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Abstract

This deliverable describes the high level principles of the code generators
which will be developed as part of the INTO-CPS project. Each of the tools
Overture, 20-sim and OpenModelica will be extended with code generation
capabilities from their respective modelling notations. Additionally the fo-
cus of this deliverable is on generating code which is runnable on platforms
specified by the INTO-CPS case studies. Finally, an overview of related work
is provided in the context of these INTO-CPS code generators.
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1 Introduction

This deliverable describes the Code Generators (CGs) that will be developed
as part of the INTO-CPS tool chain; a CG transforms a source language into
a target language, while preserving the semantics of the source language.
CGs are typically used to implement a model on an embedded system, e.g.
a model is transformed to code written in the target language that can be
compiled to run on an embedded system. Furthermore, the purpose of these
INTO-CPS CGs with respect to the INTO-CPS tool chain, work-flow and
industrial needs is explained.

The main goal of INTO-CPS is to support the Model-Based Development
(MBD) of Cyber-Physical Systems (CPSs). Such systems include, for ex-
ample, trains and cars, in which software is used to control actuators based
on inputs from different sensors. From a modelling perspective a CPS can
be divided into Discrete Event (DE) models, typically representing the soft-
ware, and Continuous Time (CT) models, typically representing the physical
system. The INTO-CPS tool chain will support the whole development pro-
cess of CPSs, going from requirements, through the co-simulation validation
phase, to the final implementation, as shown in Figure 1, where the focus of
the CGs is marked with a red box.

Figure 1: INTO-CPS tool chain work flow with the marking of the INTO-
CPS CGs (in red)

In order for the INTO-CPS project to achieve its main goal, these CGs
will play a key role by automating the process of implementing a software
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model; implementing a model refers to that the code can be executed on
a specific embedded system platform. The goal of the INTO-CPS CGs is
to support the deployment of a software model to a hardware execution
platform, as marked in Figure 1. Hence these CGs will support the MBD
work flow of CPSs in INTO-CPS. So the INTO-CPSs CG can be used as part
of realising the DE models of a CPS, in order to be executed on an embedded
system. For this reason the INTO-CPS CGs described in the deliverable,
focus on how the modelling languages of the INTO-CPS baseline tools, which
are used for the discrete part of a CPS, can be translated to executable
code for specific platforms. Hence these INTO-CPS CGs are developed as
enhancements of the INTO-CPS baseline tools Overture [OCT07], 20-sim
[Con13] and OpenModelica [Fri04].

The advantage of using code generators as a means of implementing a model
is twofold. First, it automates the transformation between a validated and/or
verified model, which may help to avoid introducing semantical differences
between the model and the code, when compared to implementing the model
manually. Second, development time can be reduced, since the correspond-
ing code can be generated automatically from the model, enabling fast pro-
totyping. A CG should ideally be proved/verified, or at least double cross
checked/verified. It shall be noted that the transformations will not be for-
mally verified for the INTO-CPS CGs. However, it will be argued why the
INTO-CPS CGs, when generating code from a discrete model, will preserve
the semantics by support of both test cases and providing a connection with
the semantics work of INTO-CPS carried out as part of INTO-CPS Work
Package (WP) 2.

In order to address the details of both the INTO-CPS requirements for the
CGs, as well as the details of the high level design principles of the INTO-CPS
CGs, the remainder of this document is structured as follows. First section 2
presents both the high level requirements and the specific industrial needs for
the INTO-CPS CGs. Afterwards, sections 3 and 4 provide a brief overview
of the modelling languages and the existing three code generators for the
involved baseline tools, respectively. Then sections 5, 6 and 7 describe the
design principles of each of the code generators separately. Finally, section 8
provides an overview of related work.
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2 Requirements and Industrial Needs

This section refers to all the requirements and industrial needs for the INTO-
CPS CGs. First section 2.1 provides an overview of all relevant INTO-
CPS high level requirements from the INTO-CPS requirements report D7.3
[LPH+15], with respect to the baseline tools which have to satisfy them.
Afterwards, section 2.2 describes the industrial needs with respect to the
INTO-CPS high level requirements.

2.1 INTO-CPS high level requirements

The high level requirements from the INTO-CPS requirements report D7.3
[LPH+15] with focus on the INTO-CPS CGs are presented below and divided
between the different baseline tools in order to clarify the requirements for
each of the INTO-CPS baseline tools. However, all the INTO-CPS code
generators will fulfil the requirement 0089, which states that requirements
must be linked down to the code.

2.1.1 Overture

The code generator for the Overture platform will fulfil the requirements 0038
and 0086.

Requirement 0038 states that the Overture CG must generate code for a
subset of VDM-RT models; the supported subset will be identified as a bal-
ance between the industrial needs identified by the INTO-CPS case studies
and technological possibilities. The specific target code and platforms are
described below with respect to the case study requirements.

Requirement 0086 states that the Overture CG must be capable of export-
ing implementations which conform to the INTO-CPS FMU format. The
Overture CG will fulfil this requirement by wrapping the generated code
in the Functional-Mock-up Interface (FMI) [Blo14], which also is described
in section 2 in deliverable D4.1d [LLW+15]. This will be achieved by au-
tomatically generating the model description definition as required by the
FMI standard. Hence this requirement enables the generated code to be
used as part of the Co-simulation INTO-CPS Co-simulation Orchestration
Engine (COE), which is described in the deliverable D4.1d [LLW+15], in or-
der to support Software-in-the-Loop (SiL) simulation. Additionally, it will
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be investigated how to use 20-sim 4C in order to support running models on
different hardware platforms, hence the code generator should agree with the
requirements of 20-sim 4C.

2.1.2 20-sim

The 20-sim code generation will fulfil the requirements 0040, 0042, 0087
and partly 0010. 20-sim 4C code generation should fulfil requirement 0042.

Requirement 0040 states that it must be possible to generate code (e.g. C or
C++) from the discrete notation used in the 20-sim tool. This means that
20-sim should provide two code generation templates: ANSI-C and C++.
Furthermore, 20-sim should support all allowed SIDOPS+ language elements
for discrete submodels in the generated code.

Requirement 0010 states that the 20-sim tool must provide an INTO-CPS
FMI tool wrapper that is compliant with the COE. Part of this requirement is
the option to export the model as a standalone FMU for co-simulation.

Requirement 0087 states that code generated from the INTO-CPS simula-
tion tool 20-sim must be exportable in the INTO-CPS FMU format. This re-
quirement also requires support for exporting a model as a standalone FMU.
The FMI export option to generate a standalone FMU is implemented in 20-
sim as a code generation template to fulfil this part of the requirement. The
toolwrapper approach still requires an exported FMU with model-specific in-
formation. A modified version of the existing 20-sim code generation feature
will be used as basis for the toolwrapper FMU export.

Requirement 0042 states that it must be possible to generate a HiL config-
ured FMU from an existing 20-sim model FMU using 20-sim 4C. Hardware-
in-the-Loop (HiL) simulation refers to running part of the simulation on real
hardware. It is typically used to run a simulation model of a real system on a
PC connected to a real control system (hardware) to test this control system.
Timing of the simulation model is important since it is connected to the real
control system. The simulation model should run in real-time. To achieve
this, these simulation models are typically exported as C/C++ code with
real hardware I/O interfaces to communicate with the real control system.
This means that the generated code must support real-time execution and
that the code can interface with drivers. The generated 20-sim / 20-sim 4C
code should therefore not contain any constructions that prevent real-time
execution or make the execution of the code undeterministic.
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Code generation requirements from the 20-sim perspective
This section explains the guidelines for code generation from a 20-sim model.
20-sim does currently not support model-to-code export for all possible 20-
sim models. Only a subset of the supported 20-sim modeling language ele-
ments can be exported as code.

