
Grant Agreement: 644047

INtegrated TOol chain for model-based design of CPSs

INTO-CPS Traceability Design

Deliverable Number: D4.2d

Version: 0.4

Date: 2016

Public Document

http://into-cps.au.dk

D4.2d - INTO-CPS Traceability Design (Public)

Contributors:

Kenneth Lausdahl(AU)
Peter Niermann (TWT)
Jos Höll (TWT)
Carl Gamble (UNEW)
Oliver Möller (VSI)
Etienne Brosse (ST)
Tom Bokhove (CLP)
Luis Diogo Couto (UTRC)
Adrian Pop (LIU)

Editors:

Christian König (TWT)

Reviewers:

Ken Pierce (UNEW)
Ana Cavalcanti (UY)
Alie El-Din Mady (UTRC)

Consortium:

Aarhus University AU Newcastle University UNEW
University of York UY Linköping University LIU
Verified Systems International GmbH VSI Controllab Products CLP
ClearSy CLE TWT GmbH TWT
Agro Intelligence AI United Technologies UTRC
Softeam ST

2

D4.2d - INTO-CPS Traceability Design (Public)

Document History

Ver Date Author Description
0.1 12-07-2016 C. König (TWT) Initial document version
0.2 08-09-2016 J. Höll (TWT) Add suggestion of message specifi-

cation for daemon
0.3 25-10-2016 C. König (TWT) Revised after first internal review
0.4 10-11-2016 C. König (TWT) Incorporated review comments

3

D4.2d - INTO-CPS Traceability Design (Public)

Abstract

This deliverable covers the design of the traceability and model manage-
ment features in INTO-CPS. At the end of year 2, an architecture for han-
dling traceability is drafted and development of prototypes has started. An
outlook on the work that is planned for the third year of INTO-CPS is
given. This document is closely related to Deliverables D3.1b [FGPP15] and
D3.2b [FGPP16], where the foundations for traceability in INTO-CPS are
described.

4

D4.2d - INTO-CPS Traceability Design (Public)

Contents

1 Introduction 6
1.1 Purpose and goals for traceability within INTO-CPS 6
1.2 Scope . 7
1.3 State of the art of the baseline tools 7

2 Specification 8
2.1 Requirements and design decisions 8
2.2 Traceability architecture . 9
2.3 Design decisions . 12
2.4 Traceability database . 13
2.5 Traceability actions . 13
2.6 Message structure and syntax 14
2.7 Example messages . 15
2.8 Format of the URI . 20

3 Use cases 21
3.1 Model Creation . 22
3.2 Model Modification . 22
3.3 Model Destruction . 22

4 Querying and Visualisation 23

5 Status of the tools at M24 24

6 Summary and Outlook 25

Appendices 26

A Used libraries 26

B Abbreviations 27

5

D4.2d - INTO-CPS Traceability Design (Public)

1 Introduction

This deliverable presents the design of the traceability and model manage-
ment functions in INTO-CPS at the end of year 2. It is to a large extend
connected with and based on the foundational work presented in Deliverables
D3.1b [FGPP15] and D3.2b [FGPP16]. In the introduction (section 1), the
purpose and scope of traceability in INTO-CPS is discussed, closing with
a summary of the traceability features of the INTO-CPS baseline tools. In
section 2, the requirements to traceabilty that are given in INTO-CPS are
listed, followed by the architecture that was chosen, relevant design decisions
and major components of the architecture and the message format that was
defined for exchanging data. In the following section 3, relevant actions are
divided into single steps that are performed by the tools. While so far the
focus was on saving traceability data, the next section 4 discusses querying
of the database and visualisation of the results. This deliverable is concluded
with the status of the traceability support in the tools at the end of year 2
(section 5) and an outlook for the work that is planned for year 3 (section
6).

1.1 Purpose and goals for traceability within INTO-
CPS

Traceability and, in particular, requirements traceability can be defined as
in [GF94] as:

Requirements traceability refers to the ability to describe and fol-
low the life of a requirement, in both a forwards and backwards
direction (i.e., from its origins, through its specification and de-
velopment, to its subsequent deployment and use, and through
all periods of on-going refinement and iteration in any of these
phases).

This definition is closely related to the the tool-chain concept of INTO-CPS,
where information about entities (such as requirements) needs to be ex-
changed between different tools, which were initially not connected, and are
mostly designed as stand-alone tools. The benefits of traceability in general,
and in particular the benefits that are aimed for in the framework of the
INTO-CPS tools and methods, include:

• Checking the realisation of requirements in models or code,

6

D4.2d - INTO-CPS Traceability Design (Public)

• Enabling collaborative work by connecting artifacts and knowledge
from different users,

• Decreasing redundancy by connecting different tools to a single require-
ments source and allowing a system-wide view that is not only limited
to single tools.

