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Abstract

This deliverable is intended for users of the INTO-CPS technologies and contains a col-
lection of example and pilot study model descriptions demonstrating the INTO-CPS
technology. Each study has a description of the example and of the models available for
the study. The examples demonstrate the INTO-CPS tools developed during the first
two years of the INTO-CPS project. The deliverable also lays out a roadmap for the final
12 months of case study and example development to test and demonstrate upcoming
INTO-CPS technologies.
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1 Introduction

This deliverable provides an overview of different public example multi-models that stake-
holders who are interested in experimenting with the INTO-CPS technology can use
as a starting point. The examples have been developed using the different simulation
technologies in INTO-CPS: 20-sim1; Overture/VDM-RT2; OpenModelica3; SysML4; and
RT-Tester5). The examples are comprised of multi-models using the INTO-CPS SysML
profile and collections of Continuous Time (CT) and Discrete Event (DE) models elicited
from the simulation models. Examples of their use is also given, demonstrating features
and analyses made available by the INTO-CPS tool chain. The document concludes by
laying out a roadmap for the final 12 months of case study and example development to
test and demonstrate upcoming INTO-CPS technologies.

This deliverable is structured in different sections, each of which provides a brief intro-
duction to each example model. The examples each illustrate different aspects of the
INTO-CPS tool chain, as summarised here:

• Section 2 presents a Single-tank Water Tank model. The simplest example in the
compendium, this is a two-model multi-model, using 20-sim and VDM-RT FMUs.
The example has a SysML architecture, can be co-simulated and has support for
Design Space Exploration (DSE).

• Section 3 presents a Three-tank Water Tank model. This study aims to demonstrate
the division of CT elements across different FMUs. The study comprises 20-sim
and VDM-RT FMUs and demonstrates DSE and Test Automation technologies.

• Section 4 illustrates a Fan Coil Unit (FCU). Originally presented as a baseline
OpenModelica model. This model demonstrates the options for multi-modelling
and dividing models into separate FMUs to allow for architecting to be carried
out in the SysML architectural model. The example demonstrates the use of co-
simulation and DSE.

• Section 5 presents a Line-following Robot. This study has four possible co-simulation
multi-models – two using replication offered by 20-sim FMUs (one using 3D visual-
isation and one without) and another two configurations which are not using FMU
replication. The study provides several DSE experiments.

• Section 6 presents a Turn Indicator example. In this study, the behaviour of a car’s
turn indicator is modelled using parallel state-charts. This model is then used to
automatically derive tests and to perform model checking.

• Section 7 presents a single-UAV model, which models the physical dynamics as
well as the discrete controller of an Unmanned Aerial Vehicle (UAV). The model
contributes a high-fidelity physical model, enabling the multi-model to be used to
compare alternative control algorithms.

1http://www.20sim.com
2http://overturetool.org
3https://openmodelica.org
4Using the Modelio tool: https://www.modeliosoft.com
5https://www.verified.de/products/rt-tester/
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• Section 8 presents an Ether communication model. This pilot provides an initial
demonstration of a model for network communications. This pilot is VDM-RT only,
with a simple SysML architecture. Co-simulation takes the form of the demonstra-
tion of messages passing through the ether. The intention is that this pilot will be
used in the future by others using network communications.

• Section 9 presents a swarm of communicating simplified UAVs. This pilot is a first
version of a swarm of UAVs which receive direction from a central controller. The
pilot uses FMUs from 20-sim and VDM-RT taking advantage of FMU replication
offered by both notations. Co-Simulation and 3D visualisation are supported.

• Section 10 illustrates a smart grid multi-model. The final study is a preliminary
study presenting only the architecture and constituent models in 20-sim and VDM-
RT. FMUs have not yet been produced, therefore co-simulation has yet to be demon-
strated.

In order to guide you in what models to consider inspecting, we have created Table 1 illus-
trating the different characteristics of the different publicly available multi-models.
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Single-tank Water Tank x x x x x x x
Three-tank Water Tank x x x x x x x x
Fan Coil Unit (FCU) x x x x x x x
Line-following Robot x x x x x x x x
Turn Indicator x x
Single UAV x x x x x
Ether x x x
UAV Swarm x x x x x x
Smart Grid x x x x x

Table 1: Overview of INTO-CPS technologies used for pilot studies

Section 11 presents a roadmap for the final 12 months of pilot case study development.
We identify the various INTO-CPS technologies in production over the final year of the
project that the pilots should seek to demonstrate.
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2 Single-tank Water Tank

2.1 Example Description

The single-tank water tank pilot study is a simple example that comprises a single water
tank which is controlled by a cyber controller. When the water level of the tank reaches
a particular level (defined in the controller) the controller sends a command to the tank
to empty using an exit valve. A diagram of the example is shown in Figure 1. This pilot
is also related to the next pilot in Section 3.