The original goal for the 20-sim code generator was to export control systems
into ANSI-C code to run the control system under a real-time operating
system. As a consequence, 20-sim currently only allows code generation for
discrete time submodels or continuous time submodels using a fixed step
integration method. Other language features that are not or only partly
supported for code generation are: file I/O, calls to external code (DLL,
Matlab), variable delay blocks, event functions.

2.1.3 OpenModelica

The OpenModelica code generator will fulfil the requirements 0039, 0088
and partly 0009.

For the requirement 0009 OpenModelica will provide an FMI wrapper to
access its capabilities. Modelica models can be loaded and code can be
generated from them. Code generation with debugging capabilities can be
selected and then OpenModelica can be used for debugging.

For requirement 0039, for embedded systems or real-time systems, one needs
to be able to generate ANSI-C code from a Modelica model or a part of the
Modelica model. While currently OpenModelica generates C code by default
there are a lot of things to consider when generating code for real-time or
embedded systems.

For requirement 0088, in order to enable code generated from simulation
models to be included in a co-simulation (i.e Software in the Loop (SIL)) it
is required that it adheres to the INTO-CPS FMI standard.

The OpenModelica tool must provide an INTO-CPS standalone FMUs and
an FMI tool wrapper that is compliant with the COE. OpenModelica will use
20-sim 4C to support running models on different hardware platforms so the
C code generation should agree with the requirements of 20-sim 4C.

12
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2.2 Industrial Needs

This section describes the relationship between the industrial needs and the
high-level INTO-CPS requirements described above.

The industrial needs described below are related to high level INTO-CPS
requirements described above, in accordance with the case study owners.
These industrial needs are described in the deliverable D1.1a [HLB+15]. This
ensures that the dependencies of each case study on the INTO-CPS high-level
requirements are satisfied.

These industrial needs have been investigated with a focus on the require-
ments for automating the translation from model to implementation. In order
to clarify the different requirements that the code generators in this delivery
must fulfil, the relevant INTO-CPS case study owners have been interviewed
with respect to the following needs: target platform, target language, need for
distribution of the computation and additional non-functional requirements
of the generated code. However, for more details on each of needs presented
below can be found in the case study deliverable D1.1a [HLB+15].

Three of the four case studies plan to use code generation for their case study.
The following can be summarised below from the case study deliverable D1.1a
[HLB+15]. Subsequently the needs of each case study owner is described
separately in order to provide an overview of the concrete needs for the
INTO-CPS CGs for each case study.

2.2.1 Agro Intelligence - Agricultural case study

Overview of industrial needs:

• Target Platform: This case study has the need for support for two
hardware platforms. In need AI 1, which is for the Overture CG, the
target platform is an embedded Linux system. Additionally, in need
AI 2, which is for the 20-sim CG, the target platform is a B&R PLC.

• Target language: From need AI 1, the target language is C++,
structured in the Gang-of-Four (GoF) state pattern [GHJV95]. In addi-
tion, from need AI 2, the target language is C/C++ software following
the PackML standard implemented in BRDK MU.

• Distribution modelling: This case study may model distribution
using VDM-RT. As a result, it may be investigated how the distribution
features of VDM-RT can be supported by the Overture CG.
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• Additional comments: AI 6 requires that requirements can be linked
down to the code.

Reference to high level requirements: Needs AI 1, AI 2 and AI 6 are
related to requirements 0038, 0039 and 0089, respectively.

2.2.2 ClearSy - Railways case study

Overview of industrial needs:

• Target Platform: In need Cle 12 the target platform is set to be the
Pic 32 micro controller.

• Target language: From need Cle 12 the target language is either C
code or a binary (HEX).

• Distribution modelling: This case study plans to model distribution
using VDM-RT. As a result, it may be investigated how the distribution
features of VDM-RT can be supported by the Overture CG.

• Other notes: The generated code has to comply with safety critical
standards in accordance with need Cle 12. Additionally, this case
study has timing requirements, hence timing requirements between a
model and implementation may be investigated.

Reference to high level requirements: Need Cle 12 is related to re-
quirements 0038, 0039 and 0040.

2.2.3 United Technology Research Center - Building case study

Overview of industrial needs:

• Target Platform: No platform is specified currently.

• Target language: The target language is determined to be C/Em-
bedded C code in requirement UTRC-Req-012.

• Distribution modelling: This case study plan to model distribution
using VDM-RT. As a result, it may be investigated how the distribution
features of VDM-RT can be supported by the Overture CG.

• Other notes: No further notes.

Reference to high level requirements: The requirements UTRC-Req-
012 is related to the requirements 0038, 0039 and 0040.
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2.2.4 TWT - Automotive case study

Currently the automotive case study does not plan to use code genera-
tors.

15
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3 Modelling notations

This section introduces the modelling notations which are the inputs for
the INTO-CPS CGs. Subsequently the subsections 3.1, 3.2 and 3.3 present
the modelling notations of Overture, 20-sim and OpenModelica, respec-
tively.

3.1 Vienna Development Method

The Vienna Development Method (VDM) is a formal method that enables
the specification, modelling and evaluation of software systems. This formal
method evolved from the formal notation VDL (Vienna Definition Language)
[FLV08], which was named Vienna Development Method in 1973 [Jon99],
and which has been validated in industrial projects [FLS08]. A model of
a system to be developed is expressed as a formal VDM model, and its
validity is ensured by tool support. Currently there exist three dialects of
VDM, VDM-SL, VDM++ and VDM-RT, which are introduced below. For
the INTO-CPS CG for Overture the input notation is the dialect VDM-RT.
However, VDM-RT is an extension to the other two dialects, hence all three
dialect are introduced below.

The VDM-SL dialect enables the specification of functional aspects of se-
quential systems, and the formal definition of the language’s semantics is
ISO standardised [PL92, LH+96, FL09].

The VDM++ dialect is an extension of VDM-SL which enables object-
oriented modelling, which means that a system is modelled as a collection
of classes [FLM+05]. Furthermore, it introduces the possibility to model
active classes through annotations consisting of concurrency and synchroni-
sation elements [FLM+05]. Later, VDM++ was extended with functionality
to analyse real-time behaviour of models with respect to time. The extension
was called “VDM++ In a Constrained Environment” (VICE).

The VDM-RT dialect is an extension of VDM++ which enables the mod-
elling of distributed real time systems [LFW09]. The VICE extension was not
sufficient for modelling distributed systems [Ver05]. The extensions in VDM-
RT were proposed to enable modelling of distributed systems by introducing
notions of computational resources, communication lines, global time, time
delay and asynchronous operations [VLH06, HV10]. This method has been
validated by several case studies [FLTV07, VL07, SN07, Ver09, Wol08]. This
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extension also introduces the system class definition, in which distributed
objects can be created and deployed to computational elements called CPUs.
In order for these CPUs to communicate they need to be connected by a BUS

inside the system definition.

3.2 20-sim

Systems can be modelled in 20-sim using a variety of modelling formalisms:

• Block diagrams

• Bond graphs

• Iconic diagrams

• Mathematical equations

• System descriptions (state space, transfer function)

Different formalisms can be freely combined within one model (mixed model).

Graphical models in 20-sim are composed from prebuild library blocks or
custom-made blocks. These blocks are called submodels. The submodels
are implemented either using a graphical representation or as an equation
implementation.

Using graphical implementations inside submodels allows for hierarchical
modelling. 20-sim supports unlimited levels of hierarchy in the model. The
highest hierarchical levels in the model typically consist of graphical models
(state space models, block diagrams, bond graphs or components). The low-
est level in the hierarchy is always formed by equation models written in the
SIDOPS+ language.

