
Grant Agreement: 644047

INtegrated TOol chain for model-based design of CPSs

Methods Progress Report 1

Deliverable Number: D3.1b

Version: 1.0

Date: 2015

Public Document

http://into-cps.au.dk

D3.1b - Short Document Title (Public)

Contributors:

John Fitzgerald, UNEW
Carl Gamble, UNEW
Richard Payne, UNEW
Ken Pierce, UNEW

Editors:

Richard Payne, UNEW

Reviewers:

Christian König, TWT
Andrey Sadovykh, ST
Claes Dühring Jaeger, AI

Consortium:

Aarhus University AU Newcastle University UNEW
University of York UY Linköping University LIU
Verified Systems International GmbH VSI Controllab Products CLP
ClearSy CLE TWT GmbH TWT
Agro Intelligence AI United Technologies UTRC
Softeam ST

2

D3.1b - Short Document Title (Public)

Document History

Ver Date Author Description
0.1 03-08-2015 Ken Pierce Draft structure of deliverable and responsibilities
0.2 18-09-2015 Richard Payne Draft concepts added
0.3 28-10-2015 Richard Payne Concepts updated for comments; version for use

by rest of project
0.4 13-11-2015 Carl Gamble PROV and OSLC concepts, ontology and exam-

ples added
0.5 13-11-2015 Richard Payne Traceability and provenance SotA added
0.6 15-11-2015 Carl Gamble DSE and Traceability progress statements added
0.7 16-11-2015 John Fitzgerald Introduction added
0.8 16-11-2015 Ken Pierce Requirements and methods SotA added
1.0 15-12-2015 Carl Gamble Internal review comments addressed

3

D3.1b - Short Document Title (Public)

Abstract

This document reports progress in Work package 3 (Multi-modelling Methods) in the
first year of INTO-CPS. It also reports on the project’s survey of the state of the art
in multi-modelling methods and heterogeneous system models, requirements engineering,
and traceability and provenance for CPS design. An appendix is included that describes
additional preliminary work on the use of a combination of W3C Prov and OSLC speci-
fications for traceability and provenance within the INTO-CPS technologies.

4

D3.1b - Short Document Title (Public)

Contents
1 Introduction 6

2 Progress on WP3 Tasks 7
2.1 T3.1: Workflows . 7
2.2 T3.2: Design Space Exploration . 10
2.3 T3.3: Provenance and Traceability . 11
2.4 T3.4: Guidelines . 12
2.5 T3.5: Pilot Case Studies . 12

3 State of the Art in Multi-model Methods 13
3.1 Requirements Engineering . 14
3.2 Traceability and Provenance . 15
3.3 Design Space Exploration . 16
3.4 Multi-modelling Methods and Hetereogeneous System Models 17

A Provenance and Traceability 20
A.1 Introduction . 20
A.2 Prov Concepts . 20
A.3 OSLC Specifications . 26
A.4 Proposed INTO-CPS Traceability Ontology 32
A.5 Robot Example . 50
A.6 UTRC Case Study Findings . 63
A.7 Open Questions . 64

5

D3.1b - Short Document Title (Public)

1 Introduction

This report describes the work undertaken in Year 1 of INTO-CPS in Work Package 3.
New and prospective users of the INTO-CPS technologies should refer to the Deliverable
3.1a Method Guidance 1 [FGPP15].

Work Package 3 (Multi-modelling Methods) in INTO-CPS aims to provide pragmatic
methods in the form of guidelines and patterns that support the emerging tool chain. Our
focus is on ensuring that adoption of the tool chain is cost-effective by providing guidance
to help users determine the modelling technologies and patterns that best meet their needs
and integrate with their work flows, taking into account their previous experience and
processes. Ultimately, the full set of guidelines will cover the following areas:

• Workflows: multi-model construction from requirements capture in SysML, and the
integration of multi-models into existing development activities and processes.

• Design Space Exploration: the use of co-simulation to support consideration of
design options.

• Provenance and Traceability: methods for machine-assisted recording and mainte-
nance of links between models, multi-models and other design artefacts.

The guidelines are underpinned by a common concept base, and are supported by a
growing set of pilot studies that can serve as benchmarks for the methods and tools and
as illustrations for the tool chain’s capabilities.

The first release of the new multi-modelling tool chain was scheduled for late in Year 1.
Our priority in WP3 was therefore to lay foundations for guidelines that will emerge from
experience with the tool chain, and to provide specifications for functionality required
of tools in the areas of Design Space Exploration (DSE) and traceability. Our specific
objectives were therefore as follows:

• To survey the state of the art in multi-modelling methods, so that the project could
identify promising techniques and tools and position its own contributions. This
survey is reported in Section 3.

• To review the workflows in the case study partners and identify a candidate initial
workflow against which the INTO-CPS tool chain could be validated once released.
This was undertaken in Task 3.1 and is reported in Section 2.1.

• To specify the Design Space Exploration (DSE) support that would ultimately be
required in the toolchain. This was undertaken in Task 3.2 and is reported in
Section 2.2. The specification will be implemented in Task 5.1, for which Year 1
progress is reported in Deliverable 5.1a [GHJ+15].

• To specify the traceability and provenance functionality that the toolchain should
support. This would be implemented in Task 4.4 from Year 2 onwards. This was
undertaken in Task 3.3 and is reported in Section 2.3. Details of the support for
provenance features are given as Appendix A. The specification will be implemented
in Task 4.4 from Year 2 onwards.

• To prepare a common concept base for the project, and deliver a first set of guide-
lines for the construction of SysML models for multi-modelling given different entry

6

D3.1b - Short Document Title (Public)

points, domain knowledge and previous multi-modelling experience. This was un-
dertaken in Task 3.4 and is reported in Section 2.4. The concept base is reported
in D3.1a Method Guidance 1 [FGPP15].

• To document initial pilot studies that illustrate various properties of CPSs and
features of the INTO-CPS technologies. This was undertaken in Task 3.5 and the
initial pilot studies are described in reported in Section 2.5.

2 Progress on WP3 Tasks

2.1 T3.1: Workflows

In the first year of the project, the focus of this task was to propose a candidate initial
workflow for the INTO-CPS technologies. Since the initial tool release was not planned
until the end of this first year, full validation of the proposed workflow will not be achieved
until later in the project. The main validation effort in this first year therefore entailed
aligning the proposed workflows with both expected tool functionality, and in particular
with the existing practices, needs and expectations of the industrial case study owners.
In order to achieve this, two surveys were carried out through questionnaires, with the
results informing the workflows work. These surveys were:

• the capabilities of the baseline tools

• the existing practices of the case study owners

The key result gathered from these surveys is that there will be no single, one-size-fits-
all workflow for INTO-CPS. The scope of the tool chain is wide, and the experience and
practices of the industrial case study owners are diverse. For this reason, we developed the
idea a set of activities carried out during CPS development, which then form workflows
when grouped and linked.

We have identified an initial set of activities from the surveys, which are presented as
part of the method guidelines in Deliverable D3.1a [FGPP15]. These activities are also
linked with the traceability artifacts described in Appendix A. From these activities we
consider how two existing workflows —based on responses to the survey of industrial
case study partners— could be enhanced by the INTO-CPS technologies. The work here
also informed the “Example Use Case for the INTO-CPS Technologies” which presents
a putative workflow that covers all aspects of the tool, though which is unlikely to be
followed to the letter in practice.

As experience is gained with the tool chain, and feedback received from industrial case
study owners, further workflows will be developed and guidelines will be created that
advise on when and how each workflow could be followed. This follows on from existing
work from the DESTECS baseline project [FLPV13a]. In the remainder of this section
we present the key findings from the survey of industrial case study owners.

7

D3.1b - Short Document Title (Public)

2.1.1 Summary of Results from the Survey of the Industrial Case Study
Owners

The survey of the industrial case study owners (CLE, AI, UTRC, and TWT) was un-
dertaken using a questionnaire filled in by each of the partners. The questionnaire was
divided into six sections:

• Workflows and Requirements

• Modelling and Simulation

• Tracebility, Provenance, Model Management

• Design Space Exploration

• Collaboration and Distribution

• Testing, Prototypes and Realisations

From these survey, along with informal discussions, we are able to establish a ‘profile’ for
each of the case study owners:

CLE Have well-established DE modelling practices based on formal proof and model
checking. They have a small number of repeat customers. They are looking to
INTO-CPS as a way to enhance their existing practice using simulation-based evi-
dence.

AI Do not have well-established modelling- and simulation-based design processes. They
are moving to developing both hardware and software in-house and are looking to
adopt INTO-CPS to handle the complexity of CPS design.

UTRC Have well-established modelling practices in a variety of formalisms with some
form of co-simulation. They have large libraries of reusable models. They are in-
terested in using INTO-CPS to help establish better collaboration between existing
design teams and to establish traceability through large CPS developments.

TWT Have well-established modelling practices focusing on software design using FMI
co-simulation. They are interested in the hardware-in-the-loop testing based on
INTO-CPS to improve confidence in designs.

Below we now summarise the key findings, commonalities and differences between the
partners that inform these profiles and the workflows presented in Deliverable D3.1a [FGPP15].

Workflows and Requirements UTRC and CLE have standardised workflows and
adhere to standards in their domains (building automation and railways respectively). In
particular UTRC has a clear workflow of tasks undertaken in order by different engineers
and they wish to paralellise this. AI are working towards meeting functional safety
standard. UTRC and TWT follow high iterative approach to design. CLE follow a more
linear V-model.

Microsoft tools are widely used to capture and manage requirements, in particular Ex-
cel (UTRC, CLE, TWT) and Word (AI). Additionally UTRC use the proprietary IBM

8

D3.1b - Short Document Title (Public)

Rational DOORS1.

UTRC and TWT identify difficulties in communicating terminology and vision between
stakeholders when defining requirements for CPS designs. CLE and AI currently work
with stakeholders within their own domains and do not experience as many problems
currently.

All partners identified that design changes are triggered by changes to stakeholder needs,
problems encountered during design, and changes in budget. These can lead to overruns,
increased project cost, and increased product costs. Responses include tracking issues and
evolutions through tickets, and conducting impact and feasibility analysis and evolving
designs where appropriate.

Modelling and Simulation Models are manually created by all partners, though
UTRC and CLE have some level of automatic model generation in specific circumstances.
UTRC have a libraries of models for standard components and reuse is common prac-
tice.

TWT mainly use CT models. AI have some CT models of mechanical components (FEM)
and use electrical models for documentation. AI do not currently model software using
DE or state machines. CLE current modelling focus are software verification through DE
models and state machines. UTRC use a wide variety of models, with current focus on
Matlab, Modelica and state machines. Both TWT and UTRC do multi-domain modelling
in Matlab/Simulink and co-simulate using FMI.

All parters identified areas where improved co-simulation would improve their workflows.
All partners expressed a wish to have GUI interfaces for general use, with access to
command-line scripting for specific use cases.