Figure 1: Overview of the single-tank water tank example

2.2 Usage

The example is available from the INTO-CPS application menu at File>Import Example
Project or at https://github.com/into-cps/case-study_single_watertank in the
master branch. There are several subfolders for the various elements: FMU contains the
various FMUs of the study; Models – contains the constituent models defined using the
INTO-CPS simulation technologies; Multi-models – contains the multi-model definition;
and SysML – contains the SysML model defined for the study.

The case-study_single_watertank folder can be opened in the INTO-CPS application
to run the various co-simulations as detailed in this document. To run a simulation,
expand one of the multi-models and click ‘Simulate’ for an experiment.

2.3 INTO-CPS SysML profile

The single tank SysML model produced using the INTO-CPS profile comprises two dia-
grams; an Architecture Structure Diagram (ASD) and a Connections Diagram (CD).

The ASD in Figure 2 shows the system composition in terms of component subsystems
from the perspective of multi-modelling.

9
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Figure 2: Architecture Structure Diagram defining the Single-tank Water Tank system
composition

This SingleTankSystem model, comprises a single WaterTank physical component and
a cyber component Controller. Ports are exposed by the WaterTank component for
outputting the current water level (level) and for receiving valve control commands
(valvecontrol). The Controller component has reciprocal ports and also variables to
define the permitted minimum and maximum water levels (minlevel and maxlevel re-
spectively).

The WaterTank component is defined as a continuous time model with 20-sim as the
target platform, this may be also be defined as OpenModelica. The Controller component
is a VDM-RT discrete event model.

A single System Block Instance is defined in the model to represent the system configu-
ration. The CD in Figure 3 shows that the WaterTank component has two connections
with the Controller cyber component - regarding the level and valve control.

Figure 3: Connections Diagram defining the Single-tank Water Tank system connections

10
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2.4 Multi-model

2.4.1 Models

The SysML model above dictates there are two models: a 20-sim model for the water
tank and a VDM-RT model for the controller. This section gives an overview of those
models.

Watertank.emx The 20-sim model of the Water Tank component, shown in Figure 4,
comprises several sub-components. A flow source is connected to a tank, which fills
up at a constant rate. The tank reports the current water level on the level port. A
valve, controlled by the valvecontrol port empties water from the tank into a drain.

Figure 4: 20-sim Water Tank component

WaterTank.mo WaterTank.mo contains a SingleWaterTank model, which has the same
external interface as the above SingleWatertank.emx model – as both comply
to the FMI modeldescription.xml exported format. The model is defined mainly
through equations, and so is not shown in this document.

SingleWT The VDM-RT SingleWT controller is a simple model, with an architecture
shown in Figure 5. The System class owns a HardwareInterface instance with
RealPorts to receive the sensed water level and send valve control commands. The
values are passed to LevelSensor and ValveActuator objects used by the Controller
class. The control algorithm compares the level to the minlevel and maxlevel design
parameters and sets the valve control appropriately.

2.4.2 Configuration

Two multi-models are defined:

11
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Figure 5: VDM-RT model architecture

mm The multi-model mm corresponds to the CD in Section 2.3. Two connections are
defined:

• from the WaterTank level port to the Controller level port; and

• from the Controller valve port to the WaterTank valvecontrol port.

The FMUs used are singlewatertank-20sim.fmu and SingleWT.fmu

There are two design parameters in the multi-model – minlevel and maxlevel,
which are defined to be 1.0 and 2.0 respectively.

mm-OM An alternative multi-model is defined using the OpenModelica FMU. The
connections are identical to the multi-model above, although rather than using the
20-sim FMU, WaterTank_SingleWaterTank.fmu is used.

2.5 Co-simulation

A co-simulation experiment is defined for the multi-model – with a runtime of 30 seconds
and using the fixed step size of 0.1 seconds. Simulating using this experiment produces
the livestream output shown in Figure 6.

The graph shows the water level (orange line) and valve control (blue line) values. The
water level rises steadily until it reaches 2.0 (the maximum level), at this point the valve
control is set to 1.0 and the water level drops to 1.0 (the minimum level). At the minimum
level, the valve is closed and the water rises once again. This behaviour repeats through
to the end of the simulation.

2.6 Analyses and Experiments

2.6.1 Design Space Exploration

This pilot supports DSE. We reuse the DSE experiment used in the Three-tank Water
Tank Pilot study – and is briefly described here. For discussion on results obtained, see
the Three Tank study in Section 3.6.1.

12
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Figure 6: Co-simulation results for Single-tank Water Tank system

The experiment varies the two design parameters of the study – minlevel and maxlevel.
These parameter values may be set between 0.2 and 2.0 in intervals of 0.2. A constraint on
the parameters (Controller.cont.maxlevel > Controller.cont.minlevel) ensures
that the maximum water value is always larger than the minimum water level.