3.2.1 The SIDOPS Language

SIDOPS (Structure Interdisciplinary Description Of Physical Systems) is a
computer language developed for the description of models and submodels
of physical systems [Bro90]. It is designed to express bond-graph models
that describe domain-indenpendent engineering systems. 20-sim uses the
SIDOPS+ version of the language, the key features of which are discussed
below.

SIDOPS+ [BB97] enhances the support for organising complex systems as
a hierarchy of submodels, by separating the interface of a model from its

17
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specification. This enables the creation of different specifications for one
interface.

In addition, SIDOPS+ supports different representations of model descrip-
tions within three abstraction levels [BB97]:

• At the technical component level, models describe networks of devices
which are represented by component graphs.

• At the physical concept level, models capture the physical processes of
a system and can be expressed by using graphical formalisms.

• At the mathematical level, models provide the quantitative description
of the physical processes, written in form of acausal equations or se-
quential statements (computer code) that calculate the output variables
from the input variables.

All representations are port-based networks, meaning the connection points
between the model elements is the location where exchange of information
(signals) or power happens. As a result, it is possible to map one represen-
tation to another without losing consistency.

Moreover, SIDOPS+ provides support for systems that consist of a continuous-
time part and a discrete-time part by offering special functions to determine
the sample interval for discrete-time variables that are linked through equa-
tions and to create a continuous signal out of a discrete input signal.

The general layout of an equation model in the SIDOPS+ language is shown
in listing 1. Listing 2 shows an implementation in SIDOPS+ code of the
Lotka Volterra model, described in section 3.3.1.

Listing 1: SIDOPS+ equation model layout
constants

"do not change during or in between simulation runs"

parameters

"can only be changed after the simulation has been

stopped"

variables

"change during simulation runs"

initialequations

"are calculated once, before the simulation run"

code

"equations calculated sequentially at every

simulation step"

equations

"standard equations calculated at every simulation

step"
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finalequations

"are calculated once, after the simulation run"

Listing 2: Example SIDOPS+ model
parameters

real g_r = 0.04; "Natural growth rate for rabbits"

real d_rf = 5e-5; "Death rate of rabbits due to foxes"

real d_f = 0.09; "Natural death rate for"

real g_fr = 0.1; "Efficiency in growing foxes from

rabbits variables"

real rabbits; "Rabbits with start population 700"

real foxes; "Foxes with start population 10

equations"

equations

ddt(rabbits,700) = g_r * rabbits - d_rf * rabbits * foxes;

ddt(foxes,10) = g_fr * d_rf * rabbits * foxes - d_f *

foxes;

3.3 Modelica

Modelica [FE98], [Fri04] is an object-oriented, equation based language to
conveniently model complex physical systems containing, e.g., mechanical,
electrical, electronic, hydraulic, thermal, control, electric power or process-
oriented subcomponents. The Modelica language supports continuous, dis-
crete and hybrid time simulations.

The Modelica language has been designed to allow tools to automatically gen-
erate efficient simulation code with the main objective of facilitating exchange
of models, model libraries, and simulation specifications. The definition of
simulation models is expressed in a declarative manner, modularly and hier-
archically. Various formalisms can be expressed in the more general Modelica
formalism. In this respect Modelica has a multi-domain modeling capabil-
ity which gives the user the possibility to combine electrical, mechanical,
hydraulic, thermodynamic, etc., model components within the same appli-
cation model. Compared to most other modeling languages available today,
Modelica offers several important advantages from the simulation practition-
ers point of view:

• Object-oriented mathematical modeling. This technique makes it possi-
ble to create model components, which are employed to support hier-
archical structuring, reuse, and evolution of large and complex models
covering multiple technology domains. A general type system that
unifies objectorientation, multiple inheritance, and generics templates
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within a single class construct. This facilitates reuse of components
and evolution of models.

• Acausal modeling based on ordinary differential equations (ODE) and
differential algebraic equations (DAE) together with discrete equations
forming a hybrid DAE. There is also ongoing research to include partial
differential equations (PDE) in the language syntax and semantics.

• Multi-domain modeling capability, which gives the user the possibil-
ity to combine electrical, mechanical, thermodynamic, hydraulic etc.,
model components within the same application model.

• A strong software component model, with constructs for creating and
connecting components. Thus the language is ideally suited as an ar-
chitectural description language for complex physical systems, and to
some extent for software systems.

• Visual drag & drop and connect composition of models from compo-
nents present in different libraries targeted to different domains (elec-
trical, mechanical, etc).

The language is strongly typed and declarative. The Modelica component
model includes the following three items: a) components, b) a connection
mechanism, and c) a component framework. Components are connected via
the connection mechanism realized by the Modelica system, which can be
visualized in connection diagrams. The component framework realizes com-
ponents and connections, and ensures that communication works over via
the connections. For systems composed of acausal components with behavior
specified by equations, the direction of data flow, i.e., the causality is initially
unspecified for connections between those components. Instead the causality
is automatically deduced by the compiler when needed. Components have
well-defined interfaces consisting of ports, also known as connectors, to the
external world. A component may internally consist of other connected com-
ponents, i.e., hierarchical modeling is possible. Figure 2 shows a hierarchical
component-based modeling of an industry robot.

3.3.1 An example Modelica model

The following is an example Lotka Volterra Modelica model containing two
differential equations relating the sizes of rabbit and fox populations which
are represented by the variables rabbits and foxes: The model was indepen-
dently developed by Alfred J Lotka (1925) and Vito Volterra (1926): The
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Figure 2: Hierarchical model of an industrial robot, including components
such as motors, bearings, control software, etc. At the lowest (class) level,
equations are typically found.

rabbits multiply (by breeding); the foxes eat rabbits. Eventually there are
enough foxes eating rabbits causing a decrease in the rabbit population, etc.,
causing cyclic population sizes. The model is simulated and the sizes of the
rabbit and fox populations are plotted in Figure 3 as a function of time.
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Figure 3: Number of rabbits prey animals, and foxes predators, as a function
of time simulated from the predator-prey LotkaVolterra model.

The LotkaVolterra model as Modelica code is given below. The notation
der(rabbits) means time derivative of the rabbits (population) variable.

model LotkaVolterra

parameter Real g_r =0.04 "Natural growth rate for

rabbits";

parameter Real d_rf=5e-5 "Death rate of rabbits

due to foxes";

parameter Real d_f =0.09 "Natural death rate for

foxes";

parameter Real g_fr =0.1 "Efficiency in growing

foxes from rabbits";

Real rabbits(start =700) "Rabbits with start

population 700";

Real foxes(start =10) "Foxes, with start

population 10";

equation

der(rabbits) = g_r*rabbits - d_rf*rabbits*foxes;

der(foxes) = g_fr*d_rf*rabbits*foxes - d_f*foxes;

end LotkaVolterra;
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4 Overview of the Code Generator Engines

The following three subsections 4.1, 4.2 and 4.3 provide an overview of the
three platforms Overture, 20-sim and OpenModelica, respectively. Addi-
tionally, each subsection provides a general description of the current code
generation capabilities of each platform.

4.1 Overture

Overture [LBF+10] is a open-source platform which supports the construction
and analysis of formal models described in VDM. It has a syntax and type
checker, an interpreter to evaluate executable VDM models and a debugger.
This tool is open-source and based on Eclipse, and the goal of the effort is
to provide an industrial-strength tool [LL09, JLL13]. Since it is open-source,
it enables researchers to extend and experiment with both the tool itself
and the VDM language dialects [LBF+10], which are described in section
3.1. Subsequently subsection 4.1.1 presents a platform for code generation in
Overture, which will be used as part of developing the INTO-CPS Overture
CG. Afterwards subsection 4.1.2 summarises the current code generation
possibilities in Overture using this platform for code generation.