Of course, these benefits come at a cost. In the case of traceability, this
means mostly overhead by the users to create and maintain the traceability
links. Having only some traceability links in a project up to date significantly
reduces the value of the whole exercise. Therefore, one of the goals for
traceability in INTO-CPS is to automatize most of the traceability work, so
that the user has to perform as few manual tasks as possible.

1.2 Scope

The primary scope for traceability in INTO-CPS is demonstration of the
basic traceability tasks across the tool-chain. This includes mostly tracing
of the requirements and connecting them with the models (and their parts,
such as classes), the simulation results and the produced code. Furthermore,
analysing the impact of changes (e.g. in requirements) to the overall system
can be supported through the traceability efforts.

It is however not in the primary scope of the traceability work in INTO-
CPS to be able to trace back all steps of the development and revert to
each step in the development’s history. For this, other parts of the INTO-
CPS project and tools are seen as more appropriate, such as versioning tools
(SVN, git) or functionalities of the INTO-CPS Application (see Deliverable
D4.2a [BLL+16]). Therefore, as will be described below, some of the tools
support git for versioning.

1.3 State of the art of the baseline tools

The goal of INTO-CPS is to form a tool-chain from existing tools, each with
their own features and development history. In the following, the state of
traceability integration in the INTO-CPS tools before the project start (i.e.
the baseline tools) is listed.

Modelio: In the baseline version, Modelio allows to model requirements in
various languages (UML or BPMN for example). By permitting link
creation between requirements and these other formalisms, Modelio is

7

D4.2d - INTO-CPS Traceability Design (Public)

able to trace the realisation, verification, satisfaction of these require-
ments.

OpenModelica: Traceability in OpenModelica is so far (ie. in the baseline
version) only supported in terms of tracing generated C code back to
Modelica code, and it is mostly used for debugging. More details can
be found in [PSA+14].

20-sim: In the baseline version, 20-sim does not support traceability.

Overture: In the baseline version, Overture does not support traceability.

RT Tester: In the baseline version, RT-Tester does not support traceability
in the OSLC sense, where traceability data is exchanged with external
tools through a standardized interface and format (such as OSLC).
It should be pointed out, however, that traceability in terms of test-
case and requirement management is a core feature of RT-Tester tool
chain. Connecting test cases and requirements, the associated status
accounting (including reporting) during a test campaign are described
in detail in [Ver15a] and [Ver15b].

In summary, it can be said that some of the baseline tools do not support
traceability at all, and some support traceability in their own ecosystem, but
do not support a common interface of method for exchanging traceability
information in the tool-chain sense that is targeted in INTO-CPS. For all of
the tools, an architecture and a common interface for exchanging traceability
information must therefore be defined. This is explained in the following
section.

2 Specification

In this section, the main functionalities of the traceability features that are
being implemented in INTO-CPS are described.

2.1 Requirements and design decisions

The requirements to the traceability functionalities are listed in Deliverable
D7.5 [LPO+16]. These requirements, which are listed in the following table
1, are being updated over the progress of the project.

8

D4.2d - INTO-CPS Traceability Design (Public)

Req. No. Description
0013 The COE must link the co-simulation configurations to-

gether with any results produced
0015 It must be possible to trace which FMU instances con-

tribute to the satisfaction of which requirements
0016 It must be possible to trace an FMU implementation back

to the SysML architecture component which it implements
0017 It must be possible to trace test cases to test/simulation

results
0089 The INTO-CPS toolchain must support the traceability

from requirements down to the code
0090 Impact analysis
0103 Traceability Service in the INTO-CPS Application Down-

load Manager
0104 Traceability Service controlled through INTO-CPS appli-

cation
0105 Predefined Traceability Queries
0106 Expert Traceability Queries

Table 1: Requirements with relation to traceability, from D7.5 [LPO+16]

These requirements reflect the use-cases that are envisioned for the traceabil-
ity in INTO-CPS, as well as the targeted technical realisation. The goal is
to develop a traceability service that can be integrated into the INTO-CPS
application, in order to offer the users of the application a relatively easy
access to its features through predefined queries. Furthermore, this trace-
ability service should allow expert users or developers the full potential of
traceability.

2.2 Traceability architecture

This section introduces an outline of the tool and file system elements that
could support the traceability activities described in the line follow robot use
case (see Deliverable D3.2b [FGPP16]) and is shown in Figure 1.

The central element of the traceability architecture is the daemon, along with
an interface (a REST-API1) that can be used in two ways: The tools (e.g.
20-Sim, OpenModelica, Overture, Modelio, RT Tester, the COE, the INTO-
CPS application) write data to the interface (e.g. they send traceability

1REST: Representational State Transfer; API: Application Programming Interface

9

D4.2d - INTO-CPS Traceability Design (Public)

information from actions that happened within the tools to the daemon), the
INTO-CPS application queries the interface (e.g. for retrieving information
from the database). The daemon sends this data to the database, and queries
the database for data.