Two objectives are defined: cumulativeDeviation and vCount. The first objective, cu-
mulativeDeviation, is to minimise the cumulative deviation from a desired level - set to
1.0. The second objective, vCount, is to minimise the number of valve operations – i.e.
have a lower number of valve state changes. The analysis uses the Pareto method for
ranking.

2.6.2 Code Generation

The VDM-RT model, SingleWT can be exported from Overture as a C code FMU, in ad-
dition to the tool wrapper FMU as used above. The watertankController-SourceCode.FMU
included in this pilot is obtained directly from Overture using the “Export Source Code
FMU” option. However, this FMU does not contain binaries for co-simulation and so one
may use the FMU Builder included in the INTO-CPS Application to compile FMUs for
Windows, Mac and Linux.

This process has been performed and the resultant FMU is included in the pilot in the
FMUs folder; watertankController-Standalone.FMU. One example experiment available
is to switch this FMU for the tool wrapper version – SingleWT.FMU – and compare
results.

13
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3 Three-tank Water Tank

3.1 Example Description

The three-tank water tank model is based upon a standard 20-sim example, and is devel-
oped to explore the impact on accuracy of multi-modelling across multiple CT models.
The example comprises three water tanks which are filled and emptied. The first tank is
filled from a source with a valve which may be turned on and off. The outflow of the first
tank constitutes the inflow of the second, and so forth. A controller monitors the level of
the third tank and controls a valve to a drain.

A key feature of this example is the close coupling required between water tank 1 and 2,
and the loose coupling to water tank 3. Water tanks 1 and 2 are tall and thin and are
connected by a pipe at the bottom of the tanks (a diagram of the example is shown in
Figure 7), and therefore changes to the level of water tank 1 (due to water entering from
the source) will quickly affect the level in water tank 2. This effect is not as prevalent
between water tank 2 and 3.

water 
tank 1

water 
tank 2

water tank 3

source

drain

Figure 7: Overview of the three-tank water tank example

This pilot expands that in Section 2.

3.2 Usage

The example is available from the INTO-CPS application menu at File>Import Example
Project or at https://github.com/into-cps/case-study_three_tank in the master
branch. There are several subfolders for the various elements: DSEs - contains work in
progress DSE scripts; FMU – contains the various FMUs of the study; Models – contains the
constituent models defined using the INTO-CPS simulation technologies; Multi-models

14
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– contains the multi-model definitions and co-simulation configurations; SysML – contains
the SysML models defined for the study; resources – various images for the purposes of
this readme file.

The case-study_three_tank folder can be opened in the INTO-CPS application to run
the various co-simulations as detailed in this document. To run a simulation, expand one
of the multi-models and click ‘Simulate’ for an experiment.

3.3 INTO-CPS SysML profile

A SysML model produced using the INTO-CPS profile comprises three diagrams and
focusses on the structure of the water tank model for multi-modelling; an Architecture
Structure Diagram and two Connections Diagrams.

The Architecture Structure Diagram (ASD) in Figure 8 shows the system composition in
terms of component subsystems from the perspective of multi-modelling. As discussed
in [FGP+15], this architecture differs from a holistic architecture due to the grouping of
tanks into the different subsystems.

Figure 8: Architecture Structure Diagram defining the Three-tank Water Tank system
composition

In this Water Tank system model, the water tanks are split between two subsystems:
WaterTanks1 subsystem contains the Source, two Water Tank and Pipe components;
WaterTanks2 subsystem comprises a single Water Tank and Drain components; a cyber
component Controller contains no other components; and the 3D component is available
for visualising the behaviour of the system.

To allow the visualisation FMU to depict the internal workings of the system’s compo-
nents, additional ports have been defined for the WaterTanks1 and WaterTanks2 blocks.
The WaterTanks1 component exposes: Tank1InFlow – corresponding to the rate of water
flowing into Tank1 ; Tank1WaterLevel – the water level of Tank1 ; and Tank2WaterLevel
– the water level of Tank2. The WaterTanks2 component exposes the additional ports:
Tank3OutFlow – corresponding to the rate of water flowing out of Tank3 and puddle –
the current volume of water in the drain (or puddle).

The two water tank subsystems are defined as continuous time models, both with 20-
sim as the target platform. The controller component is a VDM-RT discrete event

15
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model.

Two System Block Instances are defined in the model to represent alternative system
configurations – they are defined in separate Connections Diagrams (CDs). The CD in
Figure 9 defines connections as follows: at the subsystem-level, the output of water from
the WaterTanks1 subsystem is input to the WaterTanks2 subsystem. This subsystem
has two connections with the Controller cyber component - regarding the level and valve
control.

Figure 9: Connections Diagram defining the Three-tank Water Tank system connections

Figure 10 depicts the second CD with several connectors between the system component
instances and the 3D visualisation block instance. The connections in Figure 9 are still
present, with additional connections sending state information relating to tank water
levels, flow rates and controller behaviour to the 3D model.

