-CPS model check-
ing framework.

2.1 Temporal Logic & Model Checking

In its general setting, model checking amounts to aswering the question
whether a model M satisfies its specification ϕ, formally M |= ϕ. Two
temporal logics — namely computation tree logic [CES86] (CTL) and lin-
ear temporal logic [Pnu77] (LTL) — are supported by virtually any model
checker for discrete event systems. RTT-MBT supports LTL rather than
CTL, which is justified as follows:

• LTL formulas are interpreted over (infinite) linear execution sequences
of a system or model, whereas CTL considers branches of sequences. As
RTT-MBT is not only a model checker but also a test case generation
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framework, its main goal is reasoning about linear executions, which is
why LTL is preferred.

• Further, CTL suffers from the fact that it is a branching time formalism:
Reasoning about branching time is unintuitive and thus hard to use for
non-experts in temporal logic, which hinders the practical application of
this formalism in industry. In fact, it has been observed that “nontrivial
CTL equations are hard to understand and prone to error ” [SBF+97]
and “CTL is difficult to use for most users and requires a new way of
thinking” [BBL98].

• Whereas LTL allows compositional reasoning, and thus allows model
checking backends to be improved by integrating compositional tech-
niques, CTL is non-compositional [Var01, NV07].

Initially, the problem M |= ϕ for LTL was solved by using a construction
based on Büchi automata [VW86]. Intuitively, this appproach represents the
system and the LTL specification as Büchi-automata, and then algorithmi-
cally checks whether the intersection of system and the negation of the spec-
ification is non-empty. In this case, a violation of the specification has been
detected. Later, symbolic methods have been introduced, which solve the
LTL model checking problem by representing both the system and specifica-
tion as Boolean formulae, see [BCCZ99, BHJ+06]. Comprehensive introduc-
tions to temporal logics, model checking and the core algorithms are given by
Clarke et al. [CGP99] as well as Baier and Katoen [BK08]. RTT-MBT uses
symbolic techniques based on propositional encodings of LTL specifications,
as will be discussed in Sect. 3.

2.2 Bounded Model Checking

The key idea of BMC is to exercise the behavior of a system only up to
a certain depth of computations [BCCZ99, CBRZ01, CKOS05]. BMC has
been established as a valuable bug-hunting framework for hardware and soft-
ware [CKL04], which is motivated by the observation that bugs can often be
found after few computation steps if only the right inputs are chosen. How-
ever, it has been observed that bounded model checking can also be applied
for formal verification if the unrolling depth k of the transition relation is
large enough. Precisely, the the unrolling depth k has to match the com-
pleteness threshold c of the system, which can intuitively be described as:
If no counterexample of length c or less is found, the specification holds for
all (infinite) executions of the model. Hence, BMC with k ≥ c suffices for
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proving correctness of a system [BCCZ99, Thm. 27]. However, computing
the completeness threshold is as least as hard as solving the model check-
ing problem itself [CKOS04, KOS+11]. Consequently, BMC is often used
for verification up to a certain bound, without giving an actual correctness
guarantee for nonterminating executions of the system.

2.3 Abstraction

The foundations of abstraction have been formalized by Cousot & Cousot [CC77]
in the abstract interpretation framework. In principle, the semantics of a pro-
gram is specified using lattices. Lattices A and C are then used to specify
state in the concrete and abstract domains, respectively, and importantly
these lattices are connected by an abstraction function α : A → C and a
concretization function β : C → A. For c ∈ C and a correct abstraction
function α, the value α(c) then describes c in the sense that it contains c,
and possibly more values. This form of imprecision preserves soundness, but
may lead to false positive (or spurious) warnings.

Often, abstract systems are sufficient to prove interesting system properties.
However, if this is not the case, the abstraction has to be refined into a more
precise representation of the concrete system semantics, an approach that
has widely been automated using techniques such as counterexample guided
abstraction refinement [GS97].

