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Abstract

This deliverable documents the implementation of a test automation module,
which allows definition and configuration of automated test suites based on
co-simulation model descriptions.

The implementation aspects focus on the test automation part of the evolving
INTO-CPS application. This will grow throughout Years 2 and 3 and be ex-
tended to include more desired functionalities as the case studies progress.

The general test automation concepts and usage are explained. This in-
cludes identification and configuration of the system under test component,
which can be a (model-based) simulation, or a manual or automated imple-
mentation (software in the loop or hardware in the loop). We discuss the
incremental growth of a test project, that is extended with more goals and
aspects until the desired test coverage is reached.

As a guiding example through these stages, a simple water tank controller is
used.

The dependencies of artifacts in this process are governed by OSLC, which
is highlighted in the appropriate places.
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1 Introduction

This deliverable documents the implementation of a test automation module,
which allows definition and configuration of automated test suites based on
co-simulation model descriptions.

Starting from a modelling tool, we discuss how to translate this into a test
project that is subsequently extended by more and more behavioural explo-
rations, grouped into test procedures. Each test procedure covers a subset
of possible behaviours, which is then accumulated into a list of test results
that evaluate expected versus observed behaviour.

Each of the following tools will be integrated in the test automation mod-
ule:

• Modelio http://www.modelio.org/

• RT-Tester [Ver15a, Ver15b], https://www.verified.de/products/

1.1 Running Example: Water Tank Controller.

As a running example we use the water tank controller that is also described
in related INTO-CPS documents. We use a simplified version that only
features one tank, see Figure 1.

The Tank has the capacity for a certain amount of water. Water may flow
in at an unspecified rate. Water may flow out, if the Valve at the lower
part of the tank is opened. A Controller has the goal1 to keep the water
level between a constant Lower Bound and a constant Upper Bound. It has
a sensor input that measures the current water level and an actor output,
which corresponds to closing or opening the Valve.

We specify the behaviour of the Controller such that it shall close the Valve
if the water level drops to (or below) the Lower Bound. If the Upper Bound
is reached (or exceeded), the Valve shall be opened.

For simplicity we work with the values 1 for the Lower Bound and 2 for the
Upper Bound. Water level 0 corresponds to an empty tank.

1This goal is only achievable under certain side conditions, like limited water input etc.
We explain this in the assumptions.
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Figure 1: Water Tank and Controller.

Assumptions. We disregard situations where the Tank falls dry or the
“Water Input” flow exceeds the maximal “Water Output” capacity over time:
in these situations it is obvious that the goal “current water level between
the bounds” cannot be achieved by the Controller.

We are only interested in the behaviour of the Controller for “well behaved”
systems and how this can be meaningfully tested.

Water Tank Test Model. A possible test model for the Controller is
depicted in Figure 2.

Independent from an implementation (which might be a simple threshold
switch), the control logic is represented by a timed state machine.

In our test model, the “Waiting” state is idle until the timer t elapses. Every
1000 milliseconds, the state (“Responding”) is entered, which evaluates the
water level wt3_level. As can be seen in the transitions, there are three
ways to go back to “Waiting”:

• If the water level is above 2, the valve is opened,
i.e., wt3_valve is set to 0.

• If the water level is between 1 and 2, no action is taken.

8
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Figure 2: Water Tank Controller Test Model as State Machine (in Modelio).

• If the water level is below 1, the (drain) valve is closed,
i.e., wt3_valve is set to 1.

Note that the guard conditions are both mutually exclusive and complete,
which means that exactly one of the guards will be enabled. This guarantees
deterministic progress of the model, no matter what water level is currently
measured.

1.2 Test classifications: HiL, SiL, and MiL.

Test activities are often classified according to the nature of the test con-
figuration. In particular the terms Hardware-in-the-Loop, Software-in-the-
Loop, and Model-in-the-Loop - or HiL/SiL/MiL for short - are widely used
for this.

The distinction of HiL/SiL/MiL is not always clear, because there are situ-
ations where more than one of the terms seems to be appropriate. For our
purposes, it suffices to separate these terms as follows.

HiL (Hardware in the Loop)
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There is (target) hardware involved, thus the FMU is mainly a wrapper
that interacts (timed) with this hardware; it is perceivable that reali-
sation heavily depends on hardware interfaces and timing properties.