Figure 1: Schematic architecture of the traceability-related tools.

2.2.1 Traceability Daemon

The daemon is a essentially the core of the traceability tool support. It is
launched or terminated by the INTO-CPS Application or the other tools.
The daemon’s primary function is to create an OSLC compliant HTTP port
and listen for the POST and GET actions. It will store data sent with a
POST and will return a suitable response to a GET request. The daemon
provides an interface that allows that app query interface (section 2.2.2) to
retrieve the required data. This interface basically passes cypher queries to
the Neo4J database.

Regarding the dependencies to other software, the libraries in annex A are
currently used by the traceability daemon.

2.2.2 Query Interface

The query interface enables the user to query the data stored by the trace-
ability database. The list below only indicates the activities that the interface

10

D4.2d - INTO-CPS Traceability Design (Public)

handles and does not indicate the all the data required. The complete de-
scription of the ontology that forms the basis of the traceability features in
INTO-CPS can be found in Deliverable D3.1b ([FGPP15]), Annex 4.

• Impact Analysis

• Retrieve entities associated with X where X could be a simulation
result

Querying the traceability database is done in the Cypher query language
(the equivalent to the structured query language in relational databases, see
https://neo4j.com/developer/cypher/). In principle, cypher queries can
be written freely, which the daemon passes on to Neo4J. To facilitate usage
however, we plan to pre-define queries for the actions listed above so that
they can be easily integrated in the INTO-CPS application. This satisfies
requirements 0105 and 0106 (see table 1).

2.2.3 Activity Interface

The interface enables the user to record events that take place outside of the
INTO-CPS application, such as modelling in the modelling tools (Modelio,
Overture, 20-sim, OpenModelica). The list below only indicates the activities
that the interface handles and does not indicate all the data required. For a
more detailed description of the activities, see [FGPP16].

• Requirements Management

• Architecture Modelling

• Model Description Export

• Model Description Import

• Simulation Modelling

• Model Check Modelling

• Model Checking

• Test Creation

• FMU Export

• HiL FMU Generation

• Code Generation

11

https://neo4j.com/developer/cypher/

D4.2d - INTO-CPS Traceability Design (Public)

• Configuration Creation

Furthermore, some activities are specific to the INTO-CPS application:

• Simulation

• DSE Config Creation

• DSE

• Design Note Creation

• Library FMU Import

Each of these activities is sent from the tools to the daemon in a message,
which are explained below in section 2.7.

2.3 Design decisions

In a previous deliverable D3.1b (sections 3.1 and 3.2, [FGPP15]), an extensive
review of research projects with respect to their handling of traceability and
requirements engineering is given. In summary, it can be said that there
is currently not one standard approach or technology to traceability, and
its implementation depends largely on the use-case and the related tools.
Within the traceability efforts of INTO-CPS, two standards are mostly used,
PROV and OSLC. Both have been introduced already in deliverable D3.1b
[FGPP15], and therefore only some information is repeated here.

The Provenance (PROV)2 set of documents builds on the notation of entities,
activities and agents. In addition, relations are defined that describe the
connection between the entities, activites and agents.

Over the last years, the ”Open Services for Lifecycle Collaboration” (OSLC)3

specifications emerged, aiming at the integration of development tools. For
traceability purposes, in particular the OSLC Requirements Management
(RM) specification is relevant4. An example for usage of OSLC for integration
of modeling tools in general, and with aspects of traceability in particular,
can be found in [EN13]. In order to design the traceability functionalities of
the INTO-CPS toolchain in an open way, which should be compatible with

2see http://www.w3.org/TR/prov-n/
3see http://open-services.net/
4see http://open-services.net/specifications/requirements-management-2.

0/

12

http://www.w3.org/TR/prov-n/
http://open-services.net/
http://open-services.net/specifications/requirements-management-2.0/
http://open-services.net/specifications/requirements-management-2.0/

D4.2d - INTO-CPS Traceability Design (Public)

other tools, we use the PROV and OSCL specifications for describing the
relations between entities, actions and agents.

2.4 Traceability database

As shown in section 2.2 in detail, the traceability data consists essentially
of triples, made up of subject, predicate and object, where subject and object
are either an entity, action or agent. The predicate is an OSLC or Prov5

relationship. The triples that make up the traceability data are stored is
a Neo4J database, which is a graph database6. This is advantageous, since
the traceability data itself is in principle also a graph relationship between
the different elements. Therefore, Neo4J promises to be a suitable choice for
larger sets of traceability data. For example, for querying and retrieval of
highly heterogeneous data (models, annotations and simulation results) in
systems biology, a Neo4J database was successfully used [HWW15].