However, of course abstract interpretation techniques have widely been ap-
plied to the verification of hybrid systems [Hen96]. For example, Sankara-
narayanan et al. [SDI08] have combined symbolic model checking with states
encoded on top of template polyhedra, that is, conjunctions of linear in-
equalities

∑n
i=0 ci · vi ≤ k where the ci are fixed a priori. However, such

works target an entirely different setting than our work since it is entirely
based on abstracting formally specified hybrid automata, whereas we focus
on continuous-time models that may not necessarily have a formal semantics
(the outputs may, for example, be computed using a controller that is directly
connected to the system). Further, the scalability of complex abstractions
such as template polyhedra in a network of components is uncertain. As
stated by Sankaranarayanan et al. [SDI08, Sect. 1], “hybrid systems veri-
fication is a challenge even for small systems”, which of course applies to
networks of hybrid systems.
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3 Model Checking Implementation

The model checking implementation for INTO-CPS uses the standard SAT-
based approach to BMC. Formally, let I denote an encoding of the initial
states of the system and let T (si, si+1) denote an encoding of a single tran-
sition from pre-state si to post-state si+1. The semantics of the system for k
execution steps is then fully described by:

I ∧
k−1∧
i=0

T (si, si+1)

If the LTL specification is encoded as a formula ϕ, then the system contains
no violation of the specification if the conjoined formula

I ∧
k−1∧
i=0

T (si, si+1) ∧ ¬ϕ

is unsatisfiable. The BMC problem can thus simply be solved by deriving
a formula of the above form and letting an off-the-shelf SAT or SMT solver
search for a solution to this formula.

3.1 Encoding for Co-Models

The implementation of model checking in RTT-MBT is based on the tran-
sition relation encoding described in [HPW15]. We refrain from repeating
the encoding here and refer the reader to [HPW15, Sect. 4] for a detailed
description, and instead describe the approach intuitively.

Initially, RTT-MBT transforms a UML/SysML model so that it consists of
a collection of n of blocks B1, . . . , Bn. All blocks are derived from a set
of (possibly hierarchical) state machines, which are executed concurrently.
Concurrency is modelled using interleaving semantics, that is, only one op-
eration is executed at a time, which entails that each operation executes
atomically. The order of execution, however, is nondeterministic: From any
block, any operation whose precondition is satisfied can be executed next.
The transition relation can then be encoded as a disjunction over all blocks
(which represent state machines) and all operations (which represent transi-
tions).

This approach dovetails with multi-modelling, since each component in the
co-model itself can be interpreted as a set of concurrent state machines. If
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two more such components are used in a single co-model, then the overall
semantics is simply be represented by disjunctively adding the encodings of
the state machines that constitute the respective component. Hence, replac-
ing a continuous-time component C by its abstract counterpart α(C) simply
amounts to replacing C by an abstract representation 1.

3.2 Encoding the Specification

The LTL encoding algorithm has to provide techniques to encode the follow-
ing kinds of LTL formulae:

• atomic propositions

• logical connectives (∨, ∧, ¬)

• Globally operator (G)

• Finally operator (F)

• Next-state operator (X)

• Until operator (U)

For each of these operations, RTT-MBT uses the propositional encoding
discussed in [BHJ+06]. Given that the semantics of an LTL formula is spec-
ified over single executions, it is straightforward to implement these encod-
ings.

Example Consider the LTL formula ϕ = G(x = 0 ∨ y ≥ 0), which states
that in any reachable state, at least one of the atomic propositions x = 0
and y ≥ 0 must hold. For each unrolling step 0 ≤ i ≤ k, let xi and yi denote
the state of x and y. Then, for each single step, the property is specified as
(xi = 0 ∨ yi ≥ 0). Since the atomic proposition is required to hold globally,
the LTL property ϕ is simply encoded as:

encode(ϕ, 0, k) =
k∧

i=0

(xi = 0 ∨ yi ≥ 0)

1The construction of the abstractions is discussed in deliverable [BM15]. This step will
be discussed further in Sect. 3.3.
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In the general case, the encoding for ϕ = Gψ where ψ is itself an LTL formula
is:

encode(ϕ, 0, k) =
k∧

i=0

encode(ψ, i, k)

Example As another example, consider the LTL formula ϕ = F(x ≤ y +
z), which expresses that in any execution of the system (x ≤ y + z) must
eventually holds. As before, this property can be encoded as:

encode(ϕ, 0, k) =
k∨

i=0

(xi = yi + zi)

The general case for ϕ = Fψ is:

encode(ϕ, 0, k) =
k∨

i=0

encode(ψ, i, k)