Figure 10: Connections Diagram defining the Three-tank Water Tank system connections
and elements for visualisation

3.4 Multi-model

3.4.1 Models

Given the ASD of the SysML model in Section 3.3, three (simulation) models are defined;
two 20-sim subsystems and a VDM subsystem as shown in Figure 11(a).

WaterTanks1, WaterTanks2 The partitioning of the 20-sim model is straightforward,
with a single signal between the two 20-sim subsystems representing the flow of
water between tanks 2 and 3. The rationale behind this split is that the flow rate

16



D3.5 - Examples Compendium 2 (Public)

between tank 1 and 2 has a high frequency and amplitude, suggesting that splitting
the two tanks would result in erroneous results when time steps are imposed in
co-simulation.

(a) Subsystems of Three-tank Water Tank multi-model

(b) WaterTanks1 subsystem (c) WaterTanks2 subsystem

Figure 11: 20-sim models for the Three-tank Water Tank multi-model

Controller The VDM-RT controller model is a simple controller, which governs Tank3.
The VDM-RT model contains a System class containing HardwareInterface and
Controller objects – hwi and controller, respectively. The hwi object includes the
input and output variables of the model and design parameters. The controller
object is supplied with an instance of the LevelSensor (sensor) and ValveActuator
(valve) classes – each given access to different parts of the hwi object. The sensor
object represents the sensor that measures the current water level, and valve is
represents the valve at the bottom of the tank.

The control loop retrieves the current level of water from the sensor and determines
whether to set the valve to be open or closed depending on the level compared to
some set maximum or minimum value.

3.4.2 Configuration

Two multi-models are defined for the Three Tank Study corresponding to the two System
block instances defined in the CDs of the SysML model in Section 3.3.

In the first multi-model (Non-3D), there are three FMUs and three connections. The
FMUs comprise: WaterTankController, threewatertank1 and threewatertank2 – exported
from the VDM-RT and 20-sim models described above. The connections are as follows:
firstly between the flow port ofWaterTanks1 to the inFlow ofWaterTanks2 ; secondly be-
tween valveControl port of the WaterTanks2 model to the wt3_valve of the Controller ;
and finally from the wt3_level of the Controller to the level port ofWaterTanks2.

17
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In addition, there are two design parameters – wt3_min and wt3_max, both of type
real.

The complete configuration is given in Figure 12.

� �
{

"fmus":{
"{c}":"WaterTankController.fmu",
"{t1}":"threewatertank1.fmu",
"{t2}":"threewatertank2.fmu"

},
"connections":{

"{c}. controller.wt3_valve":["{t2}.tank2.valveControl"],
"{t1}.tank1.Tank2OutFlow":["{t2}. tank2.inFlow"],
"{t2}.tank2.level":["{c}. controller.wt3_level"]

},
"parameters":{

"{c}. controller.wt3_max":1.7,
"{c}. controller.wt3_min":1.3

}
}� �

Figure 12: Configuration file for Three-tank Water Tank system

The second multi-model (3D) uses the 3D visualisation FMU, and has additional con-
nections to that FMU, as shown in Figure 13.

� �
{

"fmus":{
"{c}":"WaterTankController.fmu",
"{t1}":"threewatertank1.fmu",
"{t2}":"threewatertank2.fmu",
"{3d}":"3DAnimationFMU.fmu"

},
"connections":{

"{c}. controller.wt3_valve":["{t2}.tank2.valveControl","{3d}.3 DAnimationFMU.
animation.tank3.valve.control"],

"{t1}.tank1.Tank2OutFlow":["{t2}. tank2.inFlow","{3d}.3 DAnimationFMU.animation.
tank2.outflow"],

"{t2}.tank2.level":["{c}. controller.wt3_level", "{3d}.3 DAnimationFMU.animation.
tank3.waterlevel"],

"{t1}.tank1.Tank1InFlow":["{3d}.3 DAnimationFMU.animation.tank1.inflow"],
"{t1}.tank1.Tank1WaterLevel":["{3d}.3 DAnimationFMU.animation.tank1.waterlevel"],
"{t1}.tank1.Tank2WaterLevel":["{3d}.3 DAnimationFMU.animation.tank2.waterlevel"],
"{t2}.tank2.Tank3OutFlow":["{3d}.3 DAnimationFMU.animation.tank3.outflow"],
"{t2}.tank2.puddle":["{3d}.3 DAnimationFMU.animation.drain.puddle"]

},
"parameters":{

"{c}. controller.wt3_max":1.7,
"{c}. controller.wt3_min":1.3

}
}� �

Figure 13: Configuration file for Three-tank Water Tank system

3.5 Co-simulation

Using the INTO-CPS Co-simulation Engine (COE), we may simulate the three FMU
multi-model. We are able to log the water level of tank 3 and the flow rate between tank
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2 and 3. These values are shown in the graph in Figure 14, using a fixed step size of
0.05. A simulation time of at least 20 seconds is recommended so to observe changes in
controller behaviour.

