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Abstract

This deliverable contains the conceptual description of the distributed testing
and simulation framework. Modelio, OpenModelica, 20-sim or Overture can
be used as a model editor to specify the test model of the system under
test. The RT-Tester (in connection with the model-based extension RTT-
MBT) is used as a configuration mechanism and as execution back-end that
allows to separate stimulation, checking, and simulation tasks into separate
FMUs. Requirements can be traced throughout the workflow within this tool
chain.
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1 Introduction

Based on FMI 2.0, a distributed testing and simulation framework together
with a matching tool chain can be defined. Starting with a timed behavioural
model (defined using a tool such as OpenModelica, Overture, 20-sim or Mod-
elio) of the system under test (SUT), we can identify and separate test and
simulation objectives.

For sake of clarity, we only focus on OpenModelica in this document. The
tool supports several stages of the design process, most prominently the de-
scription of (behavioural) system requirements and a behavioural description
of the system. This description can be thought of as a timed state chart,
where inputs influence control flow and timing behaviour. The requirements
are then annotations to states and/or transition, which confirm the proper
realisation. Other classes of requirements may exist (e.g., concerning the
capability of the target hardware), but are not addressed by testing; only
aspects that correspond to observable behaviour can be tested.

Figure 1: Work flow in connection with tool OpenModelica and RT-Tester.

Figure 1 sketches the work flow in the tool chain and explains the transi-
tion from the modelling part (OpenModelica) to the test operations (RT-
Tester).

If the modelled design has progressed to a stage where a behavioural analysis
gives meaningful insights, it is handed over to the test tool part via model
export. The test design then defines a specific environmental interaction with
a (prototypical) SUT implementation. If the implementation is correct, it
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shows the same reactions to inputs as the modelled behavioural description.
If needed, parts of the SUT can be simulated (based on a model description);
this is also helpful to focus the analysis (by tests) on specific sub components.
Testing includes the selection of data paths that shall be exercised in one run,
since this is necessarily a finite experiment. This selection is also referred to
as a test goal , and can be described in terms of model elements or sets
of requirements that should be included. During a complete test project,
situations related to all of the behavioural requirements are exercised.

For a specific test goal, a solver component (with RTT-MBT) derives a path
through the model and generates corresponding SUT stimuli. The expected
SUT outputs are transformed into a checker component, which allows to
compare the observed SUT output with the ones predicted by the model.
Additionally, it is possible to configure and generate simulation tasks by the
same mechanism. It is important to stress that these two components —
the checker component and the stimulation component — are independent
of each other. A real-time capable test tool (RT-Tester) is used as execu-
tion back-end both for stimulation and for checking. This contains powerful
mechanisms to define, organise, and trace requirements throughout a test
project.

Stimulation

FMU−2

Check

FMU−3

SUT state)

(to maintain valid 

Simulation

FMU−4

COE
(Cosimulation 
 Orchestration 
 Engine)

(Test Application Server)

for FMU coordination

Linux PC (B)

Windows PC (A)

Hardware (C)

Embedded

FMU−1

System under Test

(SUT)

Figure 2: Distributed testing network.

Figure 2 indicates how the test execution works. This is distributed in the
sense that not all actors have to be physically present on the same machine.
For example, a Windows PC (A) could host the Cosimulation Orchestration
Engine (COE), which connects the relevant FMUs. On the same machine,
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a Simulation component (FMU-4) can be run, e.g., simulating a part of the
environment that does not contribute to the test objective, but is required
in order to keep the SUT in a valid state. A Linux PC (B) can be used for
the testing part, which involves both providing SUT inputs (Stimulation)
and comparing the observed reactions with the expected outputs (Check).
Finally, the SUT is here located on an embedded hardware (i.e., running in
a target environment) and FMU-1 wraps the inputs and outputs in order to
connect with the test environment.

2 Related Work

A substantial amount of literature is available for model-based testing and
cyber-physical systems, for specific pointers see, e.g., [Pel13] and [CBM+13].
Since this work addresses several key issues (modelling, distribution, tracing),
it would not be helpful to start citing long lists of literature here. Rather, it
makes sense to relate this work to recent research projects with similar aim
and scope.

In this respect, the following projects can be considered to be closely re-
lated.