4.1.1 Code Generation Platform

A VDM-RT model is described as text. Overture represents such a VDM-
RT text model internally as an Abstract Syntax Tree (AST), and it will be
referred to as a VDM AST subsequently. In order to support reusability
when code generating a VDM AST to different language semantics, a Code
Generator Platform (CGP) has been developed.

An overview of the CGP is shown in Figure 4. As the figure illustrates, the
CGP takes a VDM AST as input and creates an Intermediate Representation
(IR) tree. This IR preserves the semantics of the VDM AST, but is indepen-
dent of both the VDM AST and the target language. So as described and
required in the Description of Action (DoA) [Con14], a VDM-RT model is
transformed to an IR.

Transformations, as seen in the Figure 4, can be applied to the IR tree in
order to make it straightforward for the code generation backend to target
a specific language. An relevant observation in [JLC15] is the possibility
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to reuse parts of the transformation, when target languages face some of
the same challenges with respect to code generation, which is discussed in
[JLC15] for Java and C++, which both are part of the Object-Oriented
imperative programming language. As an example of transformation and
reuse of it is that a VDM-RT model has operations and functions, while
Java and C++ only have methods. Therefore a transformation exists that
converts operations and functions into methods in the IR, which both
Java and C++ backends can be use for code generation. This is an example
of a transformation of the IR shown in Figure 4. The IR undergoes an ordered
sequence of such transformations to transform the IR to the IR’ shown in
Figure 4. Hence the IR transformations are used to eliminate constructs that
are difficult to code generate by replacing them with other constructs that
are easier to code generate.

The current backend in the CGP uses a template-based syntax transfor-
mation language to transform the IR to Java code. Essentially, the IR is
transformed to make it closer to the target language representation, while
preserving the semantical meaning of the VDM AST. More details about the
general functionality of the CGP is described in [JLC15].

Figure 4: Code Generator Platform Architecture overview

4.1.2 Current Code Generation Capabilities

The CGP has been used to developed the current code generator capabili-
ties supported in Overture. Currently, it is possible to generate Java code
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from both a VDM-SL and VDM++ model in Overture. Because VDM-SL
and VDM++ share common constructs it was possible the reuse some of
the transformation for both VDM-SL and VDM++ code generation. Ad-
ditionally, a prototype for generating code from a VDM++ model to C++
has been developed by using the CGP. For this C++ CG it was possible
to reuse transformation from the Java CG, because they have share some
similar language constructs, which was also exemplified above.

4.2 20-sim

The 20-sim application is a modelling and simulation program for multi-
domain dynamic systems. It provides a series of tool boxes for building
models, running simulations and analysing their behaviour. These models
can be exported as C code for use in C and C++ programs or for execution
on hardware. The code generation toolbox consists of two separate tools:
20-sim and 20-sim 4C.

4.2.1 20-sim Modelling & Simulation

20-sim has a hierarchical model structure. At the highest level, a system can
be modelled graphically, similar to drawing an engineering scheme. At the
lowest level, a system is represented by writing equations described in the
language SIDOPS+, following the standard mathematical notation.

A 20-sim model without an interface (inputs, outputs) has no hierarchy and is
thus automatically an equation model. Equations may be entered in random
form. The correct order of execution is determined during processing of the
model, when 20-sim automatically tries to rewrite equations into a causal
form, i.e. a form where all output variables are written as a function of input
variables. The resulting code is then used by 20-sim to perform simulation
runs and to generate model C code, i.e. template-based code for ANSI C,
C++ and Matlab.

4.2.2 20-sim 4C

20-sim 4C is a rapid prototyping tool for real-time control systems, such as
PCs and embedded Linux processor boards. 20-sim 4C extends the model
C code generated from 20-sim and runs it on a target platform. The name
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4C stands for the four tasks required in order to get code running on the
target:

1. Configure the target by selecting the appropriate template and speci-
fying the network address where it is accessible.

2. Connect the inputs and outputs of the model to the appropriate target
devices, such as onboard sensors or external actuators.

3. Compile the target-specific C code to create executable code.

4. Command 20-sim 4C to upload and run the executable code on the
target with the option to modify, monitor and log model parameters.

Supported targets include any Linux-based platform that runs a real-time
framework (RTAI or Xenomai),1 and the industrial controller system Bach-
mann M1.2 It is possible to extend support for additional targets with the
use of templates.

4.3 OpenModelica

OpenModelica [Fri04] is an open-source Modelica-based modeling and sim-
ulation environment. Modelica [FE98] is an object-oriented, equation based
language to conveniently model and simulate complex multidomain physical
systems. The OpenModelica environment supports graphical composition of
Modelica models. Models are simulated via translation to FMU, C or C++
code.

Compilation of Modelica models in OpenModelica happens in several phases
[Sjö15], see also Figure 5:

• frontend - removes object orientation structure and build the hybrid
Differential Algebraic Equations (DAE) system to be solved

• backend - the hybrid DAE system is index reduced, transformed to
causal form (sorted), and optimized

• codegen - the optimized system of equation is transformed to FMU, C
or C++ code using a template language

1https://www.rtai.org, https://xenomai.org
2http://www.bachmann.info/en/products/controller-system/
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Figure 5: OpenModelica compilation phases

5 Design Principles of the Overture Code Gen-

erator

5.1 Introduction

This section presents the main principles of the Overture CG for VDM-
RT models that will be developed as part of the INTO-CPS tool chain.
The modelling principles of VDM-RT and the current possibilities of code
generation support in Overture have been introduced in sections 3.1 and 4.1,
respectively.

Existing formal development methods (VDM [Jon99], Z [WD96], Event-B
[Abr10]) advocate a gradual transformation of model toward implementation,
where implementation-specific changes are made to the model in successive,
semantics-preserving steps. In the case of automatic code generation, this
human-guided process of refinement can be collapsed to a single, automated
transformation step, because the starting model is sufficiently concrete with
respect to the implementation.

The remaining part of this section is structured as follows, in order to describe
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the main design principles of this Overture CG. Subsection 5.2 presents the
main goal of this CG. Afterwards, subsection 5.3 describes some additional
challenges related to generating code from VDM-RT models in a INTO-CPS
context. Then subsection 5.4 argues that generating code for the compu-
tation and communication elements can be addressed separately. Finally,
subsections 5.5 and 5.6 present the design of a CG for the computation ele-
ment and the communication element, respectively.

5.2 Main Goal

As described in section 2.1.1 the Overture CG will fulfil the requirements
0038 and 0086. Furthermore, a VDM-RT model will need to be generated to
target C++-code and C-code in order to fulfil the industrial needs, and this is
related to the requirement 0038. Afterwards, this CG will fulfil requirement
0086 by wrapping the generated code to make it compliant with the FMI
specification.

One aspect needs to be clarified with respect to the main goal of the Overture
CG; only VDM-RT supports modelling of a distributed system architecture
compared to the two other baseline modelling languages/tools. Each CPU in
a VDM-RT model is viewed as a separate platform with its own executable
(e.g. compiled code) running. Hence a model deployed to a single CPU is
generated to specific code in a similar manner as the two other INTO-CPS
CGs. However, if a system is modelled using the distributed aspects, then
distributed technologies have to be used in order to support network com-
munication in the implementation. This separation will further be addressed
below.