Figure 14: Simulation results using the INTO-CPS COE

The results in the graph correspond closely to those of the baseline Crescendo model
illustrated in [FGP+15]. During simulation, the water level raised to the maximum value
(2.0 meters) and at 16.3 seconds the tank 3 valve is opened by the VDM-RT controller
and the level drops to just below the minimum (1.0 meters) and at 16.9 seconds the valve
is closed and the water level begins to rise again.

Co-simulating the 3D multi-model opens a 3D visualisation window as shown in Figure 15
which depicts the state of the Three-tank system as the simulation progresses.

Figure 15: 3D visualisation of the Three-tank Water Tank system
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3.6 Analyses and Experiments

3.6.1 Design Space Exploration

A simple DSE experiment is included in the project, which demonstrates the use of
the DSE tool support. The experiment varies the two design parameters of the study
– wt3_min and wt3_max. These parameter values may be set between 0.2 and 2.0 in
intervals of 0.2. A constraint on the parameters (controller.controller.wt3_max >
controller.controller.wt3_min) ensures that the maximum water value is always
larger than the minimum water level.

Two objectives are defined: cumulativeDeviation and vCount. The first objective, cu-
mulativeDeviation, is to minimise the cumulative deviation from a desired level - set to
1.0. The second objective, vCount, is to minimise the number of valve operations – i.e.
have a lower number of valve state changes. The use of Pareto ranking, minimising both
objectives gives the resultant graph in Figure 16.

Figure 16: Design Space Exploration Pareto graph of the Three-tank Water Tank system

From the results we see that there is a clear tradeoff to be made between levels which
optimise each objective – it is for the engineer to determine which of these is more
important. The green line on the graph (the left-most set of results) gives this ‘non-
dominated’ set of results – also given as a table as in Figure 17. In broad terms the
ranking shows: levels closer to the desired level (e.g. wt3_min = 1.0 and wt3_max = 1.05)
produce results with a lower cumulative deviation, but higher valve operation count; and
a minimum level further from the desired level (e.g. wt3_min = 0.2) produces results
with a lower valve operation count, but higher cumulative deviation.
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Figure 17: Design Space Exploration Pareto front table of the Three-tank Water Tank
system

3.6.2 Test Automation

Test automation can also be applied to the controller of the three-tank example. A
SysML model exists that represents the test model for this system which can be used
to produce tests for models and implementations of the controller in RT-Tester6. The
model consists of a specified System Under Test (SUT), which in this case corresponds
to the controller, and the Test Environment (TE) which is the rest of the water tank
system, but specifically the water tank the controller is monitoring. A screen shot giving
an overview of the test model is shown in Figure 18.

The TE and SUT are specified using the blocks SystemUnderTest and TestEnvironment,
respectively. The SUT block an input flow port called Stimulation of type Interface1
and an output port of type Interface2. The TE has the same ports but in the opposite
direction. Interface1 specifies the shared variables that the SUT will read from. In this

6Note that this is a different SysML model used for the co-simulation multi-model.
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Figure 18: Overview of the three-tank test model in Modelio

case it consists of a single variable wt3_level, as seen on the right, which corresponds
to the FMU input. Likewise, Interface2 specifies the shared variable that the SUT will
write to, in this case the variable wt3_valve which gives the valve status. The two blocks
are linked together so that the SUT and TE can communicate on these channels.

In order to generate tests it is necessary to specify an abstract model for the controllers
behaviour, which should be modelled using a timed state machine. We thus created
the SysML state machine diagram shown in Figure 19. The three-tanks controller is
relatively simple and so the state machine has only two states. The Waiting state
means that the controller is waiting until sufficient time has elapsed to poll the sensors
and act accordingly. It has a single outgoing transition with the guard t.elapsed(1000).
The variable t is a timer for this state machine. It advances in time and can be checked
and reset at certain points, rather like a stop-watch. The state machine changes to the
Responding state once 1000 ms (1 s) has elapsed.

The Responding state contains the main decision logic for the controller. It has three
outgoing edges with guards and actions (the latter are not shown). If the water level
polled on variable wt3_level remains within the safe zone of between 1 and 2 then the
state machine returns to state Responding with no action. If the water level is greater
than or equal to 2, the wt3_valve variable is set to 0 to shut off the valve, and the
controller returns to the Waiting state. Otherwise, if the level is less than or equal to 1,
then the valve is turned on by setting wt3_valve to 1.