Tracebility, Provenance, Model Management The partners currently manage var-
ious levels of traceability through diverse tools. CLE and UTRC use Excel, while TWT
use Fogbugs Project Tracker. Practices at AI are evolving from third party to in-house
software development, but some traceability can be established from documentation. All
partners identified a need to store and manage diverse traceability artefacts (including
models, results, design notes and documentation).

UTRC use Mathworks’ Validation and Verification suite in some cases to trace require-
ments between DOORS and models, but in general the diversity of engineering domains
and lack of tool support leads to long face-to-face meetings to establish agreement on
traceability. In addition high-level requirements can be realised through multiple compo-
nents (or models thereof) leading to complex traceability needs.

The partners use various practices to help record authorship of artefacts including com-
ments within models and records in version management software. All partners identify
a need to produce certification evidence or customer documentation from traceability
and/or provenance data recorded during a development.

1http://www-03.ibm.com/software/products/en/ratidoor

9

http://www-03.ibm.com/software/products/en/ratidoor

D3.1b - Short Document Title (Public)

Design Space Exploration Current practice in DSE is typically carried out manually
and relies on the tacit knowledge and expertise of engineers. UTRC however have some
internals tools for carrying out DSE. No partner currently use exploration techniques that
reduce design space size (e.g. Taguchi tables, simulated annealing).

TWT currently explore both CT model variants and parameters within those variants.
AI expressed a clear desire to do this as well, in addition to sweeping DE parameters such
as control thread periods.

Results are gathered in CSV/spreadsheets and are further processed in Excel and Matlab,
and in Origin (UTRC) and Python (TWT). Visualisations include histograms, graphs
and custom GUIs and are typically manually assessed through inspection, though TWT
generate reports automatically.

Collaboration and Distribution All partners identified a need to pass artefacts be-
tween design teams (models and model fragments, simulation results, textual information,
requirements information, and test cases). Partners with existing modelling practices
(UTRC, CLE, TWT) perform integration testing.

Use of distributed computing is not a core part of existing practice. TWT perform some
remote simulations. Use of distributed computing is of interest to UTRC but current
solutions are too complex.

Testing, Prototypes and Realisations Partners with existing modelling practices
(UTRC, CLE, TWT) perform automated testing of models and use of models for gener-
ating tests (and requirements in the case of TWT). These partners also use simulation
results to inform models in an iterative way. UTRC in particular have a large body of
existing testing practices. Test cases are produced manually by AI and CLE. In addi-
tion to testing, CLE and UTRC use other formal verification methods including model
checking and formal proof.

Most partners (UTRC, CLE, AI) currently perform hardware- or software-in-the-loop
simulation, and TWT are interested in adopting this practice. Additionally code gener-
ation is currently used by UTRC, TWT and CLE, typically targeting C.

2.2 T3.2: Design Space Exploration

In the first year of the DSE task the focus has been on assessing what the industrial
partners currently understand of DSE, what their aspirations are for DSE within their
case studies and what DSE approaches and algorithms should the INTO-CPS project aim
to support. As outlined earlier in Section 2.1.1 the DSE approaches currently undertaken
by the WP1 partners are manual and rely heavily on engineer expertise to both define
product parameters and to analyse results. While there will always be a need for engineer
expertise within the DSE methods to both define what aspects of a product design should
be varied and how to measure simulation outputs to evaluate and rank designs, the tool
support within INTO-CPS aims to support the engineer in several ways:

10

D3.1b - Short Document Title (Public)

• reduce the workload in defining the parameters for and running multiple simula-
tions to explore the design space by automating the configuration and launch of
simulations;

• provide a range of DSE algorithms for the engineer to select from along with guid-
ance about the suitability for different problem domains;

• provide templates and scripts to obtain objective measures of simulated CPS per-
formance from the raw simulation results;

• support the use of both scripted ranking functions and pareto optimality to rank
the results of each design globally;

• reduce the total number of simulations required to have confidence in finding a
globally optimum solution by using design ranking and closed loop optimisation
methods.

The details of both the currently implemented DSE method and the set of proposed
methods may be found in D5.1a [GHJ+15]. This deliverable also contains the aspirations
of the WP1 partners for DSE along with comment on how the proposed methods will
meet them.

2.3 T3.3: Provenance and Traceability

The first year of provenance and traceability study has concentrated on exploring the
both the relations that will be important to the record within the INTO-CPS tool chain
and also potential standard notations and specifications that may be used to represent
them. Two distinct specifications have been identified to form the foundations for the
the provenance and traceability concepts within INTO-CPS, these specifications have
the benefits of both being open and free to use, and, in case of OSLC, have a wide
base of industry support. The W3C PROV 2 model provides support for recording the
temporal relations between activities, entities and agents within a process. This supports
the recording of, for example, links between simulation results and the models, platforms
and configurations that produced them, this is important when generating documentation
as part of a certification effort. To compliment this the relations specified by the OSLC 3

provides support for recording logical relations between objects within a data set. So
OSLC allows the linking of, for example, a submodel and a requirement that it is designed
to satisfy, or from a simulation result to the requirement it provides evidence for.

The key concepts of both PROV and OSLC are presented in Appendix A of this document
along with the proposed provenance and traceability ontology, which will form the basis
for data recorded by the various tools in the INTO-CPS tool chain. This appendix
also contains example applications of both PROV and OSLC being used to represent
many of the document relations expected when using the INTO-CPS tool chain and
workflows.

2http://www.w3.org/TR/prov-overview/
3http://open-services.net

11

http://www.w3.org/TR/prov-overview/
http://open-services.net

D3.1b - Short Document Title (Public)

2.4 T3.4: Guidelines

In the first year of the project, the main aim of this task was to collate a concept base
which will form a living document. The concept base [FGPP15] should be used as a
resource for the project to ensure consistent terminology use when producing deliverables
and also in dissemination materials (e.g. conference papers). The concept base used
several inputs as baseline; primarily drawing on existing EU project outputs. These
include:

TAMS4CPS TAMS4CPS4 is a EU H2020 coordination and support action, concerned
with an aim to identify research and development needs for modelling and simula-
tion for CPSs. As such, the definitional framework produced in the project is a key
input. Several general areas, such as definitions of CPSs, modelling and simulation
were valuable inputs.

DESTECS The DESTECS5 EU project was concerned with the co-modelling and co-
simulation of embedded systems. As such, concepts including models, simulation
and co-simulation were of use. However, as DESTECS focussed on embedded sys-
tems, several of the terms required lifting to the CPS domain. Several other tech-
nologies and tools used in INTO-CPS were not covered in DESTECS.

COMPASS The COMPASS6 FP7 project focussed on the modelling and analysis of
Systems of Systems (SoSs). SoSs exhibit several characteristics in common with
CPSs, and as the COMPASS project used several technologies in common with
INTO-CPS baseline (SysML, RT-Tester) the COMPASS concept and terminology
base was of use.

The concept base, presented in Deliverable D3.1a [FGPP15], was circulated to the project
partners for input to determine any areas of disagreement and for reference. Several
terms were addressed, but at the time of writing, no major concerns have been raised.
The concept base will therefore be used to inform a hyperlinked resource for the project
in the next phases of the project.

The second aim of the task is to produce guidelines for multi-modelling. In the first year,
we concentrated on guidelines for SysML modelling, presented in D3.1a [FGPP15]. These
guidelines focus on the construction of SysML models for multi-modelling given different
entry points, domain knowledge and previous multi-modelling experience. The guidelines
make use of the INTO-CPS SysML profile in Deliverable D2.1a [APCB15].

2.5 T3.5: Pilot Case Studies

In Deliverable D3.4 [FGP+15] we present a collection of pilot studies that illustrate differ-
ent aspects of the INTO-CPS baseline and future technologies. These studies were chosen
against selection criteria in terms of properties of CPSs and their ability to demonstrate
the features of the INTO-CPS technologies. We also ensure that the studies must be easily
explained and material should be made available for teaching/training purposes.

4http://www.tams4cps.eu
5http://www.destecs.org
6http://www.compass-research.eu

12

http://www.tams4cps.eu
http://www.destecs.org
http://www.compass-research.eu

D3.1b - Short Document Title (Public)

In this section, we outline those CPS properties and INTO-CPS technologies, and describe
how the chosen pilot studies meet the criteria. It is important to note that in this first
year, we don’t expect to have complete coverage of the criteria. Therefore in D3.4 we
propose a roadmap for the next 12 months of case study and example development to
test and demonstrate upcoming INTO-CPS technologies.

The INTO-CPS concept base in [FGPP15], describes CPSs as being “ICT systems (sens-
ing, actuating, computing, communication, etc.) embedded in physical objects, inter-
connected (including through the Internet) and providing citizens and businesses with a
wide range of innovative applications and services”. As such, the pilot studies should ex-
hibit cyber, physical and network communication characteristics. The pilot studies in this
document address mainly address the first two of these CPS characteristics. The reason
for this is that these examples test the baseline tools, which emphasise the modelling of
cyber and physical systems and the co-modelling of these in embedded systems.

In the first year, the main criteria for technology coverage was to model the example
with baseline tools. As such, we required the examples to be modelled with: Crescendo
(Overture and 20-Sim), OpenModelica and SysML. In addition, it was deemed beneficial
if the examples could be used to demonstrate technologies becoming available through
the first year of the project. As such, Table 1 shows the baseline technologies used in
the examples, and Table 2 show the INTO-CPS technologies available during year 1 that
have been demonstrated by the pilot studies.

Baseline

Multi-model C
re
sc
en
do

O
pe

nM
od

el
ic
a

‘H
ol
is
ti
c’

Sy
sM

L
m
od

el

R
T
Te

st
er

Three-tank Water Tank x x
Fan Coil Unit (FCU) x x
Line-following Robot x x x
Turn Indicator x

Table 1: Overview of baseline technologies used for pilot studies

3 State of the Art in Multi-model Methods

In this section, we survey related projects in several areas of interest in WP3. These
areas are: requirements engineering in Section 3.1; traceability and provenance in Sec-
tion 3.2; design space exploration in Section 3.3 and in multi-modelling methods in Sec-
tion 3.4.

13

D3.1b - Short Document Title (Public)

INTO-CPS Technology

Multi-model M
ul
ti
-D

E
m
od

el

M
ul
ti
-C

T
m
od

el

20
-S
im

(f
or

F
M
U
)

O
pe

nM
od

el
ic
a
(f
or

F
M
U
)

V
D
M
-R
T

(f
or

F
M
U
)

IN
T
O
-C

P
S
Sy

sM
L

C
o-
si
m
ul
at
io
n
E
ng

in
e
(C

O
E
)

Sy
sM

L
re
qu

ir
em

en
ts

Tr
ac
ea
bi
lit
y
lin

ks
in
cl
ud

ed

P
ro
ve
na

nc
e
gr
ap

h
in
cl
ud

ed

D
SE

su
pp

or
t
in
cl
ud

ed

Te
st

A
ut
om

at
io
n
su
pp

or
t

M
od

el
ch
ec
ki
ng

Si
L/

H
iL

en
ab

le
d

Three-tank Water Tank x x x x
Fan Coil Unit (FCU) x x x x
Line-following Robot x x x x x

Table 2: Overview of INTO-CPS technologies used for pilot studies

3.1 Requirements Engineering

The ADVANCE7 project (along with the Deploy project, covered in the next section) is
based around the Rodin tool and the Event-B formalism. ADVANCE extended Rodin to
allow for FMI co-simulation between Event-B models and arbitrary FMUs. The Rodin
tool supports ProR for managing textual requirements including hierarchies and links.
The tool is now part of the Eclipse incubator program.