SiL (Software in the Loop)
The object of your test execution is an FMU that is filled with some
sort of software implementation of (parts of) the system. It can be
compiled and run on the same machine that the COE runs on and
has no (defined) interaction other than the FMU-interface. It does not
matter (much) where this implementation comes from.

MiL (Model in the Loop)
The test object of the test execution is a (design) model, represented
by one or more FMUs.2 This seems similar to the SiL (if e.g., the SUT
is generated from the design model), but can also imply that running
the SUT-FMU has a representation on model level. For example, a
playback functionality in the modelling tool could be used to visualise
a test run.

This is to be understood as a working definition, we are aware that it will
not completely fit.

1.3 Requirements

The following requirement are quoted from the description of work D7.3 [?].

Requirement 0024 A distributed and simulation network for Test Au-
tomation (TA) must be developed. Especially in the case of real-time
HIL testing, where some parts of the co-simulated environment are re-
placed by real components, the test environment must be able to per-
form all simulation steps in real-time. While the test model still only
specifies the intended system behaviours, the real-time co-simulated
environment, which will be distributed on multiple hosts (e.g. real-
hardware, testing host, co-simulation host), will have additional laten-
cies introduced by the COE and by interfacing with the real hardware.
As a result the test environment must be able to get information about
the latencies from the COE and deal with them while evaluating test
results.

2This is the case if in the water-tank model the test are run against “Simulation” instead
of “SUT”; here, the “Simulation” is derived directly from the test model, which defines the
behaviour of the FMU.
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Requirement 0025 RT-Tester must provide an INTO-CPS FMI tool wrap-
per that is compliant with the COE. This allows for monitoring and
stimulating outputs and inputs of other co-simulated models from the
COE. An integration of the FMI interface allows RT-Tester to access
available data using a standardised interface. This gives the test en-
gineer the possibility to select any inputs/outputs of the co-simulated
models and perform tests using data from those interfaces.

Requirement 0026 Integrating RT-Tester into the COE differs from inte-
grating other co-simulations is one respect: RT-Tester will not intro-
duce any new signals on the FMI interface, but only read outputs or
stimulate inputs from generated simulations (e.g. 20-sim, OpenMod-
elica). Therefore RT-Tester should be able to derive interface de-
scriptions from the Modelio configuration of the COE and automat-
ically derive a corresponding FMI interface from that. The RT-Tester
test model will then be able to refer to all those identified interfaces,
when the intended system behaviour of the co-simulation environment
is specified, which will be used for test data generation.

Requirement 0027 When executing a whole test suite for a co-simulation
environment, the goal is to leave all components completely unchanged
for a test run. Only the generated test data and by this the simu-
lated behaviour will change, as the test environment acts as the test
driver to steer the simulation into a desired system state, which will
be used to check all aspects of the modelled system. Therefore the
test enviornment (TE) needs a way of stimulating inputs/outputs of
other simulations, but also to control the COE, e.g. be restarting a
co-simulation or restarting a specific model simulation. Use cases for
this are for example power-on tests of models, where different power-up
scenarios are tested.

Requirement 0028 RT-Tester must be able to monitor the complete execu-
tion of multiple co-simulated models and in parallel evaluate the mon-
itored trace against the designed test model. The monitoring should
happen without actively influencing the test execution, but just pas-
sively monitor the observations and perform checks on the monitored
traces.
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1.4 Related Work

A substantial amount of literature is available for model-based testing and
cyber-physical systems, for specific pointers see, e.g., [?] and [?]. Since this
work addresses several key issues (modelling, distribution, tracing), it would
not be helpful to start citing long lists of literature here. Rather, it makes
sense to relate this work to recent research projects with similar aim and
scope.

In this respect, the following projects can be considered to be closely re-
lated.

ADVANCE3 addresses analysis of connected CPSs, but focuses on formal
verification rather than on testing.

AMADEOS4 is also concerned with the time aspects of system of systems,
which relates to the timed nature of the tool chain described here.

MODRIO5 addresses the requirement modelling aspect, but not to the ex-
tend that it is confirmed by tests.

DESTECS6 provided definitions for many concepts re-used by INTO-CPS.