This behavioural model must be input into RT-Tester to generate and execute tests. We
do this by first exporting XMI by selecting the project name, and then the menu item
Import / Export > Export > XMI export. The model can then be imported from RT-
Tester by selecting Project > Model-based testing > Import model > Import from file.
This currently must be done from the existing water-tanks model available in RT-Tester
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Figure 19: State machine for abstract behaviour of three-tank controller
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Figure 20: Configuring a test procedure

to ensure that the FMU is correctly set up. One of the standard test procedures can then
be run, or a new test procedure can be created by selecting New > MBT Test Procedure
and then using test procedure TestProcedures/_P1 as a template. Suitable tests can be
configured from the conf > generation.mbtconf file in the new directory as illustrated in
Figure 20.

The project can then be prepared for executing the tests through the init-Project com-
mand that creates the test FMUs. Finally, the test procedure can be executed by starting
the COE, and then using the run-COE command. This will produce output which is ex-
emplified in Figure 21.

3.6.3 Code Generation

The VDM-RT model, WaterTankController can be exported from Overture as a C
code FMU, in addition to the tool wrapper FMU as used above. TheWaterTankController-
SourceCode.FMU included in this pilot is obtained directly from Overture using the
“Export Source Code FMU” option. However, this FMU does not contain binaries for co-
simulation and so one may use the FMU Builder included in the INTO-CPS Application
to compile FMUs for Windows, Mac and Linux.

This process has been performed and the resultant FMU is included in the pilot in the
FMUs folder; WaterTankController-Standalone.FMU. One example experiment available
is to switch this FMU for the tool wrapper version – WaterTankController.FMU – and
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Figure 21: Test procedure output

compare results.
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4 Fan Coil Unit (FCU)

4.1 Example Description

This example is inspired by the Heating Ventilation and Air Conditioning (HVAC) indus-
trial case study developed in Task T1.3. The Fan Coil Unit (FCU) aims to control the
air temperature in a room through the use of several physical components and software
controllers. Water is heated or cooled in a Heat Pump and flows to the Coil. A Fan blows
air through the Coil. The air is heated or cooled depending upon the Coil temperature,
and flows into the room. A Controller is able to alter the fan speed and the rate of the
water flow from the Heat Pump to the Coil. In addition, the room temperature is affected
by the walls and windows, which constitute the environment of the FCU.

The aim of the system is to maintain a set temperature in the single room in which the
FCU is located. The system is outlined in Figure 22.

Figure 22: Overview of the fan coil unit (FCU) example

4.2 Usage

The example is available from the INTO-CPS application menu at File>Import Example
Project or at https://github.com/into-cps/case-study_fcu in the master branch.
There are several subfolders for the various elements: DSEs - contains various work in
progress DSE scripts to alter CT and DE parameters; FMU contains the various FMUs
of the study; Models – contains the constituent models defined using the INTO-CPS
simulation technologies; Multi-models – contains the multi-model definitions and co-
simulation configurations; SysML – contains the SysML model defined for the study;
resources – various images for the purposes of the readme file; and userMetricScripts
– contains files for DSE analysis.

The case-study_fcu folder can be opened in the INTO-CPS application to run the
various co-simulations as detailed in this document. To run a simulation, expand one of
the multi-models and click ‘Simulate’ for an experiment.
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4.3 INTO-CPS SysML Profile

Three constituent parts are defined – shown in Figure 23: the RoomHeating subsystem,
a Controller cyber component and the physical Environment. The first is a continuous
subsystem and comprises the Room and Wall components. The figure defines the model
platform to be 20-sim, however, this could be OpenModelica too. All of the physical
elements of the system are contained in a single CT model. The controller subsystem is
a cyber element and modelled in VDM-RT.

Figure 23: SysML Architecture Structure Diagram using INTO-CPS profile correspond-
ing to baseline models

The connections between components, shown in Figure 24, are similar to those in the
baseline CT models, although it should be noted that the subsystem hierarchy is shown,
with the Room component supplying and receiving the flows of the RoomHeating subsys-
tem. The connections between CT and DE models show the interface that is managed
during the co-simulation. Specifically, the Room Air Temperature (RAT ) from the CT
system is communicated to the controller, which sets the fan speed fanSpeed and the valve
open state valveOpen used by the Room component model r, with the aim of achieving the
Room Air Temperature Set Point RATSP provided by the user in the Environment.

Figure 24: SysML Connection Diagram using INTO-CPS profile corresponding to baseline
models
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4.4 Multi-model

4.4.1 Models

This pilot comprises two 20-sim models: RoomHeating and the Environment; an Open-
Modelica RoomHeating_OM model; and a Controller VDM-RT model.

RoomHeating.emx Figure 25 shows the RoomHeating subsystem with blocks for the
room and the wall. The model takes inputs for the required room temperature,
outside air temperature, fan speed and valve control. The model outputs the current
room air temperature.