The synchronization of the databases of multiple users can be realized using
a text file containing one line for each JSON message. Whenever traceability
data is sent to the daemon one line can be written to this file which then
can be merged in the repository. When pulling the git repository new lines
in the pulled text file can be sent to the daemon.

In the following figure 2, different elements of a traceability graph are dis-
played. Entities (e.g. files) are shown in blue, actions (e.g. saving a file,
executing a simulation) are shown in red and agents (e.g. a user with the
name ”Carl”) are shown in green. All these elements are linked with relations
between them.

2.5 Traceability actions

The following diagram (Figure 3) shows a possible flowchart of the actions
performed by different tools after a user action. After the user has started
the INTO-CPS application (abbreviated as ”app” in the figure), the daemon
is instantiated. When the user opens a project, a local database is opened
with the project-relevant traceability data. Then, the work in the different
tools (e.g. 20-sim, Modelio, OpenModelica, Overture, RT Tester...) creates
new traceability relations from activities. The relevant activites are listed in

5see https://www.w3.org/TR/prov-n/
6see https://neo4j.com/

13

https://www.w3.org/TR/prov-n/
https://neo4j.com/

D4.2d - INTO-CPS Traceability Design (Public)

Figure 2: Visualisation of relations between different entities, actions and
agents in Neo4J.

section 2.2.3. These traces are then sent trough the daemon to the database,
where they are stored. In order to view and analyze traceability data, it
is later retrieved from the INTO-CPS application, through the appropriate
queries from the daemon to the database.

The PROV and OSLC relations that are mainly used in the context of INTO-
CPS traceability, can be found in Deliverable D3.1b [FGPP15] (Annex 2.2
& 3.6).

2.6 Message structure and syntax

To implement the structure that is proposed in Deliverable D3.2b [FGPP16],
the traceability data is structured in a set of activities, entities and agents
and is encoded in a syntax that is described below in section 2.7. Initially, the
data is exchanged in the JSON format, while other formats (e.g. RDF/XML,
XML, Atom, Turtle) are also supported by OSLC. JSON (JavaScript Object
Notation)7 is a format to describe name/value pairs, and ordered lists of
values (e.g. arrays).

7see http://www.json.org

14

http://www.json.org

D4.2d - INTO-CPS Traceability Design (Public)

Figure 3: Flow-chart of actions in the different tools related to a traceability-
relevant action.

2.7 Example messages

To illustrate the message format described above, we present in the following
some examples of messages that are sent from the modelling tools to the
traceability daemon. The message format as it is presented in the messages
below is considered to be the first version (0.1) of the format, and it is possible
that the format evolves in the third year of INTO-CPS.

We consider two people (prov:Agent), Carl and Richard, to be working on
the project using the tool (prov:Entity) Modelio. Each of these entries
needs to have a rdf:about entry. Additional information is contained in
other tags. This is graphically shown in the following figure 4.

In the traceability database these three nodes would be created by the fol-
lowing JSON message:

{
” rd f :RDF” : {

”xmlns : rd f ” : ” http ://www.w3 . org /1999/02/22− rdf−syntax−
ns#”,

”xmlns : prov ” : ” http ://www.w3 . org /ns/prov#”,

15

D4.2d - INTO-CPS Traceability Design (Public)

Figure 4: Example of messages that are sent to the traceability database.

”messageFormatVersion ” : ”0 .1” ,
”prov : Agent ” : [{

” rd f : about ” : ”Agent :RP” ,
”name” : ”Richard”

} ,
{

” rd f : about ” : ”Agent :CG” ,
”name” : ”Carl ”

}] ,
”prov : Entity ” : {

” rd f : about ” : ”Entity . so f twareToo l : model io : x . y ” ,
” ve r s i on ” : ”x . y” ,
” type ” : ” so f twareTool ” ,
”name” : ”model io ”

}
}

}

It is important that every agent, entity (e.g. a tool or a file) and action
that is meant to create a node in the traceability database has the property
rdf:about which contains the unique URI (Uniform Resource Identifier).
In order to later identify a node (agent, entity or action) the URI needs to
be used, so a strict format for the URIs is necessary. The URI format is
described below in section 2.8

Now consider for example the document ”/sourceDocs/stakeHolderNeeds.pdf”.
This document contains two requirements in sections 1.2 and 1.3 and is at-
tributed to the Richard. The connections between the nodes are created with
the Prov:hadMember and the Prov:wasAttributedTo relations. This

16

D4.2d - INTO-CPS Traceability Design (Public)

is graphically shown in the following figure 5.

Figure 5: Example of messages that are sent to the traceability database,
including relations between the nodes.

The following json message contains this information as well as the fact that
the requirements in sections 1.2 and 1.3 are attributed to Richard too.