5.3 Mapping input and output

It is important to stated that a VDM-RT model does not have a notion of
external input and output ports. Hence a VDM-RT model can be viewed as
an isolated software model. However, in order to be useful in the development
of CPSs, it has to support/introduce the notion of external ports, in order
to connect it to other models, e.g. either DE or CT. As a consequence this
plays a key role when generating code from a VDM-RT model, since it is
more a Crescendo VDM-RT model, and not a stand-alone VDM-RT model.
Hence it has to be investigated how this mapping of ports is achieved in the
generated code.
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The notion of inputs and outputs is also relevant when the code generated
from a VDM-RT model is packed as an FMU and is to be connected to other
FMUs in order to support SiL simulation. This challenge is also related
to the toolwrapper for FMI for Overture described in the delivery D4.1b
[PBLG15]. For the toolwrapper the input and output of the FMI standard
have to be introduced in a VDM-RT model, before they can be supported
by the toolwrapper. Therefore, a clear definition of inputs and outputs is
required when a VDM-RT model is exported as an FMU.

5.4 Computation and Communication elements

The two main features of VDM-RT used to model an overall system architec-
ture are the CPU and the BUS, which are used for computation and network
communication, respectively. From a code generation perspective, these two
components can be separated during the code generation process.

Basically a model deployed to a CPU corresponds to a VDM++ model, while
the BUS models network communication between CPUs. The approach of
dividing the code generation process was addressed in [Has14, HLTJ15]. In
[Has14] the existing Java CG was used in order to generate the model de-
ployed to each CPU, while the distribution technology Java Remote Method
Invocation (RMI) [Sun00] was added in order to support distributed aspects
of VDM-RT.

Following the discussion above, code generation can be separated in two main
phases:

• code generation of the model deployed to a CPU, e.g. the computation
element.

• code generation of the communication between CPUs, e.g. the com-
munication element.

The main principles of code generating these parts will be discussed in the
following two subsections, respectively.

5.5 CPU code generation - Computational Element

In VDM-RT, a computing element is modelled as a CPU. The model deployed
to a CPU corresponds to a specific platform on which the software model is
intended to execute. Hence this part of the code generation corresponds to
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generating code for a subset of VDM-RT, in which only one CPU is used to
model the system. Basically this subset can be viewed as a VDM++ model
with support for modelling time and asynchronous operation calls.

The code generation process of the computation element can be further
divided into two separate concerns which, to some extent, are connected,
namely:

• Functional: Preserving the semantics of the functionality in a VDM-
RT model in the target language, e.g. this is without ensuring the
simulation time aspects of VDM-RT.

• Non-functional: Requirements when transforming the semantics of
the model to the actual code, which include real-time requirements,
safety critical behaviour, error handling/traceability and traceability
between a model and the generated code.

The subsections below address these two concerns. However, the main goal
of this Overture CG will be to support the first concern. The second concern
is generally harder to provide guarantees for in a CG context, so a best effort
approach is needed.

5.5.1 Functional aspects

The main goal of this part is to transform the VDM-RT model to an target
language while preserving a refinement relationship between the model and
the generated implementation, as shown in Figure 6. This code generator
will only focus on generating toward a Intermediate Language Representa-
tion (ILR), which is the target language, as shown in Figure 6, while existing
compilers will be used in order to target specific hardware platforms. Espe-
cially, it will be investigated how 20-sim 4C can be used in order to generated
platform specific code from the platform independent code support by the
Overture CG.

Figure 6: Main overview of the Overture CG
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The target ILR can be used by different programming languages in accor-
dance with the industrial needs. An overview of the possible ILR is shown in
Figure 7 together with VDM AST, IR and the implementation. The possible
ILR, both with respect to the industrial needs and in general, are discussed
below.

Figure 7: Possibilities for the Overture CG

Figure 7 provides an overview of possible ILR which possible may be re-
searched: C++-code [ES90], C-code, Rust3 and LLVM4. In order to describe
the main principles, no further explanation of the specific constructs of the
ILR will be given, since they are not relevant for the design principles. All
these possible ILR are target languages for which possible translation have
been investigated.

As mentioned in section 4.1 a prototype has been made for generating VDM++
models to C++-code. This prototype, however, is just a proof of concept CG
in order to illustrate the reusability of the Overture CGP. It is important to
stress that C++ and C, both which are required by the INTO-CPS case
studies, share many common constructs. Since C++ was based on C and
extended C with classes (e.g. “C with classes”), they share many similar
language constructs. C++ is more similar to a VDM-RT model, since both
introduce the notion of classes. However, this indicates that transformations

3Homepage: www.rust-lang.org
4Homepage: www.llvm.org
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for specific constructs which C and C++ share, in the Overture CG made
for targeting C++ can be reused when targeting the C language. As a con-
sequence it will not be required to develop two separate code generators for
targeting C and C++. It will require to apply different transformations for
VDM-RT construct that are different for C and C++.

It has also been investigated how to transform a subset of VDM++ to
the Rust programming language in collaboration with the European Space
Agency (ESA), because they are also interested in transforming a VDM
model to a specific embedded system. The following is claimed about Rust,
on the official homepage, which is a motivation for using Rust: “Rust is a
systems programming language that runs blazingly fast, prevents nearly all
segfaults, and guarantees thread safety.”. This claim is a consequence of
the restrictions enforced by the semantics of Rust and the compiler5. What
makes Rust especially relevant for the INTO-CPS project, is that a compiler
exists for Rust that can transform it to a LLVM IR. Afterwards, this LLVM
IR can target a specific platform by using an existing target specific LLVM
compiler.

As Figure 7 indicates LLVM is more low-level then the other ILR possibilities.
A point from the figure is that all the possible ILR can be generated to LLVM.
LLVM is a IR, before the code is compiled to machine code for a specific
platform. Additionally, there exists a compiler from C++, C and Rust to
LLVM. Hence constructs from both C and C++ can be supported by LLVM
constructs. So platform specific code is obtained by using existing compilers
for LLVM. However, both C and C++ can be compiled to target specific
code directly, without going through the LLVM IR. Currently it has been
researched how to use a LLVM API6 in order to make the transformation
between VDM-RT and LLVM.

5.5.2 Non-Functional aspects

Using the time semantics from VDM-RT allows for modelling real time sys-
tems. Different literature has addressed the aspects of the real time, such as
in [Tit06]. In this delivery real time is defined as a systems capability to meet
deadlines, which can be analysed using a VDM-RT model. As a consequence
limitations in the VDM-RT model itself may be introduced, because it may
be possible in a model, but not in the real implementation in order to ensure

5Reference Manual: doc.rust-lang.org/stable/book/
6Homepage: pauladamsmith.com/blog/2015/01/how-to-get-started-with-llvm-c-api.

html
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the real time performance. Ensuring the same functional semantics between
a model and the implementation may necessitate additional requirements as
a consequence of differences between a VDM-RT model and the ILR.

One nontrivial aspect is the mapping of time notions introduced in a VDM-
RT model to the features of the final implementation language. In VDM-RT
it is possible to model time estimates using the duration and cycles lan-
guage constructs. However, the ILR does do have a notion of time. Moreover,
the timing characteristics of an implementation are a consequence of the soft-
ware design, as well as of the hardware platform. However, in [LJL15] it has
been already investigated how to map time between a VDM-RT model and
implementation on a specific target platform.

As a consequence as part of the VDM-RT CG design, it may be investi-
gated which VDM-RT constructs can be supported by this code generator
when targeting ILR with real time support. Additionally it can be investi-
gated which restrictions have to be set on the modeller when targeting an
embedded platform. Such restrictions have been addressed by [Tit06], as
an example, which identify constructs that are not suitable when targeting
reliable embedded platforms.