Figure 25: RoomHeating model

RoomHeating_OM.mo The OpenModelica version of the RoomHeating subsystem is
similar to that of the 20-sim version – it also comprises blocks for the room and
wall, with the same interface. The block diagram is shown in Figure 26.

Figure 26: RoomHeating model

Environment.emx The Environment model, in Figure 27, provides data on the en-
vironment outside air temperature and scenario data based on change of room
temperature set point.

ControllerFCU The VDM controller model comprises a Sensor class, which provides
access to the current room temperature, and a LimitedActuator class, which pro-
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Figure 27: Environment model

vides output for the valveOpen and fanSpeed values. The actuator is limited such
that values fall only between the real values 1.0 and 0.0000001.

4.4.2 Configuration

The multi-model comprises 3 FMUs and 5 connections. The 3 FMUs – FCUController.fmu,
RoomHeating.fmu and Environment.fmu – are exported from the VDM-RT and 20-sim
models.

The connections are as follows:

• from the EnvironmentFMUs RAT_OUT port to the ControllerFMU RATSP port;

• from the EnvironmentFMUs OAT_OUT port to the RoomHeatingFMU OAT port;

• from the ControllerFMUs valveOpen port to the RoomHeatingFMU valveopen
port;

• from the ControllerFMUs fanSpeed port to the RoomHeatingFMU fanspeed port;
and

• from the RoomHeatingFMU RAT port to the ControllerFMUs RAT port.

There are three parameters to set: lambdaWall and rhoWall which define the Wall ther-
mal conductivity and density respectively, and controllerFrequency, which defines the
frequency of the Controller. The standard parameters for these are 1.1192, 1312 and
1000000000 respectively. These may be adjusted for the purposes of DSE.

4.5 Co-simulation

Co-simulation of the full scenario (outside air temperature and room set point) has a
duration of 6800 seconds. Running the two multi-models produces the same results. The
results as displayed in the INTO-CPS application are shown in Figure 28, and values of
note sent between FMUs are shown separately in Figure 29.

The results in Figure 29 show that the set point (top left) is toggled between 20 and 0,
with the fan (and valve) are adjusted to achieve the set point. The bottom right graph
shows the ultimate result of the simulation – that the Room Air Temperature (RAT)
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Figure 28: Co-simulation results as shown in lINTO-CPS application live stream

Figure 29: Co-simulation results as shown in graphs from result log files

meets the set point, maintains that temperature whilst required and then slowly drop in
temperature until the set point returns to 20.

As mentioned in the previous section, the lambda_Wall, rhoWall and controllerFrequency
design parameters may be altered to test different wall properties and their effect on the
overall CPS.
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4.6 Analyses and Experiments

As mentioned above, the multi-model has three design parameters, lambda_Wall, rhoWall
and controllerFrequency which define the wall thermal conductivity, wall density and
controller frequency respectively, which may be altered to perform DSE.

This example has 2 DSE experiments:

fcu-walls: The parameter values for lambda_Wall ranges from 0.1192 to 10.1192 in
intervals of 0.25, and the rhoWall value may be either 1312.0 or 1400.0. In this
experiment a wide range of lambda_Wall values (40 in total) provides a 80-model
design space – no constraints are defined. Two objectives are defined, using internal
DSE functions, energyConsumed and averageTemperature. The first objective is
to retrieve the maximum energy usage value, this is essentially the final value of
the energy port. The second is to return the mean RAT – that is the average
temperature of the RAT, which shows how the room heats and cools over time
depending upon the different wall values.

The Pareto ranking seeks to maximise the average temperature and minimise the
energy consumed. Figure 30 shows that there is one experiment at rank 1 (the
green dot), which indicates that (as is intuitive) the best design is that with the
lowest thermal conductivity and greater density.

fcu-walls-controller: The second experiment varies the lambda_Wall and rhoWall as
earlier, but with a different collection of values: lambda_Wall ranges from 0.1192
to 10.1192 in intervals of 1.0, and the rhoWall value ranging from 1300.0 to 1700.0
in intervals of 1000.0. In addition, the controllerFrequency parameter is varied
between 800000000 and 1200000000 in intervals of 100000000. A space of 250
designs is defined. The same objectives and rankings are used as the above DSE
experiment.

Figure 31 shows that there are 5 experiments at rank 1 (the green dots), which
indicates that (as is intuitive) the best design is that with the lowest thermal con-
ductivity and greater density, with the controller frequency providing only marginal
impact. It is interesting to note that the frequency does have an impact on both
the energyConsumed and averageTemperature objectives.
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Figure 30: DSE results for fcu-walls experiment
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Figure 31: DSE results for fcu-walls-controller experiment
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5 Line-following Robot

5.1 Example Description

This example, originally developed in the DESTECS project and presented in [IPG+12].
The model simulates a robot that can follow a line painted on the ground. The line
contrasts from the background and the robot uses a number of sensors to detect light and
dark areas on the ground. The robot has two wheels, each powered by individual motors
to enable the robot to make controlled changes in direction. The number and position
of the sensors may be configured in the model. A controller takes input from the sensors
and encoders from the wheels to make outputs to the motors.