The COMPASS8 project developed an approach for the development of Architectural
Frameworks (COMPASS Architectural Framework Framework - CAFF). This was used
to develop guidelines for SoS requirements modelling 9 called SoS-ACRE. Although the
CAFF is agnostic with respect to modelling language, the guidelines were realised in
SysML and insight from this fed into the SysML guidance given in Deliverable D3.1a [FGPP15].

The SPEEDS10 project developed a Contract Specification Language (CSL), allowing col-
laborating teams to define requirements and promises about the components that their
team is developing. This was extended in the DANSE11 project to become the Goal
and Contract Specification Language (GCSL), which permits architectural aspects to be
captured in OCL12 (Object Constraint Language) notation. DANSE methodology docu-
ments13 advocate formalising requirements late in the architectural design workflow.

The TOPCASED project included TOPCASED-Req, a solution to manage requirement
traceability in model for aviation, following the DO-178B lifecycle. The AGeSys14 Project
improved TOPCASED-Req to move away focus on the whole requirements lifecycle as

7http://www.advance-ict.eu/
8http://www.compass-research.eu/
9http://www.compass-research.eu/Project/Deliverables/D211.pdf

10www.speeds.eu.com
11http://danse-ip.eu/
12www.omg.org/spec/OCL
13http://danse-ip.eu/home/pdf/danse_d4.3_methodology_v2.pdf
14http://www.aerospace-valley.com/sites/default/files/encart_html/index.html#1

14

http://www.advance-ict.eu/
http://www.compass-research.eu/
http://www.compass-research.eu/Project/Deliverables/D211.pdf
www.speeds.eu.com
http://danse-ip.eu/
www.omg.org/spec/OCL
http://danse-ip.eu/home/pdf/danse_d4.3_methodology_v2.pdf
http://www.aerospace-valley.com/sites/default/files/encart_html/index.html#1

D3.1b - Short Document Title (Public)

a new tool called becomes ReqCycle. TOPCASED and ReqCycle now form part of the
PolarSys15 open-source tools for embedded systems.

The META tool being developed under DARPA AVM (Adaptive Vehicle Make) pro-
gramme makes use of the CyPhyML meta language. In terms of requirements they focus
on “executable requirements” that are quantifiable tests that can be automatically checked
against models or implementations. This has been demonstrated in OpenModelica.

The ENOSYS16 project targeted design space exploration for FPGA design, using the
MARTE UML profile for high-level specification. The Modelio tool was used in this
project and therefore INTO-CPS already benefits from this research.

The MODRIO17 and Openprod projects investigated mapping requirements to Open-
Modelica. Again as OpenModelica is a baseline tool for INTO-CPS, we can leverage
these results as our technologies develop.

3.2 Traceability and Provenance

The Deploy18 project presents an approach to traceability from informal requirements
to a formal model in the Event-B notation [Pro12]. In contrast to INTO-CPS, Deploy
concentrate on traceability from complete requirements to only state-based models, rather
than the flexible tracing of system engineering model elements. As with the INTO-CPS
project, Deploy see tool support as critical for traceability, and produce an integration
of the ProR platform for requirements engineering and the Rodin platform for Event-
B modelling. The ADVANCE 19 project continued this development. In addition, in
collaboration with the VERDE project, a traceability solution was developed between
Eclipse-based tools such as ProR and Topcased20 for SysML. This uses a concept of
Tracepoints to link to Eclipse model elements [GJ11].

In the OPENCOSS 21 project traceability is used for evidence management and impact
analysis of requirement through to safety cases [vdBLK+15]. Several traceability rela-
tionships are defined linking ‘artefacts’. The traceability links are then used as part of
impact analysis using the Evidence Management tool support produced in the project.
Using SVN repositories, a user must manually add artefacts, linked to resources in a SVN
repository and record the necessary traces. This is in contrast to INTO-CPS which aims
to have a central traceability and management tool which will be integrated with the
INTO-CPS tool chain, and a greater number of traceability links covering a modelling
and simulation.

In the COMPASS 22 project, requirements were modelled and there was support for trace-
ability between models. Explicit traceability mechanisms supporting forwards and back-
wards tracing were not a focus of the project, however a traceability pattern was produced

15https://www.polarsys.org/
16http://www.enosys-project.eu/
17https://www.modelica.org/external-projects/modrio
18http://www.deploy-project.eu
19www.advance-ict.eu/
20https://www.polarsys.org/topcased
21http://www.opencoss-project.eu
22http://compass-research.eu

15

https://www.polarsys.org/
http://www.enosys-project.eu/
https://www.modelica.org/external-projects/modrio
http://www.deploy-project.eu
www.advance-ict.eu/
https://www.polarsys.org/topcased
http://www.opencoss-project.eu
http://compass-research.eu

D3.1b - Short Document Title (Public)

for SysML SoS engineering [PHP+14]. It would appear that provenance metadata could
be captured within the existing framework, but this was not a subject of study in the
project.

In common with INTO-CPS, the SPRINT 23 project uses OSLC to link models form
various tools, from requirements in DOORS through to architectural models using IBM
Rhapsody and Simulink and Modelica system models. Although not explicitly used for
traceability or model management, INTO-CPS should make use of project results in the
implementation and use of OSLC.

The Openprod24 project lists an outcome as including “precise requirements capture and
traceability based on behavior trees integrated with Modelica/UML in Eclipse; ontology-
based generic 2D/3D graphic modeling and database coupling”. However, we were unable
to locate public deliverables.

In analysing the state of the art, the CPSoS 25 EU support action determined that in
the automotive sectors, the collecting and managing maintenance and diagnostic data,
dealing with heterogeneous data considering provenance and quality of data is a challenge
to be addressed in the next 5 years [PEF+14]. The project also recognises the need for
traceability from requirements through to implementation, but in their state of the art ,
they do not appear to identify any projects which tackle this issue [TPR+15].

In the MODRIO26 project, traceability links were proposed between requirements, de-
signs and scenarios for the purposes of requirement evaluation (understanding conflicted
and redundant requirements) and impact analysis. A prototype traceability view was
produced for ModelicaML, but in not extensible across a tool chain [Sch13].

The Acosar 27 project, starting in 2015, aims to integrate real-time systems into simulation
environments. The project description concerns requirements, simulation and integration.
It is not clear if traceability is a focus, however, results should be monitored.

TAPPS 28 are developing an open end-to-end tool chain for developing and deploying CPS
Apps. It in unclear whether this will include traceability, and therefore project outputs
should be monitored.

3.3 Design Space Exploration

A comprehensive overview of the state of the art in DSE is provided in Deliverable
5.1a [GHJ+15].

23http://www.sprint-iot.eu
24http://www.ida.liu.se/labs/pelab/OpenProd/
25http://www.cpsos.eu/
26https://www.modelica.org/external-projects/modrio
27http://www.acosar.eu
28http://www.acosar.eu

16

http://www.sprint-iot.eu
http://www.ida.liu.se/labs/pelab/OpenProd/
https://www.modelica.org/external-projects/modrio
http://www.acosar.eu
http://www.acosar.eu

D3.1b - Short Document Title (Public)

3.4 Multi-modelling Methods and Hetereogeneous System Mod-
els

The CRYSTAL29 project (Artemis) is developing a framework for that allows OEMs to
integrate tools for embedded systems development, based around the Crystal Interop-
erability Specification (IOS) V2.0, which is an extension of OSLC. The project extends
work from previous ARTEMIS projects CESAR, iFEST and MBAT. Their method guid-
ance is based on “Generic Engineering Methods” which are similar to the activities and
workflows described in Deliverable D3.1a [FGPP15]. INTO-CPS should work to align
our workflows with those identified by CRYSTAL, keeping in mind that the needs of the
industrial case study owners is the first priority.

The TERESA30 project aimed to provide guidelines for software process engineers to de-
fine trusted computing engineering processes in various domains (automotive, home con-
trol, industrial control, and metering) and in resource-constrained environments. INTO-
CPS should investigate how these guidelines are presented and if they can inform any of
the guidelines work for the INTO-CPS technologies.

Ptolemy II31 offers a heterogeneous simulation framework for modeling DE and CT com-
ponents within one model. The iCyPhy32 is a pre-competitive industry-academic partner-
ship pursuing well-founded methods for engineering of cyber-physical systems, including
improvements to Ptolemy II. INTO-CPS should consider the gaps in current and research
needs identified in Fisher et al. [FJLM14].

29http://www.crystal-artemis.eu/
30http://www.teresa-project.org/
31http://ptolemy.eecs.berkeley.edu/
32http://www.icyphy.org/

17

http://www.crystal-artemis.eu/
http://www.teresa-project.org/
http://ptolemy.eecs.berkeley.edu/
http://www.icyphy.org/

D3.1b - Short Document Title (Public)

References

[APCB15] Nuno Amalio, Richard Payne, Ana Cavalcanti, and Etienne Brosse. Founda-
tions of the SysML profile for CPS modelling. Technical report, INTO-CPS
Deliverable, D2.1a, December 2015.

[FGP+15] John Fitzgerald, Carl Gamble, Richard Payne, Ken Pierce, and Jörg Brauer.
Examples Compendium 1. Technical report, INTO-CPS Deliverable, D3.4,
December 2015.

[FGPP15] John Fitzgerald, Carl Gamble, Richard Payne, and Ken Pierce. Method
Guidelines 1. Technical report, INTO-CPS Deliverable, D3.1a, December
2015.

[FJLM14] Amit Fizher, Clas A. Jacobson, Edward A. Lee, and Richard M. Murray.
Industrial Cyber-Physical Systems – iCyPhy. In M. Aiguier et al., editor,
Complex Systems Design and Management, pages 21–37. Springer, January
2014.

[FLPV13a] John Fitzgerald, Peter Gorm Larsen, Ken Pierce, and Marcel Verhoef. A
Formal Approach to Collaborative Modelling and Co-simulation for Embed-
ded Systems. To appear in Mathematical Structures in Computer Science,
2013. Outdated by [FLPV13b].

[FLPV13b] John Fitzgerald, Peter Gorm Larsen, Ken Pierce, and Marcel Verhoef. A
Formal Approach to Collaborative Modelling and Co-simulation for Embed-
ded Systems. Mathematical Structures in Computer Science, 23(4):726–750,
2013.