{
” rd f :RDF” : {

”xmlns : rd f ” : ” http ://www.w3 . org /1999/02/22− rdf−syntax−
ns#”,

”xmlns : prov ” : ” http ://www.w3 . org /ns/prov#”,
”messageFormatVersion ” : ”0 .1” ,
”prov : Entity ” : [
{

” rd f : about ” : ”Entity . requirementSource : / sourceDocs /
stakeHolderNeeds . pdf#213123435234” ,

”path ” : ”/ sourceDocs / stakeHolderNeeds . pdf ” ,
”hash ” : ”213123435234” ,
” type ” : ” requirementSource ” ,
”prov : hadMember ” :
{”prov : Ent ity ” : [

17

D4.2d - INTO-CPS Traceability Design (Public)

{” rd f : about ” : ”Entity . requirementSourceSubPart
: / sourceDocs / stakeHolderNeeds . pdf : s e c t i on1
.2#213123435234”} ,

{” rd f : about ” : ”Entity . requirementSourceSubPart
: / sourceDocs / stakeHolderNeeds . pdf : s e c t i on1
.3#213123435234”}

]} ,
”prov : wasAttributedTo ” :
{”prov : Agent ” : {” rd f : about ” : ”Agent :RP”}}

} ,
{

” rd f : about ” : ”Entity . requirementSourceSubPart : /
sourceDocs / stakeHolderNeeds . pdf : s e c t i on1
.2#213123435234” ,

”path ” : ”/ s e c t i on1 . 2” ,
” type ” : ” requirementSourceSubPart ” ,
”prov : wasAttributedTo ” : {”prov : Agent ” : {” rd f : about

” :” Agent :RP”}}
} ,
{

” rd f : about ” : ”Entity . requirementSourceSubPart : /
sourceDocs / stakeHolderNeeds . pdf : s e c t i on1
.3#213123435234” ,

”path ” : ”/ s e c t i on1 . 3” ,
” type ” : ” requirementSourceSubPart ” ,
”prov : wasAttributedTo ” : {”prov : Agent ” : {” rd f : about

” :” Agent :RP”}}
}

]
}

}

Note that every object (such as prov:hadMember) of a potential node
(such as prov:Entity) is treated as a relation, if its value not a string but
another json-level ({ ... {) containing another node (such as prov:Entity).

The following example demonstrates the requirements management using
Modelio. A requirement with two subrequirements R1 and R2 is generated
by the activity requirementsManagement by Richard using Modelio and the
original requirements contained in the document above. R1 and R2 thus
elaborate the requirements formulated in section 1.2 and 1.3 of the document
above.

{

18

D4.2d - INTO-CPS Traceability Design (Public)

” rd f :RDF” : {
”xmlns : rd f ” : ” http ://www.w3 . org /1999/02/22− rdf−

syntax−ns#”,
”xmlns : prov ” : ” http ://www.w3 . org /ns/prov#”,
”messageFormatVersion ” : ”0 .1” ,
”prov : Entity ” : [{

” rd f : about ” : ”Entity . requ i rements : / sysML/
requirements #213123435235” ,

”path ” : ”/sysML/ requirements ” ,
”hash ” : ”213123435235” ,
” type ” : ” requ i rements ” ,
”prov : hadMember ” : {”prov : Ent ity ” : [

{” rd f : about ” :” Entity . requirement : / sysML
/ requirements :R1#213123435235”} ,

{” rd f : about ” :” Entity . requirement : / sysML
/ requirements :R2#213123435235”}

]} ,
”prov : wasAttributedTo ” : {”prov : Agent ” : {” rd f :

about ” :” Agent :RP”}} ,
”prov : wasGeneratedBy ” : {”prov : Ac t i v i ty ” : {” rd f :

about ” :” Act i v i ty . requirementsManagement
:2016−09−19−13−53−06#b81f95c3−56aa−4189−baac
−070631bd7957”}}

} , {
” rd f : about ” : ”Entity . requ i rements : / sourceDocs /

stakeHolderNeeds . pdf :R1#213123435235” ,
”path ” : ”/R1” ,
” type ” : ” requirement ” ,
”prov : wasAttributedTo ” : {”prov : Agent ” : {” rd f :

about ” :” Agent :RP”}} ,
”prov : wasGeneratedBy ” : {”prov : Ac t i v i ty ” : {” rd f :

about ” :” Act i v i ty . requirementsManagement
:2016−09−19−13−53−06#b81f95c3−56aa−4189−baac
−070631bd7957 ”}} ,

” o s l c e l a b o r a t e s ” : {”prov : Ent ity ” : {” rd f : about
” :” Entity . requirementSourceSubPart : /
sourceDocs / stakeHolderNeeds . pdf : s e c t i on1
.2#213123435234”}}

} , {
” rd f : about ” : ”Entity . requ i rements : / sourceDocs /

stakeHolderNeeds . pdf :R2#213123435235” ,
”path ” : ”/R2” ,
” type ” : ” requirement ” ,