So as part of the non-functional aspects for the implementation, the Over-
ture CG may include the following consideration for research for the code
generation:

• No dynamic memory allocation

• Statical memory (e.g. code size)

• power consumption

• performance (speed)

• safety critical behaviour

5.6 BUS code generation

This section focus on the distributed aspects of VDM-RT, and how a code
generator can be used in order to support this in the implementation. Cur-
rently two INTO-CPS case studies plan to use code generation of the dis-
tributed aspects as part of their implementation.

VDM-RT supports modelling of distributed systems, but VDM-RT does not
support any specific network technology, it is just an abstract network. How-
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ever, the communication paradigm for the distributed aspects in VDM-RT is
RMI; an object can invoke methods of an object deployed on another CPU as
if it runs in the same address space. Code generating the distributed aspects
raises both some general challenges related to distributed systems, and some
specific to the code generation of a VDM-RT model to a distributed imple-
mentation. These challenges have been addressed by [Has14], which include
the following:

• Transforming the communication paradigm of the VDM-RT model to
the communication paradigm of the distributed technology while pre-
serving the semantics from the VDM-RT model in the implementation.

• Initialising the whole distributed system in the implementation with
respect to the VDM-RT model.

• Enable objects located on different CPUs to communicate with respect
to the VDM-RT model.

A prototype for generating the distribution aspects of VDM-RT has been
developed as a prototype in [Has14], by using Java RMI in order to support
the distributed aspects in the implementation. Since the case studies can
model distribution in VDM-RT, different distribution technologies may be
investigated, which the code generator can use. For the UTRC case study it
may be investigated how automatic support can be provided for the BACnet7

distributed technology, because they used BACnet for network communica-
tion. For ClearSy it still is not decided which distribution technology will
to used in the implementation. However, different aspects, related to the
challenges described above, will need to be taken into account during the
research.

7Homepage: www.bacnet.org
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6 Design Principles of the 20-sim Code Gen-

erator

6.1 Introduction

This chapter explains the design principles behind the code generation tool-
box in 20-sim and how 20-sim 4C extends the generated model code with
target code. The result is a standalone program that can run on (industrial)
computers, PLC systems and various embedded boards like ARM, AVR or
PIC microcontroller-based boards.

20-sim is a modelling and simulation package that can generate C-code from
a graphical or equation model. 20-sim 4C is a rapid prototyping application
that takes the generated model code as an input, combines it with target-
specific code and prepares it for running on a real-time target.

The main design principle behind the separation between 20-sim and 20-sim
4C is that a model should be independent of the actual target it should run
on. A model should contain only the necessary information of the target
relevant for the simulation and no details for code generation. Therefore,
a typical 20-sim model contains no information about the target it will run
on. The model can contain behavioural details about the target I/O like
the accuracy of an analog-to-digital convertor, but detailed knowledge about
the actual chip used and how to read its value is not necessary for the sim-
ulation and therefore not part of the model. As a consequence, 20-sim is
not able on its own to produce standalone C-code that can access specific
hardware. It can only generate standalone C-code that includes the model
behaviour.

Section 6.2 describes the 20-sim code generation process in more detail. Sec-
tion 6.3 describes how 20-sim 4C takes the input from 20-sim and how it
is extended to run on the target platform. Section 6.4 summarizes the
implemented and planned extensions to 20-sim and 20-sim 4C for INTO-
CPS.

6.2 20-sim

The 20-sim ANSI-C/C++ code is generated based on all SIDOPS+ equa-
tions inside the model. Figure 8 shows the flowchart of the 20-sim code
generation process. The processing phase in 20-sim takes the graphical -or-
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Figure 8: Flowchart of code generation from 20-sim.

equation model, flattens the model and translates it into an Hybrid Differ-
ential Algebraic Equations (DAE) system. This DAE system is transformed
into a causal form (set of sorted equations). These sorted equations are then
further optimized for both simulation and code generation purposes.

20-sim uses code generation templates to generate code for different purposes.
Examples of these code generation templates are: ANSI-C code, C++ class,
Matlab/Simulink export and FMU export. These templates contain special
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tokens that 20-sim will replace by the corresponding parts of the model. 20-
sim translates the optimized sorted equations into several blocks of ANSI-C
code (e.g. initialization code, static equations, dynamic equations). These
blocks are all stored in a token dictionary. Based on the token dictionary
and the selected code generation template, the actual code is produced by
means of a token replacement step.

As an example, the 20-sim equations block shown in Listing 3 is translated by
20-sim into the ANSI-C code shown in Listing 4. Note that 20-sim generates
the original SIDOPS+ code line as a comment above each generated code
line.

Listing 3: 20-sm SIDOPS+ equation model
parameters

real A[2,2] = [1 ,2;3 ,4];

real B = 2;

variables

real C[2,2];

boolean d;

equations

C = A * (B + 1) + time;

d = if (C[1,1] > 4) then

true

else

false

end;

Listing 4: Corresponding ANSI-C code snippets
XXDouble xx_P [5]; /* parameters A, B */

XXMatrix xx_M [3]; /* matrices */

XXDouble xx_V [5]; /* variables C, d */

void XXModelInitialize (void)

{

/* set the parameters */

xx_P [0] = 1.0; /* A */

xx_P [1] = 2.0;

xx_P [2] = 3.0;

xx_P [3] = 4.0;

xx_P [4] = 2.0; /* B */

/* set the matrices */

xx_M [0]. mat = &xx_P [0]; /* A */

xx_M [0]. rows = 2;

xx_M [0]. columns = 2;
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xx_M [1]. mat = &xx_V [0]; /* C */

xx_M [1]. rows = 2;

xx_M [1]. columns = 2;

xx_M [2]. mat = &xx_U [0]; /* xx_U1 */

xx_M [2]. rows = 2;

xx_M [2]. columns = 2;

}

void XXCalculateDynamic (void)

{

/* xx_U1 = (A * (B + 1)) */

XXMatrixScalarMul (&xx_M[2], &xx_M[0], (xx_P [4] + 1.0));

/* C = xx_U1 + time; */

XXMatrixScalarAdd (&xx_M[1], &xx_M[2], xx_time);

/* d = if (C[1,1] > 4)... ; */

xx_V [4] = (xx_M [1]. mat [0] > 4.0) ?

/* 1.0 */

XXTRUE

:

/* 0.0 */

XXFALSE

;

}

The presented example uses matrices, which are not directly supported in
ANSI-C. Therefore, the generated code includes some helper functions like
XXMatrixScalarMul() and XXMatrixScalarAdd(). Note that the implemen-
tation of all helper functions is included in the generated code. The next
section explains how the 20-sim 4C extends the generated 20-sim code to
run the model on a target.

6.3 20-sim 4C

The input for 20-sim 4C is external C-code (e.g. generated from 20-sim)
together with an XML model description with the available parameters and
variables in the code. The full process for creating target executables from
the input code and running it on the target is shown in Figure 9. The details
of each step are described below.

In 20-sim 4C, the user can select a specific target from a list of target tem-
plates (similar to code generation templates in 20-sim). A 20-sim 4C target
template contains all information necessary to extend the input code into an
executable ready to run on the target. Typical information found in a target
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Figure 9: Flowchart of code generation from 20-sim 4C.

template is:

• Description of the target

• Options for automated target discovery

• Connection information

• List of available I/O connections

• Required compile commands

• Supported rapid prototyping features like: monitoring, logging and
run-time parameter modifications
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• Driver code needed for the target

• Additional target-specific source files

• Files to upload or flash

After the target selection, the user can connect model inputs and outputs to
target I/O (e.g. AD and DA converters) or fieldbus I/O. The input code is
then extended with the target-specific code, like real-time task initialization,
the required I/O function calls, the needed driver code and 20-sim 4C hooks
to allow real-time monitoring and logging of variables and on-the-fly param-
eter changes. Next step is the compilation into a target executable using the
compiler settings from the target template. This typically involves calling
the right cross compiler. After the compilation, the binary is ready to upload
to the target, for example using an ethernet connection. After a succesful
upload, the real-time model task will be started on the target. 20-sim 4C
will then use the communication link with the target for monitoring, logging
and parameter modification.