ADVANCE1 addresses analysis of connected CPSs, but focuses on formal
verification rather than on testing.

AMADEOS2 is also concerned with the time aspects of system of systems,
which relates to the timed nature of the tool chain described here.

MODRIO3 addresses the requirement modelling aspect, but not to the ex-
tend that it is confirmed by tests.

COMPASS4 and PTOLEMY5 both address the distributed aspects with
mixture of models of computation, without casting this into the FMI 2 co-
simulation standard.

Further (less closely) related work can be found in [Con14, Appendix B].

1http://www.advance-ict.eu/
2http://amadeos.imag.fr
3https://itea3.org/project/modrio.html
4http://www.compass-research.eu/
5http://ptolemy.berkeley.edu/publications/index.htm
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3 Overview of Testing and Simulation Inter-

faces

3.1 RT-Tester

Testing is the process of running a system in a real or simulated environment
in order to compare its actual to its expected behaviour. For many stages
of this process, tool support is essential in order to increase the number of
situations that can be exercised in a limited amount of time.

The RT-Tester6 is a test automation tool for test generation, test execution
and real-time test evaluation [Ver15a]. This core tool can be supplemented
by a model-based testing extension (RTT-MBT) that derives execution se-
quences and checks from a state-chart like system description [Ver15b]. Both
can be operated via the same GUI (RTTUI). For brevity, core + model-based
extension + GUI are simply referred to as “RT-Tester” in the following.

3.1.1 RT-Tester Operations

The starting point for testing and simulation interfaces for the RT-Tester is
the conceptual distinction of system under test (SUT) and environment, see
Figure 3. Inputs to the SUT are stimulations. Outputs of the SUT can be
used for testing, in the sense that the observed SUT reactions (to stimuli)
can be compared to the expected behaviour. In addition, SUT outputs may
expose internal states or contain diagnostic data that may not be directly
relevant for testing.

In the context of model-based testing, the test system serves as the environ-
ment (to the SUT) in the sense that it steers the stimulation of the SUT.
The objective of test generation is then twofold:

1. Provide stimuli to the SUT that “force” it to exhibit a desired be-
haviour, that is, the behaviour that has been specified as input to the
test generation process.

2. Compare the SUT outputs with the expected values for the appropriate
situation.

For both objectives it is required to have a specification on how the SUT is
supposed to react to inputs. This is captured by a behavioural model of the

6https://www.verified.de/products
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Environment

  (physical or 

   simulated)

System under Test

Testable

SUT Inputs

(Stimulation)

Outputs

Figure 3: High-Level interface between environment and SUT.

Environment
System under Test

Testable

SUT Inputs

(Stimulation)

Outputs
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Sub−Model−2

...

Behavioural Model

Possibly:

Internal Interfaces

  − stimulation

   − checks

Figure 4: The SUT component is complemented by a behavioural description.
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Figure 5: Selecting parts of the SUT to create a simulation.

SUT, see Figure 4. In general, the behavioural model can be understood as
a network of (possibly hierarchical) timed state machines. The design may
give rise to internal interfaces between parallel components.

The RT-Tester Model-Based Test case generator (RTT-MBT) creates tests
by instantiating the environment/SUT interface. This means that all SUT
inputs have to be provided in a timely manner, while all outputs of the SUT
need to be evaluated. The environment side is thus filled in by test logic that
both steers the SUT into certain “interesting” situations and compares the
outputs to expected observable behaviour.

In addition, it is possible to generate simulations for certain aspects of the
SUT which are currently not relevant for testing. This allows parts of the
SUT to be developed independently for example.

Both can be done via the RTTUI, see Figure 5.

3.1.2 Integration in the INTO-CPS Tool Chain

The primary purpose of RT-Tester in the INTO-CPS context is to provide
means to perform test case and requirement tracing for given test models.
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This requires two phases of user interaction.

a) The test model has to be constructed and user-validated for design com-
pliance. For this the OpenModelica tool (see section 3.2) is the primary
contributor, since it allows exploration of the constructed model before
going forward with the next development steps. The System Design
Model serves as test model in this context, since it captures the be-
havioural description. The RT-Tester works on the model export.

b) Since a test can only demonstrate one incarnation of SUT behaviour, it
must be possible to derive sequences of inputs based on this test model.
This is realised by the definition of test goals, that capture depth and
nature of the expected model coverage.