COMPASS7 and PTOLEMY8 both address the distributed aspects with
mixture of models of computation, without casting this into the FMI 2 co-
simulation standard.

Further (less closely) related work can be found in [?, Appendix B].

2 Test Automation Capabilities

This section gives a brief introduction to test automation goals and limits.
It is meant to clarify concepts and position the test automation activity
in the INTO-CPS workflow. This is elaborated further in the subsequent
sections.

For test automation, the following two aspects have to be identified.
3http://www.advance-ict.eu/
4http://amadeos.imag.fr
5https://itea3.org/project/modrio.html
6http://www.destecs.org/
7http://www.compass-research.eu/
8http://ptolemy.berkeley.edu/publications/index.htm

12

http://www.advance-ict.eu/
http://amadeos.imag.fr
https://itea3.org/project/modrio.html
http://www.destecs.org/
http://www.compass-research.eu/
http://ptolemy.berkeley.edu/publications/index.htm


D5.2a - Test automation module (Public)

1. A specification of the desired behaviours, which is typically annotated
with system requirements. In order to serve as a test model, it has to
be defined as a timed state-chart.

2. An implementation of these behaviours, which may exist entirely in
software (SiL), as a hardware deployment (HiL), or itself as a model
(MiL), compare Section 1.2.

2.1 Considerations for Lifecycle Management

The central part of the test automation is the definition of the test model9
All test automation activities depend on it and every change necessarily
invalidates earlier test results.

The typical workflow for test automation is as follows.

1. Define (or modify) test model

2. Import that model in a test project

3. Configure a test procedure

4. Run a test procedure against an Implementation— the System Under
Test (SUT)—and evaluate the result

5. Either

(a) Continue with configuration of the next test procedure, or

(b) Correct the SUT and retry, or

(c) Refine (or correct) the test model

For this it is necessary to keep track of versions (like the version of the test
model) and activities. With respect to Open Services for Lifecycle Collabora-
tion (OSLC)10, the following actions have been identified to be traced.

Define Test Model This includes all modelling activities that concern the
test model, including definition of the state machine, association of
system requirements with model elements, or changes in the graphical
representation.

The end-point of this activity is the hand-over of the test model to a
test project (via XMI export → XMI import).

9A specific example for a test model is given in Section 3.2.
10see http://open-services.net/
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Define Test Objectives For each test procedure in a test project, test ob-
jectives need to be defined. This is done by configuring the test proce-
dure such that it covers a certain set of test cases. Also the assumptions
(on input values) and parameters (like acceptable latency of output val-
ues) need to be specified, see Section 5.2 for more details.

The end-point of this activity is the generation of a (runnable) RT-
Tester 6 test procedure, which is encapsulated in a FMU.

Run Test This activity includes the configuration of the test run, including
the FMU that acts as SUT (e.g., a wrapper to a SUT prototype imple-
mentation or a Simulation derived from the test model), the duration
of the run, and the step size. The actual run is then performed by
means of the COE.

The end-point of this activity is the actual termination of the test run.

For the actions above prototypical support has been implemented, using
INTO-CPS OSLC messageFormatVersion 0.1.11

2.2 Current Limitations

The following capabilities apply to the current version of the tool chain. They
are expected to be removed in the further progress of the project

1. Test configurations only support one SUT and one Test Driver/Simu-
lator.

Reason. Test data generation needs to identify the border between
items that can be manipulated (environment) and items that cannot
(SUT, possibly also simulations).

Conceptually this means that if more than one SUT is selected, a new
border has to be computed that puts all of the SUTs to one side of the
equation. For this the tool support is currently missing.

2. No HiL example has yet been tried.

Reason. HiL requires specific hardware setup; this has to be provided
by the case studies (WP1).

3. System Requirement Tracing not available yet.
11This is ongoing work and subject to improvements.
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Reason. The Modelio 3.4.1 export does not contain the requirement
information; also, tracing support for RTT Windows has to be added.

3 Identifying Model Elements for Test Automa-
tion

Starting point for test automation are functional model elements that ex-
hibit (timed or un-timed) behaviours that are subject to operational verifi-
cation.

The specification part of test automation is necessarily done with aid of a
modelling tool.