3.3 Configuration & Abstractions

3.3.1 Basic Configuration

The RTT-MBT model checker currently depends on the following basic con-
figuration items:

• the unrolling depth k ≥ 0

• the LTL formula ϕ

• the multi-modelM

The unrolling depth and the LTL formula have their obvious meaning. The
multi-model is the overall system model that is exported from Modelio via
XMI. This multi-model contains a connection diagram, which expresses which
ports and signals are used as inputs and outputs of each sub-model. Con-
figuring these items is the only necessity for executing the RTT-MBT model
checker. Details regarding the configuration of these parameters via the
command-line interface and the INTO-CPS application, respectively, are
given in Sect. 4.2 and Sect. 4.3.
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3.3.2 Configuration of Abstractions

The Year 1 deliverable [BM15] describes three abstractions (also referred to
as model approximations) for model checking of co-models consisting of both,
DE and CT systems. Here, we briefly repeat the details of these abstractions
and their current status in the RTT-MBT model checker 2.

Interval Abstraction uses the well-known box or interval domain [CC77]
to bound the range of continuous variables. RTT-MBT allows to specify
upper and lower bounds for all variables of a co-model, and both the model
checker and the test case generator allow input variables to hold values only in
the provided range. An example of an interval abstraction for a continuous
variable is given in Fig. 1. To implement this functionality for a variable
v, the component that computes abstracted value has to be removed from
the input to RTT-MBT. Suppose that lv and uv, respectively, denote the
lower and upper bounds of v. The transition relation is conjoined with an
additional constraint:

k∧
i=0

lv ≤ vi ≤ uv

Let V denote the set of variables to be abstracted, and assume that each
v ∈ V is computed by a component Cv. Further, let remove{C1,...,Cn} denote
the operation that removes a set of components from the transition relation.
Then, the overall formula to be solved is given by:

I ∧
k−1∧
i=0

remove{Cv|v∈V}(T (si, si+1)) ∧ ¬ϕ ∧
k∧

i=0

∧
v∈V

(lv ≤ vi ≤ uv)

Intuitively, the computation of a variable v is removed from the transition
relation, and in each unrolling step a value that satisfies the bounds constraint
may be chosen.

Gradient-Based Interval Abstraction is more constrained than interval
abstraction as it too specifies to what extent the value of an input variable
may change in a given time unit, which has to be specified manually by
the designer of the abstraction. For instance, interval abstraction allows a
variable to first equal its lower bound, and then, in the next computation

2The current release of RTT-MBT provides stable support for interval-based abstrac-
tion.
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Figure 1: Interval abstraction for a continuous variable.

step, equal its upper bound, which may be unrealistic and lead to spurious
results. Gradient-based interval abstraction can be used to specify how a
continuous variable may gradually change its value, for example, the value of
an input variable may change by at most five units in 10 ms. If gv denotes the
gradient for a variable v, the constraint that shall be satisfied by a variable
v in unrolling step i is given by:

(|vi − vi−1| ≤ g) ∧ (lv ≤ vi ≤ uv)

Intuitively, the difference between to consecutive valuations of v must not
exceed g and v must always respect its defined range. The system behavior
admitted by this abstraction is thus a subset of the behavior admitted by
interval abstraction.

Simulation-Based Abstraction Interval abstraction and gradient-based
abstraction may, when applied to industrial-scale multi-model co-simulation
environments, lead to some frustration since the abstractions may be either
too coarse — too many spurious warnings are produced — or too expensive
— the tool does not terminate in a reasonable amount of time. We have
therefore proposed an additional strategy, which is based on signal values
extracted from execution logs of the system as it is running. Suppose that a
co-model is executed and the value of a continuous variable v in this execution
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is characterized by a function fv : Q→ Q, which yields a concrete value for
a given time stamp 3.

A variable v is then characterized by a finite sequence of intervals:

[lv,0, uv,0], . . . , [lv,n, uv,n]

This sequence is computed as follows: Define a bound c that denotes the
maximum size of an interval, that is, |uv,i, lv,i| ≤ c must hold for each 0 ≤
i ≤ n. Given a time stamp t, we then compute the largest time stamp
t′ > t such that ∀t′′ ∈ [t, t′] : |fv(t)− fv(t′′)| ≤ c based on the execution log.
Starting with t = 0, this step is performed iteratively until the end of the
execution log is reached, where each iteration i induces an interval:

[lv,i, uv,i] = [min({fv(t′′) | t′′ ∈ [t, t′]}),max({fv(t′′) | t′′ ∈ [t, t′]})]

This behavior can then simply be expressed as a state machine consisting of
a single successor chain of constraints.