[GHJ+15] Carl Gamble, Francois Hantry, Claes Dühring Jæger, Christian König,
Alie El din Madie, and Richard Payne. Design Space Exploration in the
INTO-CPS Platform. Technical report, INTO-CPS Deliverable, D5.1a, De-
cember 2015.

[GJ11] Andreas Graf and Michael Jastram. Requirements, traceability and dsls
in eclipse with the requirements interchange format (rif/reqif). Technical
report, 2011. http://deploy-eprints.ecs.soton.ac.uk/307/1/mbees2011.pdf.

[LPH+15] Peter Gorm Larsen, Ken Pierce, Francois Hantry, Joey W. Coleman, Sune
Wolff, Kenneth Lausdahl, Marcel Groothuis, Adrian Pop, Miran Hasanagić,
Jörg Brauer, Etienne Brosse, Carl Gamble, Simon Foster, and Jim Wood-
cock. Requirements Report year 1. Technical report, INTO-CPS Deliver-
able, D7.3, December 2015.

[PEF+14] Radoslav Paulen, Sebastian Engell, Wan Fokkink, Haydn Thompson, Dag-
mar Marron, and Svetlana Klessova. Report about the first meeting of the
Working Groups. Technical Report D1.2, EC FP7 project 611115 CPSoS,
February 2014.

[PHP+14] Simon Perry, Jon Holt, Richard Payne, Jeremy Bryans, Claire Ingram, Al-
varo Miyazawa, Luís Diogo Couto, Stefan Hallerstede, Anders Kaels Mal-
mos, Juliano Iyoda, Marcio Cornelio, and Jan Peleska. Final Report on

18

D3.1b - Short Document Title (Public)

SoS Architectural Models. Technical report, COMPASS Deliverable, D22.6,
September 2014. Available at http://www.compass-research.eu/.

[Pro12] Deploy Project. Deploy methods: Final report. Technical Report D6.6, EC
project 214158 Deploy, April 2012.

[Sch13] Wladimir Schamai. Model-Based Verification of Dynamic System Be-
havior against Requirements: Method, Language, and Tool. PhD thesis,
Linkoping University, Department of Computer and Information Science.
Linkoping University, The Institute of Technology., 2013. http://liu.diva-
portal.org/smash/get/diva2:654890/FULLTEXT01.pdf.

[TPR+15] Haydn Thompson, Radoslav Paulen, Michel Reniers, Christian Sonntag,
and Sebastian Engell. Analysis of the State-of-the-Art and Future Chal-
lenges in Cyber-physical Systems of Systems. Technical Report D2.4, EC
FP7 project 611115 CPSoS, February 2015.

[vdBLK+15] Mark van den Brand, Luna Yaping Luo, Martijn Klabbers, Giorgio Taglia-
ferri, Vincenzo Manni Andrea Critelli, Jose Luis de la Vara, Sunil Nair,
Carlo Ieva, and Rodolphe Arthaud. Evidence management service in-
frastructure: Methodological guide. Technical Report D6.7, OPENCOSS
Project, 2015.

19

D3.1b - Short Document Title (Public)

A Provenance and Traceability

A.1 Introduction

Traceability and Provenance to support requirements engineering, certification efforts and
model management will be key features for INTO-CPS. In this appendix we present the
initial work on using the W3C Prov concepts to support model management. The basic
concepts of Prov are introduced first, before candidate specifications from the OSLC are
presented. The PROV concepts and a selection of the OSLC relations are then combined
into a proposed INTO-CPS ontology. Examples of how these concepts may be used to
represent a range of anticipated activities within an INTO-CPS work flow are presented.
We then discuss some findings found when trying to apply Prov to the UTRC WP1 case
study before touching upon some open questions.

A.2 Prov Concepts

Provenance is the information about who was involved in producing something, the ac-
tivities that took place and entities that were involved. The W3C PROV working group
have defined a family of documents that describes the concepts in this domain and two in
particular have been used in the development of the provenance and traceability work in
INTO-CPS. The provenance ontology (PROV-O)33 defines the concepts that are repre-
sented by PROV and this heavily influenced the construction of our traceability ontology
presented later (Section| A.4). Alongside this the provenance notation (PROV-N)34 has
been used to produce concrete examples of the provenance data that would need to
be recorded and from this we obtain the majority of the graphical views in this ap-
pendix.

In the following subsections we will present the main concepts of PROV-O, focussing
on their relations and present examples in both the PROV-N notation and graphical
form.

A.2.1 Entities, Activities and Agents

There are three node types in a Prov graph these are entity, activity and agent.

entities “An entity is a physical, digital, conceptual, or other kind of thing with some
fixed aspects; entities may be real or imaginary”. In the case of INTO-CPS, this
would include requirements documents, models, simulation configuration files, sim-
ulation results and the simulators themselves.

activities “An activity is something that occurs over a period of time and acts upon
or with entities; it may include consuming, processing, transforming, modifying,
relocating, using, or generating entities”. In INTO-CPS activities will include,
modelling, simulation and co-simulation;

33http://www.w3.org/TR/prov-o/
34http://www.w3.org/TR/prov-n/

20

http://www.w3.org/TR/prov-o/
http://www.w3.org/TR/prov-n/

D3.1b - Short Document Title (Public)

Entity1

Entity2

param1: val1

param2: val2

(a)�
entity(Entity1)
entity(Entity2 ,[param1="val1", param2="val2"])� �

(b)

Figure 1: Prov entities in their graphic (a) and Prov-N (b) forms.

Activity1

Activity2

param1: val1

param2: val2

(a)�
activity(Activity1)
activity(Activity2 , 2015 -05 -18 T16 :00:00 , 2011 -05 -18 T17 :00:00 ,

[param1="val1", param2="val2"])� �
(b)

Figure 2: Prov activities in their graphic (a) and Prov-N (b) forms.

agents “An agent is something that bears some form of responsibility for an activity
taking place, for the existence of an entity, or for another agent’s activity”. Agent’s
will include individual engineers but could also include internal and external organ-
isations such as the quality department or a component supplier.

The standard representation of Prov data is in the Prov-N notation and for each type
there is a minimum set of data required along with one or more optional extras. Figure 1b
shows the Prov-N used to create the two entities displayed in Figure 1a. Entity1 in both
figures has the minimum allowed description, which is essentially just its unique id. En-
tity2 makes use of the optional list of key/value pairs by which Prov-N allows additional
description data to be added. Similarly Figure 2b shows the Prov-N description of two
activities, the first activity is simply named, while the second has both the optional start
and end times defined along with two key/value pair parameters. The graphic represen-
tation of these two activities can be seen in Figure 2a where we may note that while the
second activity has start and end times, these are not displayed. Finally Figure 3b shows
the Prov-N description of two agents, one with just a name and the other with a pair of
key/value parameters, their graphic representation can been found in Figure 3a.

A.2.2 Node Relations

Prov provides a set of relations that are used to describe the relationships between the
three node types. The full set of relations may be found on the W3C PROV ontology 35,

35http://www.w3.org/TR/prov-o/

21

http://www.w3.org/TR/prov-o/

D3.1b - Short Document Title (Public)

Alice

Bob

param1: val1

param2: val2

(a)�
agent(Alice)
agent(Bob ,[param1="val1", param2="val2"])� �

(b)

Figure 3: Prov agents in their graphic (a) and Prov-N (b) forms.

but in the example traces we have produced thus far we have only needed a subset of
these. Starting then by considering only the entity and activity nodes, the key relations
are:

used “Usage is the beginning of utilizing an entity by an activity. Before usage, the
activity had not begun to utilize this entity and could not have been affected by
the entity.” As the quote implies, activities use entities, so we can imagine that
simulation uses a model file.

was generated by “Generation is the completion of production of a new entity by an
activity. This entity did not exist before generation and becomes available for usage
after this generation.” Entities are generated by activities, so we could say that a
simulation result file was generated by the simulation activity.

was derived from “A derivation is a transformation of an entity into another, an update
of an entity resulting in a new one, or the construction of a new entity based on a
pre-existing entity.” An ‘entity ← was derived from ← entity’ relation can reduce
ambiguity found in an ‘entity ← used ← activity ← was generated by ← entity’
chain when there are multiple entities on both ends of the chain. For example if
a modelling activity uses two input models and produces two output models, it is
not clear which input models influenced which output models.

was informed by “Communication is the exchange of an entity by two activities, one
activity using the entity generated by the other.” This relation can be used to
indicate communication between activities where the data communicated is either
insignificant or transient. For example, this could be used to describe and OSLC
exchange between two tools or the FMI communications between simulators and
the COE.

The graphical and prov-n representations of these relations can be seen in Figure 4. It is
worth noting at this point that the arrows point backwards in time and from the subject
to the object. For example when recording the relation file X was generated by activity
Y, the arrow will point to the activity.

Prov also includes relations to record responsibility for actions and entities, there are only
three of these and all have proved to be of use when considering provenance examples for
INTO-CPS:

Attribution “Attribution is the ascribing of an entity to an agent.” Very simply, at-

22

D3.1b - Short Document Title (Public)

tributing an entity to an agent states who is responsible for it, this could mean the
original author or the agent responsible for executing a simulation that produced
it.

Association “An activity association is an assignment of responsibility to an agent for
an activity, indicating that the agent had a role in the activity. It further allows
for a plan to be specified, which is the plan intended by the agent to achieve some
goals in the context of this activity.” The association here could indicate the agent
that was responsible for executing a co-simulation or for performing some modelling
work. Thus far we have not required to use the plan element of association.

Delegation “is the assignment of authority and responsibility to an agent (by itself or
by another agent) to carry out a specific activity as a delegate or representative,
while the agent it acts on behalf of retains some responsibility for the outcome of
the delegated work. For example, a student acted on behalf of his supervisor, who
acted on behalf of the department chair, who acted on behalf of the university; all
those agents are responsible in some way for the activity that took place but we
do not say explicitly who bears responsibility and to what degree." As the quote
shows, the delegation relation allows the provenance to record a chain of command.

The graphical and Prov-N representations of these relations is shown in Figure 5. Again
the arrow points from the subject to the object, for example Entity1 was attributed to
Alice. For the delegation relation, the position of the arrows pointing to both Alice and
Acitivity2 from Bob mean that Bob acted on behalf of Alice to perform Activity 2. It is
worth noting here that the delegation relation does not have to include an activity and
could be used to show the general structure of the organisation.

23

D3.1b - Short Document Title (Public)

Activity1

Entity1

use

Activity2

inf

Entity2

use

gen der

(a)�
entity(Entity1)
entity(Entity2)

activity(Activity1)
activity(Activity2)

used(Activity1 ,Entity1 ,-)
used(Activity2 ,Entity2 ,-)

wasGeneratedBy(Entity2 ,Activity1 ,-)

wasDerivedFrom(Entity2 , Entity1 , Activity1 ,-,-)

wasInformedBy(Activity2 ,Activity1)� �
(b)

Figure 4: Key Prov relations between entities and activities in both graphic (a) and
Prov-N (b) form.