Purpose of a Test Model. A recurring question is why we have to con-
struct a test model. If we already have (often painfully) constructed a sys-
tem (design) model that captures the behaviours, why no use this as test
model?

The purpose of a test model is to define (in a compact way) the behaviours
that can be expected from a system part and subject this to automated in-
spection. If the design model (which is used to generated an implementation)
is used for this, there a successful test confirms that the process for generat-
ing the implementation worked as expected. If the implementation is derived
automatically, you are testing the code generator.

Deriving a test model from (parts of) the system requirements has the ad-
vantage that you can ignore or simplify aspects of the design that are owed to
architectural decisions, e.g., deployment in several functional groups. Only
the input/output of a test model has to match the one of the designated
SUT. If it eases the testing process, several test models (one for each aspect)
may be constructed for the same system.

Therefore it is an option but not an obligation to keep the test model separate
from the design.

3.1 Relating Requirements to Model Parts

Currently, requirements are modelled at the higher level via the Modelio tool.
The Modelio tool also supports linking of SysML requirements to SysML

15
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blocks directly and these requirements can be exported via the XML Meta-
data Interchange (XMI) files to other tools such as RT-Tester. RT-Tester can
read in these requirements and allow the user to bind test-cases to them.

Work is ongoing to globally relate requirements to model parts, test cases,
simulation results and other artifacts via the traceability daemon, see D4.2d
INTO-CPS Traceability Design.

The traceability daemon uses OSLC specifications. For requirement trace-
ability the OSLC Requirements Management (RM) specification is relevant
12.

Some of these OSLC relations we plan to explore for test automation are:

1. Modelio: Requirement is linked to SysML block in ASD

2. RT-Tester: Define test mode, Define test objectives, Run test

Traceability in terms of test-case and requirement management is a core
feature of RT-Tester tool chain. Connecting test cases and requirements, the
associated status accounting (including reporting) during a test campaign
are described in detail in [Ver15a] and [Ver15b].

In the future, the Modelio and RT-Tester will export the defined requirements
and their links to model elements and test cases to the traceability daemon
so that the requirements can be traced globally.

3.2 The Test Model - SysML Perspective

We use the test model of the water tank controller described on page 9, see
Figure 2.

Why is this not a design model? Let us reflect on some properties of
the state machine layed out above.

1. It uses an (internal) timer t, see guard “t.elapsed()”

2. The reaction to a raise or fall in the water level does not happen im-
mediately; only ever seconds, the value of wt3_level is evaluated

12http://open-services.net/specifications/requirements-management-2.
0/
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3. If the water level fluctuates fast around either value 1 or value 2, then
it might be that there is no valve action at all, provided the value is
always on the same side of the threshold when it is sampled.

This is usually not what would be part of a system design, because it is
heavily based on samples that have large time distances. Also, there is no
mechanism to prevent use of “implausible” samples, e.g., values that jump
up unexpectedly from 0 to 100.

In a way it is a coarse model of what the controller is supposed to perform.
The test model implies that

• there can be a latency (up to 1s) to a controller reaction,

• it is permissible that the controller reacts very fast,

• it is possible that inputs are ignored if they apply for only a short time
(below 1 second).

Based on this, the test model will be used to derive the stimulations to the
controller cannot make strong assumptions on how fast and in what manner
the SUT will actually react to the inputs. Therefore, the test data generations
needs to provide inputs that are stable (e.g., duration 1 second above thresh-
old) in order to ensure that the controller indeed takes a transition.

As a consequence, a large number of perceivable controller implementations
will pass the criteria of the test model, including one that react immediately
to a sample or one that accumulates samples over a short time period (less
than 1 second) and reacts according to some mean value of the samples. In
terms of model-based design, this is a good thing.

4 Defining a Test Project in the INTO-CPS
Application

Configuring and using a Test Project involves several activities, which in-
clude:

• The creation of a test project.

• The definition of tests.

• The compilation of test driver FMUs.

• Setting up test runs.

17
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• Running a test.

• Evaluation of test results.

These activities can be performed using a combination of the INTO-CPS
application and the RT-Tester graphical user interface. In the INTO-CPS
application test automation functionality can be found below the main activ-
ity TEST-DATA-GENERATION in its project browser. In this section we
keep within the INTO-CPS application interface and give forward reference
to RTTUI313 usage, which is discussed in Section 5, if appropriate.