3.4 Summary of Configuration Items

We conclude this section with a summary of the configuration items required
by each abstraction:

Interval Abstraction: A set of input variables with boundaries for each
variable.

Gradient-Based Interval Abstraction: A set of input variables to be ab-
stracted, and for each such variable a pair of a gradient value and a
time frame.

Simulation-Based Abstraction: An execution log, a set of input vari-
ables, and for each input variable an upper bound for the value range
covered by a single interval.

4 Application of Model Checking

Model checking functionality is provided by the RTT-MBT toolchain, the
installation of which is described in Sect. 4.1. A description of how to use

3The execution log has to discretize the progress of time and the value of v, hence the
choice of Q rather than R.

16



D5.2b - Model-Checking Component (Public)

model checking via the command-line interface and with the INTO-CPS
application is given in the following sections.

4.1 Installation of the RTT-MBT

For model checking with RTT-MBT, a number of software packages must be
installed. These software packages have been bundled into two installers:

• VSI tools dependencies bundle:
This bundles is required on the Windows platform and installs the
following third party software:

– Python 2.7.

– GCC 4.9 compiler suite, used to compile FMUs.

• VSI tools – VSI Test Tool Chain:

– RT-Tester 6.0, a stripped version of the RT-Tester core test system
that contains the necessary functionality for INTO-CPS.

– RT-Tester MBT 9.0, the model-based testing extension of RT-
Tester.

– RTTUI 3.9, the RT-Tester graphical user interface.

– Utility scripts to run RTT-MBT.

– Examples for trying out RTT-MBT.

These bundles can either be downloaded via the download manager of the
INTO-CPS Application or can come pre-installed in VirtualBox images.

4.2 Command-Line Interface

The executable responsible for processing model checking queries is called
rtt-mbt-mc and can be found in the RTT-MBT installation folder. This
executable can be used as a command-line tool for checking LTL queries. In
order to check an LTL query the following arguments need to be provided as
command-line arguments:
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• -model <XMI-FILE> specifies the model on which model checking
should be performed. The model should be in the form of an XMI file
exported by Modelio.

• -spec <LTL-QUERY> specifies the LTL-query string to check.

• -bound <NUMBER> specifies the upper bound k for BMC (see Sect. 3.2).

After checking the query, the tool responds with one of the following ver-
dicts:

• The LTL formula is satisfied up to a bound of k. No counterexample
could be found.

• The LTL formula does not hold. A counterexample is also printed.

When specifying the LTL formula string, the operators introduced in Sect. 3.2
have the following textual representation:

• The logical connectives (∨, ∧, ¬) are represented by ||, &&, and !,
respectively.

• Globally operator (G): Globally ([...])

• Finally operator (F): Finally ([...])

• Next-state operator (X): Next ([...])

• Until operator (U): ([...]) Until ([...)

Model variables found in the model can be used in atomic propositions.
Atomic propositions must always be enclosed by brackets ([ and ]). For
instance, the following strings are valid LTL specifications over variables x
and y in the syntax supported by RTT-MBT:

F([x > 0 || x == y])

G([x >= 0 && y >= 0])

F(G([x >= 1]))

In addition, for each location in a state machine a variable with the same
name as the originating location is introduced. These variables evaluate to
true if and only if the model is residing in the respective control state.