24

D3.1b - Short Document Title (Public)

Activity1

Entity1

use

Bob

assoc

Activity2

use

Alice

att

del

(a)�
entity(Entity1)

activity(Activity1)
activity(Activity2)

agent(Alice)
agent(Bob)

wasAttributedTo(Entity1 ,Alice)
wasAssociatedWith(Activity1 ,Bob ,-)
actedOnBehalfOf(Bob ,Alice ,Activity2)

used(Activity1 ,Entity1 ,-)
used(Activity2 ,Entity1 ,-)� �

(b)

Figure 5: Key Prov relations between agents and entities/activities in both graphic (a)
and Prov-N (b) form.

25

D3.1b - Short Document Title (Public)

A.3 OSLC Specifications

The OSLC contains multiple specifications covering areas including requirements man-
agement, change management, asset management and others. This subsection is further
divided into a series of sub-sub-sections, the first five (Appendices A.3.1 – A.3.5) compile
lists of the main relations in each of these specifications along with a verbatim copy of
the description of the relation taken from the OSLC specification documents. It is fair
to say that the description text given by the OSLC specification for many of the rela-
tions is somewhat loose and open to some interpretation and so it is suggested that the
reader does not dwell upon the detail of the descriptions in these subsections. The final
subsubsection, Appendix A.3.6, contains a list of the relations that are currently selected
for adoption for the INTO-CPS traceability ontology during the next year of the project,
here we include our interpretation of the meaning of each adopted term.

Some of the specifications below make reference to the Dublin Core using the prefix
‘dcterms:’, this is an initiative to standardise many of the terms that are commonly used
when identifying meta-data. A complete list of the meta-data terms they define may be
found at their website36.

A.3.1 Requirements Management (oslc_rm) v2.0

The OSLC requirements management specification considers the relations between re-
quirements artefacts themselves and also between requirements and model elements that
validate or satisfy them. The full specification may be found at the url in the foot-
note.37.

oslc_rm:elaboratedBy The subject is elaborated by the object. For example, a col-
lection of user requirements elaborates a business need, or a model elaborates a
collection of system requirements.

oslc_rm:elaborates The object is elaborated by the subject.

oslc_rm:specifiedBy The subject is specified by the object. For example, a model
element might make a requirement collection more precise.

oslc_rm:specifies The object is specified by the subject.

oslc_rm:affectedBy The subject is affected by the object, for example, a defect or
issue.

oslc_rm:trackedBy Resource, such as a change request, which manages this require-
ment collection.

oslc_rm:implementedBy Resource, such as a change request, which implements this
requirement collection.

oslc_rm:validatedBy Resource, such as a test plan, which validates this requirement
collection.

36http://dublincore.org/documents/dcmi-terms/
37http://open-services.net/bin/view/Main/RmSpecificationV2?rev=57

26

http://dublincore.org/documents/dcmi-terms/
http://open-services.net/bin/view/Main/RmSpecificationV2?rev=57

D3.1b - Short Document Title (Public)

oslc_rm:satisfiedBy The subject is satisfied by the object. For example, a collection
of user requirements is satisfied by a requirement collection of system requirements.

oslc_rm:satisfies The object is satisfied by the subject.

oslc_rm:decomposedBy The subject is decomposed by the object. For example, a
collection of business requirements is decomposed by a collection of user require-
ments.

oslc_rm:decomposes The object is decomposed by the subject.

oslc_rm:constrainedBy The subject is constrained by the object. For example, a
requirement collection is constrained by a requirement collection.

oslc_rm:constrains The object is constrained by the subject.

A.3.2 Architecture Management (oslc_am) V3.0

The OSLC architecture management specification aims to represent the relations between
architectural elements in general allowing the description of enterprise architectures, so-
lution architectures and technical architectures. It has concepts that overlap with those
in the requirements management specification. Only a small subset is presented below,
the full specification may be found at the url in the footnote38.

oslc_am:refines This resource is a refinement of the referenced resource. For example,
a Use Case scenario might be a refinement of a textual requirement that describes
the interaction.

oslc_am:satisfies This resource satisfies a requirement (the referenced resource). For
example a UML Component satisfies a requirement to provide some type of func-
tionality.

oslc_am:verifies A dependency from a model element to a requirement that determines
whether a system fulfills the requirement. For example a Sequence diagram verifies
a requirement that describes a protocol.

dm:derives The model element derives from a requirement.

dm:elaborates The model element elaborates a change request.

A.3.3 Asset Management (oslc_asset) V2.0

The OSLC asset management specification allows the relationships to an organisation’s
assets and the asset’s lifecycle to be recorded. An asset is anything that provides value
through reference or reuse and so this specification may be useful when recording the
provenance of simulation results where hardware assts are used (HiL)39.

38http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-3.
0/

39http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.
0-Specification/

27

http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-3.0/
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-3.0/
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/

D3.1b - Short Document Title (Public)

oslc_asset:guid An identifier for the asset. Assigned by the service provider when
a resource is created. Different versions of the same asset will share the same
identifier.

oslc_asset:version The version of the asset. Possible values may include ’1.0’, ’2.0’,
etc.

dcterms:abstract Short description or often a single line summary of the resource

dcterms:type The type of the asset based on values defined by the service provider.
This specification does not define the resource for this property, however it should
contain a dcterms:title property.

oslc_asset:state sed to indicate the state of the asset based on values defined by the
service provider. This specification does not define the resource for this property,
however it should contain a dcterms:title property.

oslc_asset:categorization A categorization to classify an asset. The category schema
values are defined by the service provider. This specification does not define the
resource for this property, however it should contain a dcterms:title property.

oslc_asset:manufacturer The name of the asset manufacturer.

oslc_asset:model The value of the asset model.

oslc_asset:serialNumber The serial number assigned by the asset manufacturer.

oslc_asset:tag Specifies the asset tag value for an Asset. Asset tags are typically human
readable labels. For hardware assets, these tags are durable, securely attached to
equipment, and may also be readable by barcode and/or RFID.

oslc_asset:artifact must reference an ’oslc_asset:Artifact’ An Artifact fragment con-
tained in this Asset resource.

oslc_asset:artifactFactory Resource URI used to post new artifacts to the asset.

dcterms:relation This relationship is loosely coupled and has no specific meaning. De-
tails about this relationship may be included in a reified statement.

oslc_asset:relationshipType The type of this relationship from the perspective of
the dcterms:relation resource based on values defined by the service provider. This
specification does not define the resource for this property, however it should contain
a dcterms:title property.

dcterms:creator Creator or creators of the relationship. It is likely that the target
resource will be a foaf:Person but that is not necessarily the case.

dcterms:created Timestamp of the relationship creation.

dcterms:modified Timestamp of the latest relationship modification.

oslc_asset:state Used to indicate the state of the relationship based on values defined
by the service provider. This specification does not define the resource for this
property, however it should contain a dcterms:title property.

28

D3.1b - Short Document Title (Public)

A.3.4 Change Management (oslc_cm) V3.0

The OSLC change management specification, as the name suggests is all about capturing
and tracking change requests for a system. The relations it defines have not yet been
included in the ontology but they may be in the future40.

properties:

oslc_cm:closeDate The date at which no further activity or work is intended to be
conducted.

oslc_cm:state Used to indicate the status of the change request. This property is
read-only, but can be changed using Actions.

oslc_cm:action An action to change the state of this ChangeRequest.

oslc_cm:priority Priority of this ChangeRequest

oslc_cm:severity Severity or criticality of ChangeRequest

oslc_cm:attachment Multi-valued property of attachments associated with the Change
Request.

relationship properties:

oslc_cm:related This relationship is loosely coupled and has no specific meaning. It
is likely that the target resource will be an oslc_cm:ChangeRequest but that is not
necessarily the case.

oslc_cm:affects Change request affects a plan item. It is likely that the target resource
will be an oslc_cm:ChangeRequest but that is not necessarily the case.

oslc_cm:affectedByDefect Change request is affected by a reported defect. It is likely
that the target resource will be an oslc_cm:ChangeRequest but that is not neces-
sarily the case.

oslc_cm:tracksRequirement Tracks the associated Requirement or ChangeSet re-
sources41. It is likely that the target resource will be an oslc_rm:Requirement
but that is not necessarily the case.

oslc_cm:implementsRequirement Implements associated Requirement. It is likely
that the target resource will be an oslc_rm:Requirement but that is not necessarily
the case.

oslc_cm:affectsRequirement Change request affecting a Requirement. It is likely
that the target resource will be an oslc_rm:Requirement but that is not necessarily
the case.

oslc_cm:tracksChangeSet Tracks SCM change set resource. It is likely that the target
resource will be an oslc_scm:ChangeSet but that is not necessarily the case.

40http://open-services.net/wiki/change-management/Specification-3.0/
41Change set resources are defined in the OSLC specification for software configuration management

(oslc_scm) http://open-services.net/bin/view/Main/ScmSpecV1

29

http://open-services.net/wiki/change-management/Specification-3.0/
http://open-services.net/bin/view/Main/ScmSpecV1

D3.1b - Short Document Title (Public)

A.3.5 Quality Management (oslc_qm) V2.0

The OSLC quality management specification focusses on the relations to system test
plans, test cases and test results. These relations may prove to be valuable as the project
works towards satisfying requirement 009242 on providing guidance for the production of
argument evidence. Its full specification may be found at the url in the footnote43.

oslc_qm:relatedChangeRequest A related change request. It is likely that the target
resource will be an oslc_cm:ChangeRequest but that is not necessarily the case.

oslc_qm:usesTestCase Test Case used by the Test Plan. It is likely that the target
resource will be an oslc_qm:TestCase but that is not necessarily the case.

oslc_qm:validatesRequirementCollection Requirement Collection that is validated
by the Test Plan. It is likely that the target resource will be an
oslc_rm:RequirementCollection but that is not necessarily the case.

oslc_qm:testsChangeRequest Request tested by the Test Case. It is likely that the
target resource will be an oslc_cm:ChangeRequest but that is not necessarily the
case.

oslc_qm:usesTestScript Test Script used by the Test Case. It is likely that the target
resource will be an oslc_qm:TestScript but that is not necessarily the case.

oslc_qm:validatesRequirement Requirement that is validated by the Test Case. It
is likely that the target resource will be an oslc_rm:Requirement but that is not
necessarily the case.

oslc_qm:executionInstructions Instructions for executing the test script. Note that
the value of Occurs is undefined. The resource shape document provided by the
QM service provider may be consulted for its value.

oslc_qm:blockedByChangeRequest Change Request that prevents execution of the
Test Execution Record. It is likely that the target resource will be an
oslc_cm:ChangeRequest but that is not necessarily the case.

oslc_qm:runsOnTestEnvironment Indicates the environment details of the test case
for this execution record.

oslc_qm:reportsOnTestPlan Test Plan that the Test Execution Record reports on.
It is likely that the target resource will be an oslc_qm:TestPlan but that is not
necessarily the case.

oslc_qm:runsTestCase Test Case run by the Test Execution Record. It is likely that
the target resource will be an oslc_qm:TestCase but that is not necessarily the case.

oslc_qm:affectedByChange Change request that affects the Test Result. It is likely
that the target resource will be an oslc_cm:ChangeRequest but that is not neces-
sarily the case.

oslc_qm:executesTestScript Test Script executed to produce the Test Result. It
is likely that the target resource will be an oslc_qm:TestScript but that is not

42See deliverable D7.3 [LPH+15] for further details on the requirements.
43http://open-services.net/bin/view/Main/QmSpecificationV2

30

http://open-services.net/bin/view/Main/QmSpecificationV2

D3.1b - Short Document Title (Public)

necessarily the case.

oslc_qm:producedByTestExecutionRecord Test Execution Record that the Test
Result was produced by. It is likely that the target resource will be an
oslc_qm:TestExecutionRecord but that is not necessarily the case.

oslc_qm:reportsOnTestCase Test Case that the Test Result reports on. It is likely
that the target resource will be an oslc_qm:TestCase but that is not necessarily
the case.

oslc_qm:reportsOnTestPlan Test Plan that the Test Result reports on. It is likely
that the target resource will be an oslc_qm:TestPlan but that is not necessarily the
case.