Starting the License Management Process Before using most of the
test automation utilities, the license management process has to be started.
To this, right-click on TEST-DATA-GENERATION and select Start RT-
Tester License Dongle (see Figure 3).

Figure 3: INTO-CPS Application: Starting the License Management Process

Creating a Test Automation Project After having developed the be-
havioural model in Modelio and exported it to an XMI-file, test automation
projects can be created from the INTO-CPS application. Such a project
is then added as a sub-project within a containing INTO-CPS application
project.

To create a project, right-click on TEST-DATA-GENERATION in the project
browser and select Create Test Data Generation Project (see Figure 4). Then

13An older product line with limited capabilities and different look-and-feel was named
RTTUI2; “RTTUI3” is often used in documentations to distinguish from that older one.

18
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Figure 4: INTO-CPS Application: Create Test Automation Project

specify a name for the project, select the XMI-file with the test-model, and
press create as in Figure 5. The newly created sub-project and its direc-

Figure 5: INTO-CPS Application: Create Test Automation Project Dialogue

tory hierarchy is displayed in the project browser. Some directories and files
of the RT-Tester project which are not of great importance in the course
of INTO-CPS are hidden from the browser. Of special significance are two
folders.

1. TestProcedures contains symbolic test procedures where test ob-
jectives are specified in an abstract way, like for example by specifying
LTL formulas.

2. From these symbolic test procedures, concrete executable (RT-Tester 6)
test procedures are being generated, which then reside in the folder

19
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RTT_TestProcedures.

Defining a test The specification of test objectives is done using the RT-
Tester GUI and is explained in more detail in Section 5.2. The relevant files
can be opened in the RT-Tester GUI directly from the INTO-CPS application
by double-clicking them.

Generating a Test After having defined the test objectives, a concrete
test case can be created by a right-click on the symbolic test case under
TestProcedures and then selecting Solve (see Figure 6). A solver com-

Figure 6: INTO-CPS Application: Generating a Concrete Test Procedure

ponent then computes the necessary timed inputs to realise the test objec-
tives. A concrete test procedure is being generated which feeds a system
under test with these inputs and observes its outputs against expected re-
sults which are derived from the test model. This test procedure will be
placed in RTT_TestProcedures and has the same name as the symbolic
test procedure. Figure 7 shows the progress of a test generation.

Generating FMUs A generated test procedure can be cast into an FMU
which then can be run in a co-simulation against the system under test. To

20
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Figure 7: INTO-CPS Application: Progress of test data generation

Figure 8: INTO-CPS Application: Generating a test FMU

21
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this end, right click on the concrete test procedure and select Generate Test
FMU (see Figure 8).

In cases where a real and perhaps physical system under test is not available,
a simulation of the system under test can be generated from the behavioural
model. To generate such an FMU, right-click on Simulation an select Gen-
erate Simulation FMU as depicted in Figure 9.

Figure 9: INTO-CPS Application: Generating a simulation FMU

Running a Test In order to run a test, right-click on the test procedure
and select Run Test (see Figure 10). Then specify the FMU of the system

Figure 10: INTO-CPS Application: Start Run-Test dialogue

under test. If the system under test is to be replaced by a simulation, press
on the corresponding Simulation button. The duration of the test is derived
during test data generation and does not need to be manually specified.

22
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However, an appropriate step size must be set. Finally, after making sure
the COE is running, press Run to start the test (see Figure 11). The next

Figure 11: INTO-CPS Application: Run-Test-Dialogue

step is to evaluate the test execution which is described in Section 5.4.

In a realistic project, several test procedures will be defined and run repeat-
edly. Also, the run has to be evaluated. These details are discussed in the
subsequent section.

5 Operating a Test Project with RTTUI3

A test project is based on the elements defined in Section 4. If any of these is
changed, all previous results are obsolete and have to be re-iterated in order
to give valid information.

The operations of a test project include the following activities.

• Define test goals, which can be translated to test procedures.

• Run test procedures (with the aid of the COE) in order to compare
expected (specification) with observed (implemented) behaviour.