The test model already (implicitly) contains the SUT requirements by mere
structure. The test tool back-end is then used to identify test cases and
derive a tracing to the SUT requirements. The test case results (also known
as verdicts) are then obtained by comparing the observed SUT output with
the outputs predicted by the test model.

3.1.3 INTO-CPS Requirements (RT-Tester)

From the high level requirements in the INTO-CPS requirements report D7.3
[LPH+15] the RT-Tester tool chain must satisfy the following with respect
to testing:

• Requirement 0025 - RT-Tester must provide an INTO-CPS FMI tool
wrapper that is compliant with the COE.

• Requirement 0026 - RT-Tester must be able to automatically generate
test cases and test data for a co-simulation configuration.

• Requirement 0027 - RT-Tester must be able to control and influence
the behaviour of the co-simulation.

• Requirement 0028 - RT-Tester must be able to automatically validate
the result of a co-simulation against the desired behaviour.
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Figure 6: vVDR Overview.

3.2 OpenModelica

The goal of OpenModelica7 team in the INTO-CPS project with regards to
testing is assessing, adapting, applying and extending the previously devel-
oped ModelicaML framework [Sch13] for testing and verification of require-
ments and models.

3.2.1 The virtual Verification of Designs against Requirements
method

The proposed method in ModelicaML framework is virtual Verification of
Designs against Requirements (vVDR) and is depicted in Figure 6.

It is crucial to separate the experimental description from the system model.
To analyse designs under different conditions, deterministic scenarios will
need to be modelled. In vVDR the minimum set of modelling artifacts that

7https://www.openmodelica.org/
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is required for design verification are:

• Requirement Model (RM): Each requirement is represented by a
model that indicates requirement violation at any simulated time in-
stant.

• System Design Model (DM): A particular design alternative or ver-
sion is represented by a model to be used for verification against re-
quirements.

• Scenario Model (SM): A scenario defines the course of actions to
be simulated. It emulates the user or external events that will be
experienced by the system.

• Verification Model (VM): Requirements, design alternatives, and
scenarios can be combined in different ways. Such combinations are
called verification models. They are used to perform design verification
and to report on requirement violations.

Figure 7 shows the flow of information. Requirement models are the output
of the formalise requirements activity and are the input to the formalise de-
signs activity. Design and requirement models are the input to the formalise
scenarios activity that outputs scenario models. All models are the input to
the create verification models activity, which outputs verification models to
be used for analysis in the execute and create report step.

In a scenario-based approach, a verification model will comprise one system
design alternative that is to be verified against a set of requirements by
running one verification scenario as illustrated in Figure 8.

Figure 9 shows the verification session report (both in the GUI tool and
the HTML report) generated after executing verification models and post-
processing simulation results.

3.2.2 Applying vVDR method in the INTO-CPS project

In the INTO-CPS context the modelling artifacts (RM, DM, SM, VM) of
the vVDR method are all FMUs. The requirements can be modelled in
SysML (Modelio) or Modelica (OpenModelica) and FMUs can be generated
from them. The system under test SUT (or DM) is the behaviour model
for the system to be tested and is provided by one of the tools Modelio,
OpenModelica, 20-sim or Overture also in FMU form. The scenario models
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Figure 7: Information Flow in vVDR .

Figure 8: Concept of verification models.
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Figure 9: Verification session report GUI and HTML.
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and verification models could be designed in SysML (Modelio) and exported
as FMUs.

Then the verification models as FMUs can be ran on the COE to verify
requirements.

3.2.3 INTO-CPS Requirements (OpenModelica)

From the high level requirements from the INTO-CPS requirements report
D7.3 [LPH+15] the OpenModelica tool must satisfy:

• Requirement 0029 - OpenModelica must be able to read the CT model
Modelio (SysML) requirements and generate Modelica code or FMUs
for validation of requirements.

• Requirement 0030 - OpenModelica must be able to automatically val-
idate the requirements via co-simulation on the COE.