A.3.6 Terms to adopt

Of the very many relationships defined in the previous specifications five have been se-
lected as candidates for use in the INTO-CPS traceability ontology, these are:

oslc_rm:constrains The object is constrained by the subject. Used to relate one re-
quirement to another

oslc_rm:decomposes The object is decomposed by the subject. Used to related on
requirement to another

oslc_rm:satisfies The object is satisfied by the subject. Used to relate an element in
the architecture to a requirement it is intended to satisfy

oslc_am:satisfies This resource satisfies a requirement (the referenced resource). For
example a UML Component satisfies a requirement to provide some type of func-
tionality. Used to relate a simulation model or model check model to a requirement
it is intended to satisfy

oslc_am:verifies A dependency from a model element to a requirement that determines
whether a system fulfills the requirement. For example a Sequence diagram verifies
a requirement that describes a protocol. Used to relate a simulation, DSE or model
check result to a requirement. It represents evidence for that requirement being met.

One notable omission from the OSLC specifications was a relation that would permit us
to link a simulation result to a requirement to indicate that the requirement was not met.
It could be considered that if the oslc_am:verifies link is not used then the result does
not support a requirement being met, but it is appealing to be able to make this explicit.
In response to this some of the views contain a new relation that is currently termed
into:doesNoVerify. This relation means the complete opposite to the oslc_am:verifies,
and would say that the simulation, DSE or model check result shows that the design does
not meet the requirement in question.

It should be noted that while only a subset of the specification relations have been used
in the following ontology, this does not rule out their use, as the ontology derives from
the workflow components that have been explored so far and so the set of relations is
expected to increase in the future.

31

D3.1b - Short Document Title (Public)

Figure 6: Block Definition Diagram (BDD) of the requirements activity

A.4 Proposed INTO-CPS Traceability Ontology

In subsection A.2 the concepts of PROV were introduced and in subsection A.3 we out-
lined the pertinent OSLC specification with some discussion about which are likely useful
for the INTO-CPS traceability work. In this subsection we will combine both the PROV
and OSLC work to describe an ontology that will form the basis of the provenance and
traceability data in INTO-CPS.

The ontology is presented as a collection a views where the majority of the views are
centred around one or more activities that will take place while using the INTO-CPS
tool chain. As with the PROV figures earlier a blue element represent an activity, a
yellow element represents an entity and an orange element represents an agent.

A.4.1 Requirements

Starting with requirements, Figure 6 shows the activity of requirements management.
This activity makes use of design notes and requirement sources, which are the primary
documents from the stakeholders and it produces requirements. Note that the requirement
has two OSLC relations to itself, these are to support recording of relationships between
individual requirements. There are only two relations shown linking requirements to
other requirements, however it is suggested that others from the OSLC requirements
management specification also be allowed. Figure 7, shows that we expect there to be
requirements documents that will contain one or more requirements.

32

D3.1b - Short Document Title (Public)

Figure 7: BDD of the requirements files

33

D3.1b - Short Document Title (Public)

Figure 8: BDD Architecture modelling

A.4.2 Architecture Modelling

The activity of architecture modelling is presented in Figure 8. Architecture modelling
is influenced by requirements, design notes and also previous version of its outputs, it
produces the two views defined in the INTO-CPS SysML profile (architecture structure
diagram and architecture connection diagram, described in deliverable D2.1a [APCB15])
and the architecture subsystems they contain. The architecture subsystems may be re-
lated to any requirements they satisfy. The files that that represent the architecture are
shown in Figure 9.

34

D3.1b - Short Document Title (Public)

Figure 9: BDD Architecture modelling elements

35

D3.1b - Short Document Title (Public)

Figure 10: BDD of the model description export activity

A.4.3 Model Description File Export

The connection between the architecture and the simulation and model checking models
is provided by the model description file and the model description export is presented in
Figure 10. This functionality is provided by the INTO-CPS app.

36

D3.1b - Short Document Title (Public)

Figure 11: BDD showing simulation model creation activities

A.4.4 Simulation Models

There are two distinct activities shown in Figure 11, model description import, which
creates a skeleton model in the chosen simulation tool, and simulation modelling, which
represents the population of the model to do something useful. The output of both
of these activities are the component simulation model and simulation model container.
Figure 12 shows the file elements involved, where the simulation model container, for
example a 20-sim .emx file, contains one or more component simulation models. The
component simulation models may be linked to any requirements they satisfy via the
OSLC_am:satsifies relation.

37

D3.1b - Short Document Title (Public)

Figure 12: BDD showing simulation model files

38

D3.1b - Short Document Title (Public)

Figure 13: BDD showing model check model creation

A.4.5 Model Checking

Model checking begins with an identical structure model description import and model
check modelling, Figure 13 as we saw for simulation models previously. Figure 14 shows
the structure around both the model checking and model check test creation activities,
these respectively output model check results and model check test case. The model check
test result is the first time we have seen evidence that models meet or do not meet the spec-
ification, thus we see that it may connect via the OSLC_am:verifies or into:doesNotVerify
relations. The relationships between the files involved in model checking are shown in
Figure 15

39

D3.1b - Short Document Title (Public)

Figure 14: BDD showing the activities of model checking

Figure 15: BDD showing the file elements around model checking

40

D3.1b - Short Document Title (Public)

Figure 16: BDD showing simulation FMU generation

A.4.6 FMU and Code Generation

The generation of Functional Mockup Units (FMUs) and compilable source code is nec-
essary before any simulation may take place in the INTO-CPS tool chain. Figure 16
presents the elements surrounding the FMU export activity, these are the simulation
models, model check models and test cases from which FMUs can be generated and the
tools used to generate them. The output is the FMU itself.

The creation of an FMU to support Hardware in the loop (HiL) simulation differs slightly
in that instead of being generated from an simulation or model check model it will take a
model description file as its input, Figure 17. Associated with this activity is a software
agent that actually configures and compiles the FMU to permit communication with the
hardware asset.

The activity of code generation is shown in Figure 18, where its inputs are simulation
and model check models and its output is some form of source code. The files associated
with code generation are presented in Figure 19.

41

D3.1b - Short Document Title (Public)

Figure 17: BDD showing FMU generation to allow HiL simulation

Figure 18: BDD Showing the activity of code generation

42

D3.1b - Short Document Title (Public)

Figure 19: BDD showing the files associated with code generation

43

D3.1b - Short Document Title (Public)

Figure 20: BDD showing the simulation configuration activity

Figure 21: BDD showing the activity of simulaition

A.4.7 Simulation

Before simulation can take place we must produce a simulation configuration file, this
activity is shown in Figure 20. Here the INTO-CPS app uses the generated FMUs and
the architecture connection diagram to produce a simulation configuration which the
co-simulation orchestration engine (COE) uses to execute a simulation.

Figure 21 shows the activity of simulation itself. Here we see that it makes use of the
COE, simulation configuration and the FMUs that have already been generated. Here we
also see that the FMUs themselves may make use of simulation models and simulation
tools if the FMU is a wrapper or may reference a hardware asset if it is a HiL FMU.

Finally Figure 22 shows the files associated with simulation. Of note here is that the
simulation result may be linked to a requirement is it provides evidence for or against
that requirement being met.

44

D3.1b - Short Document Title (Public)

Figure 22: BDD showing the files associated with simulation

45

D3.1b - Short Document Title (Public)

Figure 23: BDD showing the DSE activites

A.4.8 DSE

Figure 23 shows the two activities associated with DSE, the DSE configuration creation
and DSE itself. The activity of DSE configuration takes a simulation configuration and
queries the user to define the range of parameters and algorithm choices for the actual
DSE itself. The DSE then uses the simulation configuration to select the appropriate
scripts to launch simulations, evaluate the objective values of each simulation and then
rank them as a result.

Finally in DSE, Figure 24 shows the files associated with these activities. Again we note
that the DSE result, which is here shown as a single file but is likely not to be, may be
linked to requirements as either evidence for or against it being met.

46

D3.1b - Short Document Title (Public)

Figure 24: BDD showing the DSE files

47

D3.1b - Short Document Title (Public)

Figure 25: BDD showing design note creation

A.4.9 Design Notes

Throughout the previous views on the ontology many of the activities have made use of
a design note. Here a design note may be any document that records rationale, decisions
and directions for the modelling process. These may be produced at any point and are
a vital part of understanding why the final product of a design process takes the form it
does. In Figure 25 we see that the activity of design note creation may be linked to the
outputs of many of the main activities in the INTO-CPS tool chain, this is important so
we may revisit the evidence from which the note was created. Figure 26 shows the files
associated with design notes.

48

D3.1b - Short Document Title (Public)

Figure 26: BDD showing the design note files

49

D3.1b - Short Document Title (Public)

Figure 27: 3D view of the line follow robot generated by its co-model.

A.5 Robot Example

The robot example presented is inspired by the work that took place to produce the
line following robot that proved very useful in the DESTECS44 project, Figure 27. In
the project there were many versions of the robot’s constituent models generated and
stored in multiple locations, so its real provenance graph is much larger than would be
needed to demonstrate a potential use of PROV, thus we will present a greatly simplified
version of the events here. We will also take two steps into the future and use a planned
evolution of the model to represent how PROV may represent a simulation using INTO-
CPS tooling.

The scenario starts with the with the simultaneous development of two models of the
robot, a 20-sim CT model produced at University Twente (UT) and an Overture DE
model produced by Ken Pierce at Newcastle University (UNEW). Both of these models
included the body and controller of the robot but were lacking the line following sensors,
so the first modification was for UNEW to take the UT 20-sim mode and add these
sensors. With the sensors in place it was possible to integrate the 20-sim and overture
models, add a contract and debug launch configuration to construct the first co-model,
this was done by Ken at UNEW. The next step was to modify the model to experiment
with the Design Space Exploration (DSE) capabilities of the Crescendo tool, so the co-
model created by Ken was modified with an Automated Co-model Analysis (ACA) launch
file added and the set of simulations run.