18
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Example Invocation: As an example, we utilize the turn-indicator model.
Assume that we want to verify the property that both turn-indicator lamps
must always be turned off if neither emergency flashing is active nor left or
right flashing is selected using the turn indicator lever. This property can be
expressed using the following LTL specification:

G(TurnIndLvr 6= 0∨EmerSwitch = 1∨ (LampsLeft = 0∧ LampsRight = 0))

If we want to check this property with a bound of 50 steps, we invoke the
model checker as follows:

rtt-mbt-mc \
-model turnInd.xmi \
-bound 50 \
-spec ’Globally ([TurnIndLvr != 0 || EmerSwitch || \

(LampsLeft == 0 && LampsRight == 0)])’

The model checker then reports that the LTL formula does not hold. We
further inspect the output of rtt-mbt-mc listed below, which reveals that
there is the (desired) functionality in model that allows the lamps to flash
for three times even after the turn indicator lever has been released.
RT-Tester Model-Based Test Generator (Release 9.0-1.5.8-x86_64.fad12af3a290fbf330882201bf1ed1fa10eeaaa3.dev)

[SOLVER] Reached goal after 50 steps within 60.146s.

Found counterexample to [!([true] Until !([(((IMR.TurnIndLvr@0 != 0) || IMR.EmerSwitch@0)
|| ((IMR.LampsLeft@0 == 0) && (IMR.LampsRight@0 == 0)))]))].

IMR.LampsLeft@50 |-> (ConcreteLattice<signed int>, 0)
IMR.LampsRight@50 |-> (ConcreteLattice<signed int>, 1)
IMR.SystemUnderTest.FLASH_CTRL.FLASH_CTRL.EMER_OFF@50 |-> (ConcreteLattice<bool>, 1)
IMR.SystemUnderTest.FLASH_CTRL.FLASH_CTRL.EMER_ON.EMER_ACTIVE@50 |-> (ConcreteLattice<bool>, 0)
IMR.SystemUnderTest.FLASH_CTRL.FLASH_CTRL.EMER_ON.TURN_IND_OVERRIDE@50 |-> (ConcreteLattice<bool>, 0)
IMR.SystemUnderTest.FLASH_CTRL.FLASH_CTRL.EMER_ON.initial@50 |-> (ConcreteLattice<bool>, 0)
IMR.SystemUnderTest.FLASH_CTRL.FLASH_CTRL.initial@50 |-> (ConcreteLattice<bool>, 0)
IMR.SystemUnderTest.FLASH_CTRL.tilOld@50 |-> (ConcreteLattice<signed int>, 0)
IMR.SystemUnderTest.OUTPUT_CTRL.OUTPUT_CTRL.FLASHING.OFF@50 |-> (ConcreteLattice<bool>, 0)
IMR.SystemUnderTest.OUTPUT_CTRL.OUTPUT_CTRL.FLASHING.ON@50 |-> (ConcreteLattice<bool>, 1)
IMR.SystemUnderTest.OUTPUT_CTRL.OUTPUT_CTRL.FLASHING.initial@50 |-> (ConcreteLattice<bool>, 0)
IMR.SystemUnderTest.OUTPUT_CTRL.OUTPUT_CTRL.IDLE@50 |-> (ConcreteLattice<bool>, 0)
IMR.SystemUnderTest.OUTPUT_CTRL.OUTPUT_CTRL.initial@50 |-> (ConcreteLattice<bool>, 0)
IMR.SystemUnderTest.OUTPUT_CTRL.ctr@50 |-> (ConcreteLattice<signed int>, 0)
IMR.SystemUnderTest.OUTPUT_CTRL.lOld@50 |-> (ConcreteLattice<signed int>, 0)
IMR.SystemUnderTest.OUTPUT_CTRL.rOld@50 |-> (ConcreteLattice<signed int>, 1)
IMR.SystemUnderTest.OUTPUT_CTRL.t@50 |-> (ConcreteLattice<unsigned int>, 0)
IMR.SystemUnderTest.left@50 |-> (ConcreteLattice<signed int>, 0)
IMR.SystemUnderTest.right@50 |-> (ConcreteLattice<signed int>, 1)
_timeTick@50 |-> (ConcreteLattice<unsigned int>, 256)
IMR.EmerSwitch@50 |-> (ConcreteLattice<signed int>, 0)
IMR.TurnIndLvr@50 |-> (ConcreteLattice<signed int>, 0)
IMR.voltage@50 |-> (ConcreteLattice<float>, 13.0000029)

4.3 User Interface Integration

Once an INTO-CPS project has been created, model checking functionality
can be found under the top-level activityMODEL-CHECKING in the project
browser.
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Starting the License Management Process: Before getting started,
the RT-Tester license management process has to be launched. To this end,
right-click onMODEL-CHECKING and select Start RT-Tester License Don-
gle (see Fig. 2).