19

D4.2d - INTO-CPS Traceability Design (Public)

”prov : wasAttributedTo ” : {”prov : Agent ” : {” rd f :
about ” :” Agent :RP”}} ,

”prov : wasGeneratedBy ” : {”prov : Ac t i v i ty ” : {” rd f :
about ” :” Act i v i ty . requirementsManagement
:2016−09−19−13−53−06#b81f95c3−56aa−4189−baac
−070631bd7957 ”}} ,

” o s l c e l a b o r a t e s ” : {”prov : Ent ity ” : {” rd f : about
” :” Entity . requirementSourceSubPart : /
sourceDocs / stakeHolderNeeds . pdf : s e c t i on1
.3#213123435234”}}

}] ,
”prov : Ac t i v i t y ” : {

” rd f : about ” : ” Act i v i ty . requirementsManagement
:2016−09−19−13−53−06#b81f95c3−56aa−4189−baac
−070631bd7957 ” ,

” type ” : ” requirementsManagement ” ,
” time ” : ”2016−09−19−13−53−06”,
” guid ” : ” b81f95c3−56aa−4189−baac−070631bd7957 ” ,
”prov : wasAssociatedWith ” : {”prov : Agent ” : {” rd f :

about ” :” Agent :RP”}} ,
”prov : used ” : {”prov : Ent ity ” : [

{” rd f : about ” :” Entity . so f twareTool : model io : x
. y”} ,

{” rd f : about ” :” Entity . requ i rements : /
sourceDocs / stakeHolderNeeds . pdf :R1
#213123435235”} ,

{” rd f : about ” :” Entity . requ i rements : /
sourceDocs / stakeHolderNeeds . pdf :R2
#213123435235”}

]}
}

}
}

2.8 Format of the URI

In the section above it is mentioned that a URI (the value in the rdf:about
entry) must have a fixed structure such that it can be reconstructed later.
We fix the structure of the URIs as follows:

1. The URI for an entity representing a submodel (Here <entity type>

20

D4.2d - INTO-CPS Traceability Design (Public)

can be something like requirement, requirementSource, ..):
Entity.<entity type>:<git relative path>:<subpart name>#<githash
of the document>

2. The URI for an entity:
Entity.<entity type>:<git relative path>#<githash of the document>

3. The URI for an entity representing a tool:
Entity.softwareTool:<toolname>#<tool version>

4. The URI for an activity:
Activity.<activity type>:<time in format yyyy-mm-dd-hh-mm-ss>#<unique
identifier for this activity such as a guid containing unique username,
time (maybe computer ...)>

5. The URI for an agent:
Agent:<unique username>

The reason to use the git-hash of a document rather then the git-hash of the
git revision to identify a file is the following: Using the git revision hash would
create a new URI for every file in the project on a new commit, even if the
file did not change and thus would give a new node in the graph. This node
would have to be connected to the node of the document in the previous re-
vision. This would create a large amount of nodes and edges in the database.

Since the traceability data should be able to link submodels, every submodel
entity should automatically be linked to its parent model/modelfile.

3 Use cases

This section describes a sequence of actions that could be used during file
creation, modification and destruction to create and record traceability in-
formation. These steps assume that the user has reached a significant point
that is worthy of recording. They also assume at each step we must com-
municate the changes to the traceability database. Note that the support
for git (or any other versioning system) is considered to be optional in this
project.

21

D4.2d - INTO-CPS Traceability Design (Public)

3.1 Model Creation

The modeling process begins with the creation of a model file. The single
steps occur in the modelling tool (e.g. Overture, 20-sim, OpenModelica).
This can be performed in the following steps:

1. Modelling tool creates model file entity named model.extension.

2. Model file entity is committed to git. A tool records the git version
number.

3. OSLC triples describing the activity are generated using the URIs.

4. OSLC triples are communicated to the traceability daemon.

3.2 Model Modification

Changes in the model also need to be communicated from the modelling tool
to the traceability database.

1. Modelling tool updates model file entity.

2. Model file entity is committed to git. A tool records the git version
number.

3. OSLC triples describing the activity are generated using the URIs in
the metadata file and generating updated URI using the git version
number obtained in step 2.

4. OSLC triples are communicated to the traceability daemon.

3.3 Model Destruction

Finally, the deletion of a model also needs to be communicated to the trace-
ability database.

1. Modelling tool / file system deletes model file entity.

2. OSLC triples describing the activity are generated using the URIs.

3. OSLC triples are communicated to the traceability daemon.

22

D4.2d - INTO-CPS Traceability Design (Public)

4 Querying and Visualisation

In order to bring a benefit to the user, the traceability data not only needs to
be recorded, but also analysed and presented in an way that is helpful to the
user. The tools therefore must have a way of querying the database, through
the traceability daemon, for specific information, such as relations between
requirements, models or simulation results. While the implementation of the
traceability functions is in progress at the end of year 2, a first list of queries
is collected below:

• Query the database for all requirements that are related to a specific
FMU.