The shortened history of the line follow robot ends with the ACA run, the following steps
outline the short term plan for converting the model for use with the INTO-CPS tooling.
The first step in this process will be to dissect the existing 20-sim model into three model
fragments containing the sensor, the body and wheels and finally the 3D view of the
robot for visualisation. The sensor model and body and wheel models will then be used
as a specification from which two equivalent open modelica models will be built. The
final step in this process will be the construction of an INTO-CPS multi-model using a
selection of the model fragments and the co-simulation orchestration engine (COE).

44www.destecs.org

50

www.destecs.org

D3.1b - Short Document Title (Public)

In the following sub-subsections examples of how PROV could be used to record the
events will be shown.

A.5.1 Model Introduction

There are examples of two types of model introduction in the robot study. On the right
hand side of Figure 28(a) we can see the introduction of the CT model developed by
UT. This model was supplied in its final form by UT and so we only need to record the
identity of the entity (file) provided, the agent responsible for the entity and link them
with a ‘was attributed to’ relation. This pattern could be used to represent any model
that is provided by an external agency, for example if a tyre supplier provided a vehicle
manufacturer with a compiled FMU for their tyre for use in simulations.

The structure on the left hand side of Figure 28(a) represents the internal development
of new models. Here we record the identities of the model files produced, the name of
the engineer responsible and the name and version of the tooling used. Central to the
production of these models is the deModelling activity, apart from the id of activity the
element can be used to record the start and/or end times of the modelling activity. The
engineer, Ken, is associated with both the activity of modelling via a ‘was associated
with’ relation and with the generated files via the ‘was attributed to’ relation. The files
are also linked to the activity via the ‘was generated by’ relation. Finally we indicate
which tool was used by connecting deModelling to Overture via a “used” relation.

A.5.2 Model Evolution

The PROV structure used to represent a new model entity being created from an existing
one is very similar to that used for model introduction but with the addition of further
“used” entities defining the which model files were used a sources. Figure 29 shows
the evolution of the UT CT model to have line follow sensors. Note that utCT.emx
is not only connected to the activity by the used relation but is also connected to the
unewCT.emx entity via a was derived from relation. In this example there was only one
source model and one generated model and so there is no ambiguity regarding which
models influenced which other models, however this is not always the case. If we consider
the two modelling exercises shown in Figure 30 we see that ambiguity could be present.
In the modelling2 activity, where the single 20-sim model is decomposed into smaller
components, we can see that there is one source model and two generated models and we
can infer that the two generated models were both influenced in some way by the single
source model. However, in the modelling3 activity, in which openModelica versions of
the 20-sim component models are produced, there are two source models and two output
models. Here the derived relation helps to make explicit which of the produced models
was influenced by which of the source models. This explicit lineage could be important
if there is a need to trace some property through the model chain.

A.5.3 Simulation

Figure 31 shows the PROV structure for the initial DE only simulation performed at
UNEW. Here we list the input modes, the activity of simulation, the agent responsible

51

D3.1b - Short Document Title (Public)

deModelling

overture

use

kgp

assoc

utCT.emx

ut

att

deSim.vdmrt
gen

att

deModes.vdmrt

gen

att

deController.vdmrt

gen att

(a)�
// Tools
entity(overture)

// UT CT model
entity(utCT.emx)
wasAttributedTo(utCT.emx ,ut)

// UNEW DE model
activity(deModelling)
used(deModelling , overture ,-)
wasAssociatedWith(deModelling , kgp ,-)
wasGeneratedBy(deSim.vdmrt , deModelling ,-)
wasGeneratedBy(deModes.vdmrt , deModelling ,-)
wasGeneratedBy(deController.vdmrt , deModelling , -)
entity(deSim.vdmrt)
entity(deModes.vdmrt)
entity(deController.vdmrt)
wasAttributedTo(deSim.vdmrt ,kgp)
wasAttributedTo(deModes.vdmrt ,kgp)
wasAttributedTo(deController.vdmrt ,kgp)� �

(b)

Figure 28: Prov representation of model introduction in both graphic (a) and Prov-N (b)
form.

52

D3.1b - Short Document Title (Public)

modelling1

20-sim4.3

use

utCT.emx

use

cjg

assoc

unewCT.emx

gen
der

att

(a)�
// Tools
entity (20-sim4 .3)

// UT CT model
entity(utCT.emx)

// UNEW CT Sensors added and tested
entity(unewCT.emx)
wasAttributedTo(unewCT.emx ,cjg)
activity(modelling1)
used(modelling1 , 20-sim4.3,-)
wasGeneratedBy(unewCT.emx , modelling1 ,-)
wasAssociatedWith(modelling1 , cjg ,-)
used(modelling1 ,utCT.emx ,-)
wasDerivedFrom(unewCT.emx ,utCT.emx)� �

(b)

Figure 29: Prov representation of simple model evolution in both graphic (a) and Prov-N
(b) form.

53

D3.1b - Short Document Title (Public)

modelling2

unewCT.emx

use

modelling3

ctBody.emx

use

ctSensor.emx

use

gen
der

gen
der

ct3D.emx

gen der

ctBody.mo
gen

der

ctSensor.mo

gen
der

(a)�
entity(unewCT.emx)

// creation of ct model fragments (20-sim)
activity(modelling2)
used(modelling2 , unewCT.emx , -)
entity(ctBody.emx)
entity(ctSensor.emx)
entity(ct3D.emx)
wasGeneratedBy(ctBody.emx , modelling2 , -)
wasGeneratedBy(ctSensor.emx , modelling2 , -)
wasGeneratedBy(ct3D.emx , modelling2 , -)
wasDerivedFrom(ctBody.emx , unewCT.emx)
wasDerivedFrom(ctSensor.emx , unewCT.emx)
wasDerivedFrom(ct3D.emx , unewCT.emx)

// creation of ct model fragments (open modelica)
activity(modelling3)
used(modelling3 , ctSensor.emx , -)
used(modelling3 , ctBody.emx , -)
entity(ctBody.mo)
entity(ctSensor.mo)
wasGeneratedBy(ctBody.mo, modelling3 , -)
wasGeneratedBy(ctSensor.mo, modelling3 , -)
wasDerivedFrom(ctBody.mo, ctBody.emx)
wasDerivedFrom(ctSensor.mo, ctSensor.emx)� �

(b)

Figure 30: Prov represel evolution in both graphic (a) and Prov-N (b) form.

54

D3.1b - Short Document Title (Public)

deSim

overture

use

deSim.vdmrt

use

deModes.vdmrt

use

deController.vdmrt

use

kgp

assoc

att
att

att

deResults.csv

gen

(a)�
// agents
agent(kgp)

// Tools
entity(overture)

// UNEW DE model
entity(deSim.vdmrt)
entity(deModes.vdmrt)
entity(deController.vdmrt)
wasAttributedTo(deSim.vdmrt ,kgp)
wasAttributedTo(deModes.vdmrt ,kgp)
wasAttributedTo(deController.vdmrt ,kgp)
activity(deSim)
wasAssociatedWith(deSim , kgp , -)
used(deSim , deSim.vdmrt ,-)
used(deSim , deModes.vdmrt ,-)
used(deSim , deController.vdmrt ,-)
used(deSim , overture ,-)
entity(deResults.csv)
wasGeneratedBy(deResults.csv , deSim ,-)� �

(b)

Figure 31: Prov represel evolution in both graphic (a) and Prov-N (b) form.

along with any results files generated. The link to the simulation tool is important as
this defines the tool, it’s version and potentially also the ID of the host upon which the
tool was running, the benefit of this detail is that if there is an issue discovered with
either a specific tool version or an individual installation then the simulation results that
it produced may be identified and examined or re-run.

Co-simulation using the Crescendo tool is shown in Figure 32. Again this includes the
input models, output results and the responsible agent. It differs slightly from the DE
simulation as now we have to represent two tools instead of just one and also we have
to track the auxiliary files that are required to completely describe the co-simulation,
these are the contract and debug.config. In the case that the co-simulation used the
DSE feature of the Crescendo then there will by multiple instances of coSim1Results.csv,
at least one file per simulation run and each of these will need to be included in the
provenance individually.

55

D3.1b - Short Document Title (Public)

coSim1

20-sim4.3

use

crescendo

use

deModes.vdmrt

use

deController.vdmrt

use

unewCT.emx

use

contract1

use

debug.config

use

kgp

assoc

att

att

cjg

att
att

att

coSim1Results.csvgen

att

(a)�
agent(cjg)
agent(kgp)

// Tools
entity (20-sim4 .3)
entity(crescendo)

// UNEW DE model
entity(deModes.vdmrt)
entity(deController.vdmrt)
wasAttributedTo(deModes.vdmrt ,kgp)
wasAttributedTo(deController.vdmrt ,kgp)

// UNEW CT Sensors added and tested
entity(unewCT.emx)
wasAttributedTo(unewCT.emx ,cjg)

// Initial crescendo co-model integration and test
entity(contract1)
entity(debug.config)
wasAttributedTo(contract1 , kgp)
wasAttributedTo(debug.config , kgp)
activity(coSim1)
wasAssociatedWith(coSim1 , kgp , -)
used(coSim1 , contract1 ,-)
used(coSim1 , deController.vdmrt ,-)
used(coSim1 , deModes.vdmrt ,-)
used(coSim1 , unewCT.emx ,-)
used(coSim1 , debug.config , -)
used(coSim1 , crescendo , -)
used(coSim1 , 20-sim4.3,-)
entity(coSim1Results.csv)
wasAttributedTo(coSim1Results.csv ,kgp)
wasGeneratedBy(coSim1Results.csv ,coSim1 ,-)� �

(b)

Figure 32: Prov represel evolution in both graphic (a) and Prov-N (b) form.

56

D3.1b - Short Document Title (Public)

For the INTO-CPS style of co-simulation we need to use a slightly different structure
to properly represent the configuration of the co-model and to allow replay, such an
envisaged structure is show in Figure 33. This structure still contains the main elements
of the previous simulations, the input models, tools, agents and auxillary files, but there
is now an additional layer of activities between the input models and the co-simulation
activity. For example, ctBody.emx is used by sim1 and coSim2 is informed by sim1,
similarly ct3D.emx is used by sim2 and coSim2 is informed by sim2. The reason behind
this structure is that we may choose to have multiple simulations that use the same tool
family, e.g. 20-sim, but due to the distributed nature of the COE could be executed on
different instances the tool, or different versions on different hosts. So in the figure we
use simX to allow use to be more explicit about which models were running on which
tools, where the tools can also specify the host and version. This structure also closely
mimics the structure of an INTO-CPS co-simulation, with each simX representing one
FMU and the informed relations representing the data shared over the FMI bus.