• Extend or add test goals in order to increase the number of covered
situations.
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• Analyse logs of deviations in order to determine whether this is a defect
in the specification (test model weakness) or bug in the implementation.

A possible outcome of a test project is the revision of either test model,
implementation, or test project generation; in this case, all activities in this
section are re-iterated.

A possible completion of a test project is a collection of successful executions
of a number of test procedures that in combination achieve the required test
depth.

The INTO-CPS Application allows the basic configuration of a test cam-
paign, see Section 4. However, for the more elaborate operations use of the
RT-Tester graphical User Interface (RTTUI3) is required, since this sup-
ports display and editing of all relevant configuration and result files. The
screenshots in this section are taken from the RTTUI3.

5.1 The Layout of a Test Campaign

The purpose of a Test Campaign is to extend the number of explored situa-
tions to the desired level and measure (observe and record) the behaviour of
the SUT in all these situation.

The granularity of a situation is also called Test Case, which classically con-
sists of a precondition, an (input) event, and an (expected) output.

For model based testing, test cases are derived automatically from the test
model by associating model elements with tests case identifiers, compare
[Ver15a] for more details. The identifier of each test case include a small
shorthand that indicates the nature of the model element, for example:

BCS Basic Control State: corresponds to a basic (non-composite) state of
the test model state machine

TR Transition Relation: corresponds to a (possibly guarded) transition in
the test model state machine

MCDC Modified Condition/Decision Coverage: corresponds to all situa-
tions where composite transition guards are evaluated in a set such
that all sub-conditions that influence the outcome are evaluated at
least once such that it influences the guard value, see [Ver15a] for the
full definition.
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A Model-Based Test Procedure14 is a container for one or more test cases.
Typically these are selected from the automatically derived ones and carry
the appropriate shorthand (BCS, TR, MCDC, etc.) in the name. However,
the user is free to add arbitrary others in terms of LTL formulae (interpreted
over the test model). For model based testing, this configuration is also
called test goal, because it is attempted to derive a sequence of inputs that
will cover all the situations where proper SUT behaviour for all associated
test cases is observed.

The model-based test procedures are contained in a folder TestProcedures.
It is recommended to name them “TP-...” or similar, for example TP-BCS
for one that attempts to cover all basic control states. Based on a model-
based test procedure configuration and the test model, the Solver15 attempts
to derive a timed trace of input data that covers all the goals. The result is
a “concrete” (RT-Tester 6) test procedure (here: also named “TP-BCS”) that
is generated in folder RTT_TestProcedures.16

The sum of test procedures in a test project allows to make statements con-
cerning the SUT behaviour. In particular a verdict is accumulated for every
test case, which can be PASS (SUT behaves as expected), FAIL (SUT devi-
ates from expected behaviour), or INCONCLUSIVE (SUT output was not
observed). The INCONCLUSIVE case is not necessarily a fault: sometimes
there is simply no SUT output that allows to pinpoint whether the behaviour
was correct.

As a final step, the test procedure verdicts are mapped back to the require-
ments in order to determine which parts of the specification have been con-
firmed to be fulfilled and for which parts deviations have been observed.

5.2 Test Procedure Definition

A (model-based) test procedure is configured by selecting a finite set of test
cases that shall be covered by means of providing appropriate input values.
In particular BCS, TR, or MCDC can be selected in order to designate
all of the test cases of this type (associated to a selected model element)
as test goals. In addition to this, arbitrary LTL formulae can be added as
goals.

14In the RTTUI3, model-based test procedures are marked by icon .
15The Solver is the core component of RTT-MBT, compare [Ver15b].
16 In the RTTUI3, RT-Tester 6 test procedures are marked by icon .
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Figure 12: Test Goal: Cover all Basic Control States (BCS).

In Figure 12, the test procedure TP-BCS is configured by selecting BCS for
the SUT.

Figure 13: For model-based test procedure TP-ALL-PREDEF-GOALS, only
8 of 10 goals are reached by the Solve operation.

Not always all goals can be covered. Figure 13 shows what happens for the
solve operation (i.e., clicking in the upper right corner) when applied to an
overly ambitious test procedure (TP-ALL-PREDEF-GOALS). The generated
(RT-Tester 6) test procedure only covers 8 of 10 goals. There are several
ways to proceed here, including the following.
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1. Increase the search depth (in the “Solver” tab of the test procedure
configuration), per default this is set to 100.