4 Design of Test- and Simulation-Integration

with COE

The key functionality of the COE is to provide a means for communication
between different components (named FMUs), all of which provide an in-
terface according to FMI 2.0. The exact configuration of the co-simulation
environment, however, is controlled by the INTO-CPS App, which utilises
an interface to Modelio so as to obtain FMU connection links.

4.1 RT-Tester FM-Interface Design Principles

After having designed a test model describing the SUT behaviour, the objec-
tive of test and simulation integration is to export the components as appro-
priate FMUs that can easily be integrated into a co-simulation environment.
In essence, the test and simulation generation facilities must be able to gen-
erate FMUs that exhibit appropriate interfaces. In a UML/SysML modelling
tool that can interact with RTT-MBT via XMI (such as Modelio), the inputs
and outputs are modelled as explicit interfaces. The FMU generation func-
tionality of RTT-MBT then simply transforms these interface definitions in
UML/SysML according to the FMI 2.0 standard.

17
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Test Model

System under Test

SUT Inputs
FMU−1Interface−1

Stimulation

Check

Simulation

State Change (Interface−1)

(to maintain valid 

SUT state)

Configure & Generate

FMU−2

FMU−4

FMU−3

(not relevant for this test)

Protocol on Interface−2

Figure 10: Functional distribution of test and simulation tasks.
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Conceptually, the SUT should be treated as one FMU that only allows to
stimulate and observe the high-level interface (black box testing). Here the
model is only used to identify the inputs and outputs, compare FMU-1 in
Figure 10. To this point, it is open whether FMU-1 corresponds to a real
hardware execution or, e.g., a software simulation.

From the test model now a stimulation of the SUT inputs is derived, based
on some test objective (more on this is found in subsequent section 4.2). This
stimulation needs to read the SUT outputs “State Change on Interface-1” in
general, because it has to act synchronised with the SUT. If synchronisation
via time is sufficient, then this input can be omitted. In Figure 10, this
stimulation is placed in FMU-2.

The check operations can be separated off to FMU-3, which naturally needs
to be aware of all SUT outputs. It also needs to read the SUT inputs,
since correctness of the SUT behaviour requires evaluation of the precondi-
tion.

The (optional) simulation part is exemplified by FMU-4, which is not con-
cerned (at all) with the test logic, but interacts with the SUT on an isolated
Interface-2. This can be necessary to keep the SUT in a “normal opera-
tion” state, e.g., by following a protocol-based data exchange that exchanges
heart-beat data. It can be an advantage to have such an actor outside the
simulation/check logic.

The RTTUI allows the user to select parts of the test model and generate
behavioural simulations for these. The simulations then behave exactly as
the test model prescribes.

4.2 RT-Tester Requirements-Tracing Design Principles

A requirement is usually identified by the following aspects.

• a (unique) identifier

• a precondition (situation where it applies)

• a set of inputs to the system

• a set of expected outputs of the system

A model of the SUT (Figure 10) can be annotated by such requirements. For
example, in a certain model state (precondition) the system should act on
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TC−2:

For Input value 1, system will output value 2

and reach State 2

Input == 1 /

Output := 2

State 1 State 2

TC−1: 

State 1 can be reached

If Input value 1 is seen in State 1, then the system shall make a transition to

State 2 and output the value 2.

REQ−001:

Figure 11: Model annotated with test cases TC-1, TC-2 and requirement
REQ-001.

an input (stimulation) by changing the model state and generating a certain
output (testable output).

Often a requirement demands several pairs of inputs and outputs. Therefore
it is usually broken down into a set of test cases, each of which describes a
situation that can unambiguously expressed by model elements. A require-
ment is covered, if for all aspects the related test cases have been exercised.
One test case can be related to more than one requirement. Figure 11 gives
a simple example for this, more details can be found in [Ver15b].

A model annotated with requirements serves as a test model. Based on
this, test procedures can be configured by selecting a number of requirements
(resp. test cases) that shall be covered during one execution.

The RTTUI allows to drag- and drop test cases into a set of desired goals, see
Figure 12. In addition it is possible to activate test strategies, e.g., “cover all
basic control states”. It is also possible to specify LTL formulas that shall
hold in the execution. The conjunction of these properties defines the set of
test goals that shall be covered by a single test procedure.