57

D3.1b - Short Document Title (Public)

sim1

20-sim4.4

use

ctBody.emx

use

sim2

use

ct3D.emx

use

sim3

modelica

use

ctSensor.mo

use

sim4

overture

use

deModes.vdmrt

use

deController.vdmrt

use

coSim2

infinf
inf

inf

into-app

use

intoLaunchFile

use

coSim2Results.csv

gen

(a)�
// Tools
entity (20-sim4 .4)
entity(overture)
entity(into -app)
entity(modelica)

// UNEW DE model
entity(deModes.vdmrt)
entity(deController.vdmrt)

// creation of ct model fragments (20-sim)
entity(ctBody.emx)
entity(ct3D.emx)

// creation of ct model fragments (open modelica)
entity(ctSensor.mo)

// construction of into co -model and simulation
activity(sim1)
used(sim1 , ctBody.emx , -)
used(sim1 , 20-sim4.4, -)
activity(sim2)
used(sim2 , ct3D.emx , -)
used(sim2 , 20-sim4.4, -)
activity(sim3)
used(sim3 , ctSensor.mo, -)
used(sim3 , modelica , -)
activity(sim4)
used(sim4 , deModes.vdmrt , -)
used(sim4 , deController.vdmrt , -)
used(sim4 , overture , -)
entity(intoLaunchFile)
activity(coSim2)
used(coSim2 , intoLaunchFile , -)
used(coSim2 , into -app , -)
wasInformedBy(coSim2 , sim1)
wasInformedBy(coSim2 , sim2)
wasInformedBy(coSim2 , sim3)
wasInformedBy(coSim2 , sim4)
entity(coSim2Results.csv)
wasGeneratedBy(coSim2Results.csv , coSim2 , -)� �

(b)

Figure 33: Prov represel evolution in both graphic (a) and Prov-N (b) form.

58

D3.1b - Short Document Title (Public)

A.5.4 Requirements and Submodels

To outline how requirements can be traced we start by assuming the line following robot
as having two main requirements, requirement R1, that it can move and requirements
R2, that it can detect lines to follow. The first step in this example is the construction
of the SysML model of the robot, the resulting model, which is described in deliverable
D3.4 [FGP+15] is shown along with the two requirements in Figure 34. There are two
submodels in this model that the modeller has determined contribute to the satisfaction
of R1 and R2 and as such two links are created connecting these submodels to the
requirements. The links use the oslc_rm:satisfies (shortened to ’sat’ in the figure)
relation to indicate that the require is, at least in part, satisfied by the part of the CPS
the submodel describes.

Figure 34: The intial SysML model of the line follow robot with links to requirements.
(The text is in the SysML blocks is not important.)

The next step in the process is to export the model description files and use them to
create simulation models. For the purpose of this example, let us imagine that two
teams produce independent 20-sim models of the robot and these models, a.emx and
b.emx, Figure 35. When these models are built and committed, both teams link their
submodels to the requirements they implement using the oslc_am:satisfies relation.
They also both run a simulation that produces an output, results.csv. In the case
of a.emx, the results show that the robot is able to move but does not detect the lines,
thus the engineers add an oslc_am:verifies relation between the result and R1 and
an into:doesNoVerify relation between the result and R2 (relations shortened to ’verif’
and ’not verif’ in the figure). The opposite result is true of the b.emx model, where it
detects lines but can not move.

The final step in the example occurs when the project team decides to combine the
best parts of the two models to produce a third. Thus in Figure 36, we can see that

59

D3.1b - Short Document Title (Public)

Figure 35: Two competing models and simulation results of the robot with links to the
requirements.

a new model, c.emx, is created using from parts of a.emx and b.emx. The important
relationship here and the use of the PROV wasDerviedFrom link between the submmodes
in c.emx and the source models. In both of these relations the subtype prov:quote is
used to show that it is a copy of the orginal submodel, thus we are able to trace where
the submodels came from. Finally this model is simulated and produces a new result
showing that it can both move and detect lines, the result is linked to both requirements
via oslc_am:verifies relations.

The result of this traceability data being added is that the requirements engineer would be
able to make queries that return either any models that implement specific requirement
behaviour, or perhaps more importantly, find simulation results that provide evidence for
or against the modelled system meeting those requirements.

The PROV concepts required to represent submodels have not yet been introduced. The
starting point for this is a speciality of the standard PROV entity, a prov:Collection.
The collection has members which other entities that it is considered to contain, thus
we may define the collection entity that represents, as in Figure 37, a model file, a.emx
that contains two submodels body_a and sensors_a. A key feature of this structure
above naming submodels as properties of a plain entity, is that we may now represent
the relationships between submodels in different files as first class constructs. In the
example we see that there is also a modelling activity where the submodels of a.emx and
b.emx and combined to form c.emx. We can now explicitly describe the provenance of
the submodels in c by using the wasDerivedFrom relation, and thus show that the body
submodel in c came from a and the sensors in c came from b.

60

D3.1b - Short Document Title (Public)

Figure 36: A final model of the robot that meets both requirements

61

D3.1b - Short Document Title (Public)

(a)�
entity(a.emx , [prov:type=’prov:Collection ’])
entity(sensors_a)
entity(body_a)
hadMember(a.emx , sensors_a)
hadMember(a.emx , body_a)

entity(b.emx , [prov:type=’prov:Collection ’])
entity(sensors_b)
entity(body_b)
hadMember(b.emx , sensors_b)
hadMember(b.emx , body_b)

activity(modelling)
used(modelling , a.emx ,-)
used(modelling , b.emx ,-)
wasGeneratedBy(c.emx , modelling , -)

entity(c.emx , [prov:type=’prov:Collection ’])
entity(sensors_c)
entity(body_c)
hadMember(c.emx , sensors_c)
hadMember(c.emx , body_c)

wasDerivedFrom(sensors_c ,sensors_b , [prov:type=’prov:Quote’])
wasDerivedFrom(body_c ,body_a , [prov:type=’prov:Quote ’])� �

(b)

Figure 37: Prov representing submodels and their derivation in both graphic (a) and
Prov-N (b) form.

62

D3.1b - Short Document Title (Public)

modelling

model1

use

simulation

use

model2

use

gen

gen

resultsModel1
gen

resultsModel2

gen

(a)

modelling1

modelling2

model1

use

simulation1

use

simulation2

model2

use

gen

gen

resultsModel1

gen

resultsModel2

gen

(b)

Figure 38: The same provenance with common activity names (a) and unique activity
names (b)

A.6 UTRC Case Study Findings

As part of Task 3.5, Pilot Studies, UNew have been building an initial HVAC co-model
based upon an Open Modelica model produced by UTRC. We have used this opportunity
to manually record the provenance of the modelling process to see what insights this can
give us that may inform how the provenance support in INTO-CPS should behave.

The first observation that was made very early on was that the entities and activities all
must have unique identifiers and that these identifier can be rather long. In our original
sketches of how the PROV might look, we had used activity names such as “simulation”
and “modelling”, but these can lead to ambiguities. In fact it is possible to use such
short names in PROV-N and produce graphs, but doing this means that if we said
modelling-used-file1, we are effectively saying that file1 was used in by an instance of the
activity modelling, but we are not saying anything about that instance. Also, and more
importantly, every time some modelling was performed it would be the same modelling
activity that is connected to. The difference in clarity of the chronology of events can be
seen by comparing Figure 38a, which uses common activity names and Figure 38b, which
uses unique activity names to represent the same sequence of events.

Currently in the UTRC provenance the unique naming for entities has the form filename-
subversion commit number, so for example one of the 20-sim fan coil unit models has the
identity “fcu.emx-git-583” This has so far proven to be ok, but will fall down if a DSE
run was performed resulting in multiple results files all with the same name but different
paths, in which case the name will need to include the path as well. The first issue
raised by this is that the type of file represented by an entity starts to become harder
to discern for a user as we add more data into the ID, and slightly more trivially, the
current tooling for visualising PROV-N uses the entity/activity’s ID to name the element
and so graphs could become much larger than needed. The suggestion here then is to
use use the name-value properties affored by PROV-N. The first use of this data would

63

D3.1b - Short Document Title (Public)

be to hold a “type” value for each entity, such as “20-sim:modelfile” or “vdm:rt:class”, this
could make searching for types rather easier. A second use for the data would be to
include a short name field, trivially this could be the file name. The same applies to the
activities that appear in the provenance, these would also benefit from having types to
indicate, for example, the nature of the simulation or modelling activity performed, e.g.
“simulation:DSE” or “modelling:evolution”, such types could be used in place of the short
name for entities.

The final point that has become apparent is that attention will need to be paid to how
the provenance handles model archives and duplication. The first step in the UTRC case
study was to produce a standalone 20-sim version of the original Open Modelica Fan Coil
Unit (FCU). Once produced, this model was copied into a Crescendo project folder and
used to create a skeleton of a co-model. The skeleton Crescendo project was copied and
had the DE controller and contract added, finally this Crescendo was exported from its
archive for testing by another person. The key points are that, while it exists in multiple
locations, the 20-sim FCU model was unchanged and this needs to be made explicit, also
the provenance tooling and structure needs to allow for models to come out of archive
for use and possible modification and also support these models being returned to that
archive. For example, if the model exists in an archived form, is extracted and used to
produce some simulation results and is then discarded, what should be recorded? It is
possible to append PROV relations with name-value properties, so the solution currently
employed in the UTRC provenance is to link the original archived file to the new copy via
a wasDerivedFrom relation and applying a name value pair indicating that the derivation
type was “copied”. The use of archives is currently addressed by including the zip and
any folders it contains as part of the path to the file.

A.7 Open Questions

There are still some large open questions that have not been addressed by the work so
far.

How and when to capture data Having experienced manually creating provenance
data there is certainly a need for tool supported data capture, but this does not
address the issue of when does the engineer invoke the tool;

How should the provenance tooling behave should the tooling attempt to gather
all models the engineer has been working on since it was last invoked or does it
simply provide an interface to allow selection, or perhaps something in between
possibly using known patterns of files to guide the engineer;

How and where should the provenance be stored The PROV fragments presented
here are all encoded in the PROV-N text based notation, which could be used, or
perhaps utilising either a relational or graph database such as Neo4J45 would provide
a better solution if we can successfully work with them in a distributed environment

What views would benefit the different stakeholders Most importantly, what views
of the data are of value to support.

45http://neo4j.com

64

http://neo4j.com

	Introduction
	Progress on WP3 Tasks
	T3.1: Workflows
	T3.2: Design Space Exploration
	T3.3: Provenance and Traceability
	T3.4: Guidelines
	T3.5: Pilot Case Studies

	State of the Art in Multi-model Methods
	Requirements Engineering
	Traceability and Provenance
	Design Space Exploration
	Multi-modelling Methods and Hetereogeneous System Models

	Provenance and Traceability
	Introduction
	Prov Concepts
	OSLC Specifications
	Proposed INTO-CPS Traceability Ontology
	Robot Example
	UTRC Case Study Findings
	Open Questions