2. Distribute the 10 goals to several test procedures; this simplifies the
task of finding a solution.

For every “Solve” step (including those that fail to cover all goals), a test
data generation report in HTML format is created.

Figure 14: The test data generation report explains the generated inputs and
the expected outputs, here for TP-BCS.

Figure 14 shows this for the water tank example, where all the basic control
states are covered (compare model in Figure 2). In this simple case it suffices
to allow time to elapse to the 1000 ms threshold, since this is where the
“Waiting” state will be left and the “Responding” state will be reached. The
3rd state is the “Init” state (black bullet), which is covered implicitly.

The water level (SUT input) remains 0 in this run, therefore it is expected
from the SUT to close the valve (set wt3_valve to 1) at time step 1000.

Configuring Acceptable Latency for SUT Outputs. Not all reactions
of the SUT can be assumed to happen instantaneous. Out water tank con-
troller is allowed to take 1000 ms before it reacts on the current water level
(compare Figure 2). This means that tests have to be careful with respect
to timing assumptions that are made on the SUT implementation.

Part of a test procedure configuration is therefore the definition of allowed
latency of a SUT output (here: wt3_valve). This is shown in Figure 15.
Note that the term latency works in both directions of the time line: a SUT
implementation that shows the reaction 1050ms early as compared to what
the test model predicts will also be acceptable.
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Figure 15: Not all reactions can be assumed to be instantaneous. For the
tank controller, the correct wt3_valve value may by reached with a latency,
which is configured here.

If the test designer is satisfied with the results of the “Solve” step, the FMU
(which contains the test logic) is generated. This is done by the opera-
tion [gen-fmu-TEST], selectable from the command bar. The output of
[gen-fmu-TEST] is a compiled RT-Tester 6 test procedure with a match-
ing *.fmu file. This can be used for executions organised by the COE.

5.3 Test Cases and System Requirements

The concept of a test case is a central term for testing, since it allows to
isolate a small part of the system behaviour and associate it with an obser-
vation.

However, a test case only lives on the test level (sometimes: verification level)
of project. It has to be associated with design or development level objects
in order to allow flow up of test results to the development stage.

Typically (as here), test cases are therefore associated with system require-
ments, i.e., organised statements that describe the intended behaviour of
the system. In our example, requirements are identified by the shorthand
REQ-xxx.

Figure 16 shows the relation of test cases to (system) requirements.17 For ex-
ample, requirement REQ-005 is associated with test case TC-TurnIndication-
Controller-BCS-0004, which designates reaching a specific basic control
state.

17The screenshot is taken from the “Turn-Indicator” example with an Enterprise Archi-
tect export; the requirements export from Modelio is currently not operative.
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Figure 16: System requirements (REQ-xxx) layed out in the model are as-
sociated with test cases (TC-?-yyyy).

Since every requirement is associated with at least one test case, the com-
pleteness of test cases allows to make a statement (verdict) for every require-
ment.

5.4 Evaluation of Test Executions

Every test execution (operation [run-COE]) yields as result an evaluation
of test cases, i.e., associates them with a verdict PASS, FAIL, or INCON-
CLUSIVE.18 The details are found in the test log files below testdata, see
[Ver15a] for details.

The file testcase_tags.txt (Figure 17) gives a condensed record of
test case, verdict, and point in a *.log file where a corresponding PASS,

18The verdict can also be “NOT TESTED”: this means a test case has been included in
a test procedure but a run that reaches it is still missing.
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Figure 17: Test Case verdicts from execution of TR-BCS.

FAIL, or—in case of INCONCLUSIVE—test case occurrence without @rtt-
Assert() can be found.

It should be noted that even though this is recorded as part of the test (here:
TP-BCS), the verdicts do evaluate in fact the behaviour of the SUT (!)
More precisely, they evaluate the behaviour of the FMU that is connected
to the test procedure in order to build a closed system with no pending
inputs or outputs. Per default, [run-COE] will suggest to use “RTT_
TestProcedures/SUT” as seconds FMU, which in the water tank example
runs the code located in the ./sut/ folder. If the code there is incorrect,
then some of the tests should fail. In the default installation, we have pro-
vided a valid and correct SUT.19 Other counterparts can be selected for the
run, including “RTT_TestProcedures/Simulation”, which is derived
directly from the test model (and thus should behave correctly).