6.4 INTO-CPS extensions

The previous sections present the design principles of the 20-sim and 20-
sim 4C code generation facilities. Both tools need extensions to fulfil the
requirements from Section 2 and in particular the 20-sim and 20-sim 4C
requirements from Section 2.1.2. The lists below summarize the planned and
in progress changes to both tools to fulfil the INTO-CPS needs.

20-sim

• FMI import:

1. Reading and preserving an FMU modelDescription.xml interface
definition coming from the Modelio tool. [in progress]

2. Run an FMU inside 20-sim. [planned]

• FMI export:

1. FMU v1.0 and v2.0 co-simulation (standalone) export functional-
ity. [in progress]

2. FMU v1.0 and v2.0 co-simulation (toolwrapper) functionality. [in
progress]
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3. Possibility to embed a 20-sim 3D animation inside a FMU for
displaying purposes. [in progress]

• Integration methods: Variable step-size method support. [planned]

• Code generation:

1. Automated code generation (scripting). [done]

2. Automated testing. [in progress]

20-sim 4C

• FMI import: FMU v2.0 (with included sources) as input source for
20-sim 4C [in progress].

• Targets: Work on supporting the targets selected by the industrial
partners: PIC32 and B&R PLCs. See also section 2.2 [in progress].

• Code generation: Automated testing. [in progress]

• HIL testing: FMU interface to a real-time 20-sim 4C task running on
a real-time target to allow Hardware-In-the-Loop testing. [planned]

7 Design Principles of the OpenModelica Code

Generator

7.1 Introduction

The design principles of the code generation in the OpenModelica simula-
tor are explained in this section. The OpenModelica simulator transforms
Modelica code into different lower level languages that can be compiled into
executable code. Currently OpenModelica can generate code in these lan-
guages: C, C++, JavaScript. Additionaly, the OpenModelica simulator can
generate FMI 1.0 or 2.0 for Model Exchange and Co-Simulation.

7.2 OpenModelica Code Generation

The transfomation from Modelica language into executable code hapens in
several phases (see also Figure 10):
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• Flattening - removing of object orientation from the Modelica language
and creation of an hybrid DAE (Differential Algebraic Equations)

• Basic Optimization - optimization of the hybrid DAE system, index
reduction, matching, equation sorting, causalization

• Advanced Optimization - more optimization of the system of equa-
tions, alias elimination, tearing, common subexpression elimination,
etc. (DAELow)

• Independent Simulation Code - the final system of equations is trans-
formed into an independent simulation code structure (SimCode)

• Code Generation - the Independent Simulation Code stucture is given
to several templates which can generate code in different languages,
currently C, C++, JavaScript, and FMU

• Simulation - the code is compiled into a standalone executable from
the generated code and executed

The OpenModelica template language called Susan [FPSP09] is used for
writing the templates for code generation.

7.3 INTO-CPS extensions

In the INTO-CPS project OpenModelica will be extended to support the
requirements in Section 2.1.3 .

Below we present the already available functionality in OpenModelica and
the extensions planned:

• FMI import:

1. Reading and preserving an FMU modelDescription.xml interface
definition coming from the Modelio tool; [in progress]

2. Running an FMU inside OpenModelica is already available for
Model Exchange, extension for Co-Simulation is needed; [in progress]

• FMI export:

1. FMU v1.0 and v2.0 for model-exchange and co-simulation (stan-
dalone) export functionality; [in progress, first draft available]

2. FMU v1.0 and v2.0 for model-exchange and co-simulation (tool-
wrapper) functionality; [in progress]
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Figure 10: OpenModelica code generation using templates

3. source code FMUs which contain all the necessary sources that
could be compiled on any target, primarily 20-sim 4C [in progress]

• Integration methods: all integration methods available in Open-
Modelica can be used inside the FMU for co-simulation

• Code generation:

1. Automated code generation (via .mos scripting) is already avail-
able

2. Automated testing (via .mos scripting) is already available
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8 Related Work

This section presents related work with respect to the above described goals of
the INTO-CPS CGs. For these CGs the main approach is twofold. First they
have to transform a model into a target language. Afterwards, this target
language has to be made executable on a platform. Both these aspects have
been addressed by the researchers, and will be related below.

In general the focus is on related work which considers using automatic code
generation as part of a model-driven development process, similar to what
is suggested for the INTO-CPS project. So especially with respect to this
related work will be highlighted. Additionally the focus is on going from a
software model to generating runnable platform dependent code for embed-
ded systems.

The remainder of this section is structured the following way. First section
8.1 discusses code generation as parts of MBD in general. Afterwards, section
8.2 describes the transformation from a model to Platform Independent Code
(PIC), which is code that is not targeting any specific platform. This relates
to all the INTO-CPS CGs, in that the model is transformed to semantically
equivalent code with respect to the industrial needs. Then section 8.3 focuses
on related work for generating Platform Dependent Code (PDC), which is
code that can be executed on a specific hardware platform. Hence as previ-
ously stated it is required for the INTO-CPS CGs that the generated code is
correct-by-construction for a specific platform. In the literature in general,
as also stated above, it is distinguish between PIC and PDC. Afterwards,
sections 8.4 and 8.5 present software for CPSs in particular and generat-
ing code from formal methods. Finally, section 8.6 presents related project,
which have addressed code generation as parts of their research.

8.1 Code Generation in MBD

Using code generating as part of MBD can support the overall development
as discussed in section 1. The part of using code generation has been ad-
dressed in general by research in MBD in order to ensure consistency be-
tween a model and the implementation (e.g. the code). This approach has
also been taken for some of the related project presented in section 8.6. As
an additional example in [AVCS+07] the focus is on using code generation
as a means of Model-Driven Engineering (MDE) in order to ensure the orig-
inal requirements in the implementation. As part of their approach they use
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the Model-Driven Architecture (MDA) approach from Object Management
Group (OMG). A part of MDA is to go from having a Platform Indepen-
dent Model (PIM) to a Platform Specific Model (PSM). In this paper they
provide an example with a model of a state-machine, which is automati-
cally transformed to code. The authors show how code generation is used to
ensure consistency between the model and the implementation in the Ada
programming language [Ada83]. Code generation within MBD has also been
addressed by commercial companies, such as MathWorks8.

8.2 Model to PIC transformation

The platform independent code generation has been addressed by different
researchers This is a very broad research area, since this corresponds to a
transformation from a source language to a target language. Such PIC trans-
formations are addressed by Times [AFM+03] and Simulink coder [Mat10].
As a consequence the focus is on specific transformations for the INTO-CPS
modelling notations.

For VDM transformations have been made for Java [JLC15] for the Over-
ture platform. In addition the VDMTools [CSK07] platform, which supports
VDM-SL and VDM++ modelling too, is able to generate Java and C++
code, but it is not documented. These transformation, however, are made
without targeting a specific platform. Even though for Java it is possible
to run on different platform, because the Java Virtual Machine makes Java
code platform independent, while the C++ code is not targeting any specific
hardware platform.