• Query the database for the code files that are associated with a model.

• Query the database for all the Co-Simulation results that are associated
with a multi-model.

The traceability information not only needs to be received from the database,
but also needs to be presented to the user in a clear way, visualisation is also
an important part. Here, it is logical to provide a visualisation function in
the INTO-CPS application, while visualisation within the single tools can
also be conceived. While it is not reasonable in large projects (with a large
amount of traceability relations) to visualise all the traceability data, only
certain relations of the traceability data, such as the ones listed above, should
be displayed. Typically, two views are considered, the matrix view and the
tree view.

The matrix view displays the relation between two sorts of traceability arti-
facts, such as requirements and test cases. Here, the matrix should display
information, which requirements are tested in which test case, to ensure that
all requirements are tested.

The tree view follows the relation between artifacts. An example of the
tree view is shown above in Figure 2. In the case of INTO-CPS, this could
for example be the relation between a requirement, its related high-level
model (in SysML), the related FMU and generated simulation results or
code. However, such tree views can become very extensive, and therefore
filtering becomes necessary (showing for example only relations to the n-th
level, or only showing relations to certain kinds of artifacts).

In year 3, the analysis and visualisation of the traceability information will
be in the focus of the efforts.

23

D4.2d - INTO-CPS Traceability Design (Public)

5 Status of the tools at M24

In the following list a short overview of the status of the traceability im-
plementation at M24 is given. In general, it can be said that most tools
offer a prototype support for collecting traceability information (such as the
ones described above in section 2.2.3) and sending them to the traceability
daemon.

INTO-CPS application: No support for traceability yet.

Traceability daemon: A prototype of the daemon is working, writing trace-
ability data to a database. It implements version 0.1 of the message
format and supports simple queries (traces to, traces from).

Overture: The Overture tool has been extended with a traceability tool
that is capable of extracting and submitting traceability information
about model evolution, import of model descriptions and FMU exports.
The tool can extract this information from an existing git repository
going through the complete history or it can be connected to the git
post commit hook. The latter keeps the traceability daemon in sync
with the repository during development. A full sync can always be
performed to synchronise a git branch if changes are merged or other
git operations alters the repository in a way where post commit hook
is not called.

20-sim: Detects user actions such as creating a new model, modifying a
model, deleting a model, generating code (including FMU export) and
importing FMI modelDescription.xml files. These actions are sent to
the traceability daemon via external Python scripts. The supported
traceability format is JSON (and where possible also RDF/XML). Sub-
models are addressed via a URI that is a combination of the hash of
the overall 20-sim model and the unique path within the model to that
submodel.

OpenModelica: Preliminary prototype to push traceability information to
daemon implemented, work on queries and visualisation is ongoing.

Modelio: A prototype was implemented, supporting git and pushing test
queries.

RT Tester: Support for OSCL Traceability has been implemented as a pro-
totype in the VSI Tools. Traceability of Requirements to Test results
is work in progress, details can be found in [PLM16].

24

D4.2d - INTO-CPS Traceability Design (Public)

6 Summary and Outlook

This deliverable presents the status of the traceability and model manage-
ment efforts in INTO-CPS at the end of year 2. In summary, an architecture
for traceability was presented, which allows the connected tools to send data
to a central repository (i.e. the database). A daemon was created that re-
ceives this data and stores it. A format for the messages, containing the
traceability data, was also defined.

For year 3, the focus of the work will be on the completion of the tool integra-
tion and on the data retrieval, i.e. the visualisation and presentation of the
traceability data. Only then will the benefits of traceability become evident
to the users. Therefore, the development efforts will be closely coupled to
evaluation of the user’s needs, primarily coming from the four case studies
in Work Package 1 of INTO-CPS.

25

D4.2d - INTO-CPS Traceability Design (Public)

Appendices

A Used libraries

The table 2 below lists all the libraries that are used for the traceability
daemon. Its purpose is to illustrate any potential licensing / open-source
issues that might arise from conflicting licenses.

Library Comment License
typescript Microsofts TypeScript, a super set to

JavaScript, is used to ensure type-safeness
during development and to benefit from its
integration with the Visual Studio Code IDE.

Apache

node-js /
restify

The restify library supports the definition of
a RESTful web server in node.js. (Interface
for the clients)

MIT

node-js /
bluebird

The bluebird library is used to syncronize
parts of program execution while retaining
source code readability (escaping callback
hell).

MIT

node-js /
neo4j

The neo4j library offers an interface to the
neo4j database server.