Based on the model, this results in a set of timed inputs and corresponding
checks of the SUT outputs (compare [Ver15b]).
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Figure 12: Configuring a set of test-cases that shall be covered in on execu-
tion, here by drag-and-drop of all states associated with “FLASHING”.

If this is put together in a FMU execution driven by the COE, for each test
case the associated result (i.e., the verdict) is recorded. This result can be
either Pass or Fail. Further details are elaborated in [Ver15a].

Importantly, one test case may be executed in more than one test procedure.
The sum of the test case verdicts is computed on a project (or: sub-project)
basis. The result (or verdict) of a requirement is then derived by the sum
of associated test cases; it is only Pass if all associated test cases are Pass.
Likewise, it is Fail if at least one associated test case result has the verdict
Fail.

The status browsing of requirements can be done graphically in the RT-
TUI, Figure 13 gives an impression on how this is organised. Appropriate
exports can be generated to other requirement management tools such as
DOORS.

4.2.1 INTO-CPS Requirements (Traceability)

From the high level requirements from the INTO-CPS requirements report
D7.3 [LPH+15] the tool chain must satisfy the following with respect to
traceability:

• Requirement 0015 - It must be possible to trace which FMU instances

21



D5.1b - Distributed testing and simulation network (Public)

Figure 13: Requirements coverage after test execution.
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contribute to the satisfaction of which requirements

• Requirement 0017 - It must be possible to trace test cases to test/simulation
results.

4.3 OpenModelica

The integration of ModelicaML vVDR method in the INTO-CPS develop-
ment and testing framework is not yet defined. The integration will be avail-
able at M24 of the project.

5 Conclusion

During year 1 of INTO-CPS, the prototypical tool chain has been set up
to the point where model-based descriptions can be translated into FMUs.
This holds both for the model simulation side and the test side, where the
behavioural description serves to derive the required stimulation and the
expected SUT behaviour.

Concerning the traceability, the basic idea has been sketched: Requirements
are associated with dynamic model elements like locations or transitions.
Evidence of fulfilment is then collected in terms of test executions that reach
or exercise these model elements. An atomic element corresponds to one test
case. Each test execution then gives partial evidence of correctness in terms
of test case verdicts; this is mapped to the associated requirements in an
accumulation step. During year 2, this part has to be implemented, tried
and tested.

23



D5.1b - Distributed testing and simulation network (Public)

References

[CBM+13] M. V. Cengarle, S. Bensalem, J. McDermid, R. Passerone,
A. Sangiovanni-Vincentelli, and M. Törngren. Characteristics,
capabilities, potential applications of Cyber-Physical Systems:
a preliminary analysis. Project Deliverable D2.1, EU Frame-
work 7 Project: Cyber-Physical European Roadmap & Strategy
(CyPhERS), November 2013.

[Con14] INTO-CPS Consortium. Grant agreement for INtegrated TOol
chain for model-based design of CPSs (INTO-CPS). Grant agree-
ment number 644047, European Commission, December 2014.

[LPH+15] Peter Gorm Larsen, Ken Pierce, Francois Hantry, Joey W. Cole-
man, Sune Wolff, Kenneth Lausdahl, Marcel Groothuis, Adrian
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A List of Acronyms

AST Abstract Syntax Tree
AU Aarhus University
COE Co-simulation Orchestration Engine
CPS Cyber-Physical Systems
FMI Functional Mockup Interface
FMI-Co Functional Mockup Interface – for Co-simulation
FMI-ME Functional Mockup Interface – Model Exchange
FMU Functional Mockup Unit
GUI Graphical User Interface
HiL Hardware-in-the-Loop
HMI Human Machine Interface
HTML HyperText Markup Language
HW Hardware
ICT Information Communication Technology
IDE Integrated Design Environment
LIU Linköping University
LTL Linear Timed Logic
M&S Modelling and Simulation
MBD Model Based Design
MBT Model Based Testing
MiL Model-in-the-Loop
OS Operating System
RTT RT-Tester
RTTUI RT-Tester graphical User Interface
SiL Software-in-the Loop
SUT System Under Test
SysML Systems Modelling Language
TA Test Automation
TRL Technology Readiness Level
TWT TWT GmbH Science & Innovation
UY University of York
VSI Verified Systems International
WP Work Package
XMI XML Metadata Interchange
XML Extensible Markup Language
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