8.3 Model to PDC transformation

An important part of the INTO-CPS CGs is to support correct-by-construction
code targeting specific platforms in accordance with the industrial needs.
Hence it should not be required to adapt the code manually for a given
platform. Different papers have addressed this type of automatic genera-
tion of correct-by-code from different modelling languages. In general in the
related work a key point is that PIC can be generated to different PDC
implementations based on the actual hardware platform. In [CS12] they ad-
dress four different deployment possibilities, related either using single-core

8Automatic Code Generation Within Model-Based Design: http://se.mathworks.

com/videos/automatic-code-generation-within-model-based-design-92624.html.
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or multi-core platforms. The main focus of related work is on CGs that
are targeting single-core platforms, because the INTO-CPS case studies are
targeting single-core platforms. However, it should still be noted that re-
search for generating code for multi-core platforms has been addressed by
[PBPR09, CVC10, CKL+11].

8.3.1 UML and State-machines

In [CCS12, FRGT10, MWP+10, VdLG+09, HTB08] they investigate gener-
ating code from Unified Modelling Language (UML) [UML99, FS03] models
and state-machines. Their goal is, similar to INTO-CPS, to use a higher
level of abstraction in order to focus on solving the high-level goal, while a
CG is used in order to ensure the transformation between the model and
code. Especially, in [CCS12], as part of the CHESS project9, they research
of generating correct-by-construction code for complex embedded systems,
which is compliant with the goal of the INTO-CPS CGs described in this
deliverable.

8.3.2 AADL

Another part of research with respect the generating code from models, has
been carried out for using Architecture Analysis & Design Language (AADL)
[AAD04] models for high-level modelling. An AADL model is similar to a
SysML model, which is used for high-level modelling in INTO-CPS [Con14].
In [KPSL13] they look at how to generate from PIC to PDC by using AADL
model to specify the properties of the platform. In their approach they have
the main functionality given by the PIC. Afterwards, different versions of the
PDC implementation can be generated from the same PIC. This is a con-
sequence of that different hardware platforms give different implementation
possibilities. Also research is carried out in [BDT08], in which the authors de-
scribed generating code for real-time embedded systems from AADL models
by using MDA tools. Additionally, in [LZPH09] the authors present a tool-
suit OCARINA that supports code generation from AADL models.

9Project website at http://www.chess-project.org.
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8.3.3 From PIC to PDC transformation

In [BDN12] they identify a gap between the MBD and MDA approach, which
they attend to close with their attempt. The idea is to have a platform inde-
pendent model (e.g. a functional model). Afterwards, a hardware platform
is selected and its properties described. Finally, a mapping of the functional
components to the specific hardware components is described. This informa-
tion is then used as input for their code generator to generate PDC. Actually
they also support generating support for middleware, which is especially
interesting for the distributed aspects of VDM-RT. Similar work has been
carried out in [SV07, Aut10, MMS07], in which they also address matching
between functional and execution architectures.

8.4 Software in CPSs

In [ELM+12] they specifically address challenges of developing software for
CPSs. In this paper the authors stress that a key difference between soft-
ware and software for CPSs, is that time is a central aspect of the system
behaviour. This paper presents a coordination language for software compo-
nents, called PTIDES. Their approach is to use PTIDES in order to auto-
matically generate the glue code for applications in Java or C. In order for
PTIDES to be able to ensure time between the model and code, each software
component has to provide it worst case execution time. With this informa-
tion PTIDES can map the time from the model to the implementation in
code.

8.5 Formal methods - B method

The B method [Abr91, Abr96] is a formal method which is similar to VDM.
This formal method is also used for support software development from spec-
ifications, and can be used for the development of safety-critical systems. In
[BDLJ14] initial work is described how a subset of the B method can be
mapped to LLVM constructs. Afterwards the authors can use existing com-
pilers for LLVM in order to target a specific target platform.
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8.6 Related Projects

The survey of existing European research projects has identified five projects
which address, in some capacity, the notion of automatically translating a
formal model of a software system to executable code. Here we briefly review
the approaches found therein.

In the DEPLOY project10 a method is proposed for automating part of the
process of refining Event-B specifications to Java implementations via an
intermediate B-based notation, Object-oriented Concurrent B (OC-B). The
purpose of OC-B is to incorporate enough features of object-oriented, con-
current programming languages to make automatic translation to Java or
any other object-oriented language fully automatic. The refinement from
a top-level Event-B system specification to OC-B is kept as a manual pro-
cess.

The CERTAINTY project 11 develops a method for code generation for many-
core architectures which also uses an intermediate system model. The core of
the approach is a layered semantic model for interacting components, whose
interaction is based on dynamic priorities. This is called the Behaviour, In-
teraction, Priority (BIP) model. One layer of the semantic model captures
component behaviour as Petri nets augmented with C functions and data.
The other layer captures both the interaction between components and the
priorities of these interactions. The effect is a description of the scheduling
policy governing the execution of the components. Code generation is focused
at the transformation of a BIP model into executable C++ code as either
single-threaded, multi-threaded and real-time implementations. Naturally,
the multi-threaded and real-time targets depend on corresponding support
from the underlying platform. Support for the transformation of existing
implementations into BIP models also exists for implementations written
in languages for which operational semantics exist. Currently the project
lists transformation capabilities from the following languages in to BIP mod-
els: Lustre, discrete time Simulink, AADL, GeNoM C++, unrestricted C,
TinyOS nesC, DOL system descriptions.

Code generation in the ADVANCE project12 focuses on translating specifi-
cations written in Tasking Event-B to Java and Ada code, and to C code for
both OpenMP and FMI. Tasking Event-B is an extension to Event-B which
adds implementation-specific annotations to facilitate the code generation

10Project website at www.deploy-project.eu.
11Project website at www.certainty-project.eu.
12Project website at www.advance-ict.eu.
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process.

In the CompCert project13 they research formal verification for compilers for
critical embedded software. Their main goal is to have a verified compiler
for almost all ISO C90 / ANSI C language, and generating code for the
PowerPC, ARM and x86 processors.

13Project website at compcert.inria.fr.
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A List of Acronyms

20-sim Software package for modelling and simulation of dynamic systems
AADL Architecture Analysis & Design Language
AD Analog-to-Digital
AST Abstract Syntax Tree
AU Aarhus University
BIP Behaviour, Interaction, Priority
CG Code Generator
CGP Code Generator Platform
CLE ClearSy
CLP Controllab Products B.V.
COE Co-simulation Orchestration Engine
CPS Cyber-Physical System
CPU Central Processing Unit
CT Continuous-Time
DA Digital-to-Analog
DE Discrete Event
DAE Differential Algebraic Equations
DoA Description of Action
DSE Design Space Exploration
ESA European Space Agency
FM Formal Methods
FMI Functional Mockup Interface
FMU Functional Mockup Unit
HiL Hardware-in-the-Loop
HVAC Heating, Ventilation, and Air Conditioning
HW Hardware
ILR Intermediate Language Representation
IR Intermediate Representation
ISO International Organisation of Standards
MBD Model Based Design
MDA Model Driven Architecture
MiL Model-in-the-Loop
OC-G Object-oriented Concurrent B
ODE Ordinary Differential Equations
OMG Object Management Group
PDE Partial Differential Equations
PDC Platform Dependent Code
PLC Programmable logic controller
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PIC Platform Independent Code
PIM Platform Independent Model
PSM Platform Specific Model
RMI Remote Method Invocation
SIDOPS Structure Interdisciplinary Description Of Physical Systems
SiL Software-in-the Loop
SW Software
SysML Systems Modelling Language
TWT TWT GmbH Science & Innovation
UML Unified Modelling Language
UTRC United Technology Research Center
VDM Vienna Development Method
VICE VDM++ In Constrained Environments
V&V Validation & Verification
WP Work Package
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