Apache 2.0

node-js /
xml2js

The xml2js library is a xml document parser
for node.js we use to parse rdf/xml messages.

MIT

Neo4J
Graph DB

The neo4j graph database (community edi-
tion) is used to store the traceability infor-
mation.

GPL / com-
mercial

Elektron Elektron is the framework for the INTO-CPS
application

MIT

Table 2: Libraries used for the traceability daemon

It should be noted that the Neo4J Graph database offers two licenses: the
GPL for the community edition, and a commercial license for the enterprise
edition. For more information, see https://neo4j.com/licensing/

26

https://neo4j.com/licensing/

D4.2d - INTO-CPS Traceability Design (Public)

B Abbreviations

BPMN Business Process Model and Notation
COE Co-Simulation Orchestration Engine
CPS Cyber-Physical System
DSE Design Space Exploration
FMI Functional Mockup Interface
FMU Functional Mockup Unit
HiL Hardware in the Loop
JSON JavaScript Object Notation
OSLC Open Services for Lifecycle Collaboration
RDF Resource Description Framework
SVN Apache Subversion
UML Unified Markup Language
URI Uniform Resource Identifier
XML eXtensible Markup Language

27

D4.2d - INTO-CPS Traceability Design (Public)

References

[BLL+16] Victor Bandur, Peter Gorm Larsen, Kenneth Lausdahl, Casper
Thule, Anders Franz Terkelsen, Carl Gamble, Adrian Pop, Eti-
enne Brosse, Jrg Brauer, Florian Lapschies, Marcel Groothuis,
Christian Kleijn, and Luis Diogo Couto. INTO-CPS Tool Chain
User Manual. Technical report, INTO-CPS Deliverable, D4.2a,
December 2016.

[EN13] Maged Elaasar and Adam Neal. Integrating Modeling Tools in the
Development Lifecycle with OSLC: A Case Study, pages 154–169.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[FGPP15] John Fitzgerald, Carl Gamble, Richard Payne, and Ken Pierce.
Methods Progress Report 1. Technical report, INTO-CPS Deliv-
erable, D3.1b, December 2015.

[FGPP16] John Fitzgerald, Carl Gamble, Richard Payne, and Ken Pierce.
Methods Progress Report 2. Technical report, INTO-CPS Deliv-
erable, D3.2b, December 2016.

[GF94] Orlena C.Z. Gotel and Anthony C.W. Finkelstein. An analysis of
the requirements traceability problem. In Proceedings of the First
International Conference on Requirements Engineering, pages 94–
101, April 1994.

[HWW15] Ron Henkel, Olaf Wolkenhauer, and Dagmar Waltemath. Com-
bining computational models, semantic annotations and simula-
tion experiments in a graph database. Database, 2015, 2015.

[LPO+16] Peter Gorm Larsen, Ken Pierce, Julien Ouy, Kenneth Lausdahl,
Marcel Groothuis, Adrian Pop, Miran Hasanagic, Jörg Brauer,
Etienne Brosse, Carl Gamble, Simon Foster, and Jim Woodcock.
Requirements Report Year 2. Technical report, INTO-CPS De-
liverable, D7.5, December 2016.

[PLM16] Adrian Pop, Florian Lapschies, and Oliver Möller. Test automa-
tion module in the INTO-CPS Platform. Technical report, INTO-
CPS Deliverable, D5.2a, December 2016.

[PSA+14] Adrian Pop, Martin Sjölund, Adeel Ashgar, Peter Fritzson, and
Francesco Casella. Integrated Debugging of Modelica Models.
Modeling, Identification and Control, 35(2):93–107, 2014.

28

D4.2d - INTO-CPS Traceability Design (Public)

[Ver15a] Verified Systems International GmbH, Bremen, Germany. RT-
Tester 6.0: User Manual, 2015. https://www.verified.de/

products/rt-tester/, Doc. Id. Verified-INT-014-2003.

[Ver15b] Verified Systems International GmbH, Bremen, Germany. RT-
Tester Model-Based Test Case and Test Data Generator –
RTT-MBT: User Manual, 2015. https://www.verified.de/

products/model-based-testing/, Doc. Id. Verified-INT-003-
2012.

29

https://www.verified.de/products/rt-tester/
https://www.verified.de/products/rt-tester/
https://www.verified.de/products/model-based-testing/
https://www.verified.de/products/model-based-testing/

	Introduction
	Purpose and goals for traceability within INTO-CPS
	Scope
	State of the art of the baseline tools

	Specification
	Requirements and design decisions
	Traceability architecture
	Design decisions
	Traceability database
	Traceability actions
	Message structure and syntax
	Example messages
	Format of the URI

	Use cases
	Model Creation
	Model Modification
	Model Destruction

	Querying and Visualisation
	Status of the tools at M24
	Summary and Outlook
	Appendices
	Used libraries
	Abbreviations