Figure 2: INTO-CPS Application: Start RT-Tester license dongle

Creating a new Model Checking Project: Model checking projects are
presented as sub-projects of INTO-CPS application projects. In order to add
a new project, right-click on the top-level activity MODEL-CHECKING in
the project browser and select Create Model Checking Project (see Fig. 3).
Then, the user has to provide a project name and the model that has been ex-

Figure 3: INTO-CPS Application: Creating a model checking project

ported to XMI from Modelio. After pressing Create Model Checking Project,
a new node representing the model checking project is added to the project
browser.
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Figure 4: INTO-CPS Application: Model checking creation dialog

Adding, Editing and Checking LTL Queries: The next step is to add
LTL queries to the project. To add a query, right click on the project and
select Add LTL Query (see Fig. 5). Then enter a name for the new query

Figure 5: INTO-CPS Application: Adding an LTL formula

(see Fig. 6). To edit the LTL query, double click on the corresponding node
in the project browser (see Fig. 7). The LTL formula can then be edited
in a text field. Note that the editor supports auto-completion for variable
names and LTL operators (see Fig. 8). The user must also provide the upper
bound k for the bounded model checking query (see Sect. 3.2). To check the
query, press Save & Check. A window will open which is being filled with the
output of the rtt-mbt-mc model checking tool described in Sect. 4.2. The
tool either reports that the query holds within the specified number of steps
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Figure 6: INTO-CPS Application: LTL formula creation dialog

Figure 7: INTO-CPS Application: Open LTL editor
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Figure 8: INTO-CPS Application: LTL formula editor

— as depicted in Fig. 9 — or it will print a counter example to demonstrate
that the property does not hold.

Configuring Abstractions: To configure abstractions for a particular
model checking project, double-click on the corresponding Abstractions node
below that project in the project browser. It is then possible to choose an
abstraction method for each output variable of an environment component
along with making the associated setting. In Fig. 10 the interval abstrac-
tion has been selected for the output variable voltage. This abstraction has
further been configured to restrict the variable’s value within the interval
[10, 12]. After pressing Save, these abstraction will be applied to all model
checking queries in the current model checking project.

5 Conclusion & Outlook

This deliverable provides an overview of the LTL model checker for SysML
multi-models that has been developed in the context of the INTO-CPS
project. A noteworthy particularity of the project’s setting is that it tar-
gets heterogeneous systems which combine both, DE and CT models. The
implemented model checker, however, provides direct support for DE models,
but abstracts from CT models using configurable abstraction mechanisms.
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Figure 9: INTO-CPS Application: Model checking result
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Figure 10: INTO-CPS Application: Configure Abstractions

In the near future, further abstractions — based on the explicit needs from
case studies — will be integrated into the model checker, and the integration
in the INTO-CPS application will be extended accordingly.
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A List of Acronyms

20-sim Software package for modelling and simulation of dynamic systems
ACA Automatic Co-model Analysis
AST Abstract Syntax Tree
AU Aarhus University
BDD Binary Decision Diagram
BMC Bounded Model Checking
CLE ClearSy
CLP Controllab Products B.V.
COE Co-simulation Orchestration Engine
CPS Cyber-Physical Systems
CT Continuous-Time
DE Discrete Event
DESTECS Design Support and Tooling for Embedded Control Software
DSE Design Space Exploration
FMI Functional Mockup Interface
FMI-Co Functional Mockup Interface – for Co-simulation
FMI-ME Functional Mockup Interface – Model Exchange
FMU Functional Mockup Unit
LTL Linear Temporal Logic
MC Model Checking
RTT-MBT RT-Tester Model Based Test Case Generator
SAT SATisfiable Boolean formula,

a symbolic representation of terms that can/should evaluate to true
SMT Satisfiability Modulo Theories, i.e., a SAT formula interpreted

over a logical theory (here, this describes a system design)
ST Softeam
SysML Systems Modelling Language
TWT TWT GmbH Science & Innovation
UML Unified Modelling Language
UNEW University of Newcastle upon Tyne
UTRC United Technologies Research Center
UY University of York
VSI Verifdied Systems International
WP Work Package
XML Extensible Markup Language
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