Test Case Verdict Summary (in a Test Project). For a test project,
the “sum” of all test case verdicts gives the best overview on the test results
(so far). This is also known as Test Case Coverage, see Figure 18. A PASS
here means that all test procedures that execute that particular test case
did yield a pass. A FAIL means that at least one test procedure evaluated
this test case with FAIL. INCONCLUSIVE means that no test procedure did
yield FAIL and at least one test procedure did not put out PASS.

The overview is in the HTML format, and the ’Reference (Origin)’ list a
hyperlink that allows to jump of the corresponding test log file.

Requirement Verdict Summary (in a Test Project). For the system
design/development perspective, the results of the test cases are mapped

19This can be modified for experiments, of course.
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Figure 18: Test Case Tracing, referencing the logs of the tests that contribute
to PASS/FAIL/INCONCLUSIVE.

back to the (system) requirements. This allows to see which requirements
are observed to be fulfilled by the SUT, and which are not.

Figure 19: Tracing the Test Case verdicts (PASS/FAIL/INCONCLUSIVE)
to the associated requirements.

Figure 19 shows this for a subset of the requirements. In our case, only one
test case is associated to each requirement, so the verdict of a requirement is
identical with the test case verdict. In general, all associated test cases have
to be PASS in order to have a PASSed requirement.

6 Conclusions

In this document we have layed out the test automation operations and capa-
bilities along the lines of a simple water tank controller (defined in Modelio)
as a running example. The purpose of the test model has been explained,
which not necessarily coincides with a design model. The traceability of
requirements has been sketched and will be elaborated during Year3.
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The test project configuration from the INTO-CPS Application has been
sketched in Section 4.

For the more elaborate configuration, the RT-Tester GUI (RTTUI3) can be
used as explained in Section 5. This includes the definition of test goals
(based on test cases) and discusses the nature of test results.

More tool capabilities are needed for full integration of system requirements
and test result tracing (see limitations listed in Section 2.2), but the pro-
vided functionality is sufficient to allow first usage of test automation in user
projects, including the pilot studies.
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A List of Acronyms

20-sim Software package for modelling and simulation of dynamic systems
ACA Automatic Co-model Analysis
ASD Abstract Syntax Diagram
AU Aarhus University
BCS Basic Control States
CLE ClearSy
CLP Controllab Products B.V.
COE Co-simulation Orchestration Engine
CPS Cyber-Physical Systems
CT Continuous-Time
DE Discrete Event
DESTECS Design Support and Tooling for Embedded Control Software
DSE Design Space Exploration
FMI Functional Mockup Interface
FMI-Co Functional Mockup Interface – for Co-simulation
FMI-ME Functional Mockup Interface – Model Exchange
FMU Functional Mockup Unit
HiL Hardware-in-the-Loop
HMI Human Machine Interface
HTML HyperText Markup Language
HW Hardware
ICT Information Communication Technology
IDE Integrated Design Environment
LTL Linear Time Logic
M&S Modelling and Simulation
MBD Model Based Design
MCDC Modified Condition/Decision Coverage
MiL Model-in-the-Loop
OMG Object Management Group
OS Operating System
OSLC Open Services for Lifecycle Collaboration
PROV-N The Provenance Notation
RPC Remote Procedure Call
RTTUI3 RT-Tester graphical User Interface, sometimes referred to as “RTTUI”
SiL Software-in-the Loop
ST Softeam
SUT System Under Test
SVN Subversion
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SysML Systems Modelling Language
TA Test Automation
TE Test Environment
TR Transition Relations
TRL Technology Readiness Level
TWT TWT GmbH Science & Innovation
UML Unified Modelling Language
UNEW University of Newcastle upon Tyne
UTP Unifying Theories of Programming
UTRC United Technologies Research Center
UY University of York
VDM Vienna Development Method
VSI Verified Systems International
WP Work Package
XMI XML Metadata Interchange;

here the format that modelling tools uses to exchange model data
XML Extensible Markup Language
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