Figure 32 provides an overview of different aspects of the example: the real robot; an
example path the robot will follow; and a 3D representation in 20-sim.

The robot moves through a number of phases as it follows a line. At the start of each line
is a specific pattern that will be known in advance. Once a genuine line is detected on
the ground, the robot follows it until it detects that the end of the line has been reached,
when it should go to an idle state.

(a) A line-following robot (b) A line-follow path (c) 3D representation of the line-
following robot

Figure 32: The line-following robot

5.2 Usage

The example is available from the INTO-CPS application menu at File>Import Exam-
ple Project or at https://github.com/into-cps/case-study_line_follower_robot
in the master branch. There are several subfolders for the various elements: DSEs - con-
tains various work in progress DSE scripts to alter CT and DE parameters; FMU – contains
the various FMUs of the study; Models – contains the constituent models defined using
the INTO-CPS simulation technologies; Multi-models – contains the multi-model def-
initions and co-simulation configurations – with 3D and non-3D options, and also with
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and without the use of replicated FMUs; SysML – contains the SysML models defined
for the study; resources – various images for the purposes of the readme file; and
userMetricScripts – contains files for DSE analysis.

The case-study_line_follower_robot folder can be opened in the INTO-CPS applica-
tion to run the various co-simulations as detailed in this document. To run a simulation,
expand one of the multi-models and click ‘Simulate’ for an experiment.

5.3 INTO SysML profile

Non replicated sensors

The multi-model architecture, defined in the INTO-CPS SysML profile, shows that the
Robot system is comprised of up to 5 components, as shown in the Architecture Struc-
ture Diagram in Figure 33. This comprises the following components: Body, Sensor1
and Sensor2 physical components, a Controller cyber component and a 3DVisualisation
visualisation component. For simplicity, we omit the lower-level component types from
the SysML model in Deliverable D3.4 [FGP+15].

Figure 33: The line-following robot Architecture Structure Diagram

Two Connection Diagrams are defined. The first, in Figure 34, shows connections only
between the Controller, Body, Sensor1 and Sensor2 component instances. Broadly speak-
ing: the Controller receives sensor readings from both Sensor1 and Sensor2 components;
the Controller in turn sends servo commands to the Body component; and finally the
Body sends the robot position to both sensor components.

Figure 35 shows the alternative CD in which the 3DVisualisation component is used. In
this diagram, the 3DVisualisation component receives data from the Body on the robot
position, and the sensor readings from the two sensors. Unlike other examples using the
visualisation component type, no additional internal data is required to be exposed by
the existing components.

35



D3.5 - Examples Compendium 2 (Public)

Figure 34: The line-following robot Connections Diagram

Figure 35: The line-following robot Connections Diagram

Replicated sensors

An alternative architecture has also been defined in which we use replication offered by
20-sim and OpenModelica FMUs. The ASD in Figure 36 demonstrates the use of two
instances of the same Sensor component type.

The CDs for this SysML model are similar to the non-replicated sensor model. The only
difference is the change of sensor types for the two sensor instances – this is shown in
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Figure 36: The line-following robot Architecture Structure Diagram with replicated sen-
sors

Figures 37 and 38.

Figure 37: The line-following robot Connections Diagram

5.4 Multi-model

5.4.1 Models

Based upon the two SysML models, we define four different simulation models: a 20-sim
Body model; a VDM-RT Controller model; a 20-sim Sensor models; and one OpenMod-
ellica Sensor model.

Body To define the 20-sim Body subsystem, Figure 39, we first define a top-level de-
composition with a Body_Block and a block to represent the body’s Environment.
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Figure 38: The line-following robot Connections Diagram

Figure 39: Top-level 20-sim model of the line-following robot Body

Decomposing the Body_Block further, the 20-sim model is defined as in Figure 40.
Blocks are defined for servos, encoders, wheels, the battery and the body itself. A
collection of input and output ports are defined: ports to output the robot position
(robot_x, robot_y, robot_z and robot_theta); ports to output wheel rotation values
(wheel_left_rotation and wheel_right_rotation); a port to output the battery usage
(total_energy_used); and ports for inputting servo power values (servo_left_input
and servo_right_input).

20-sim_Sensor The Sensor_Block is shown in Figure 41. For the non-replicated ver-
sion, we change the names of the Sensor_Block to generate different FMUs.

Decomposing the Sensor_Block, we see the internal elements of the sensor – shown
in Figure 42. The sensor receives the robot position from its environment, calcu-
lating its position in the world using the line_follow_x and line_follow_y design
parameters. This position information is passed to the map block, which takes a
sample of values and passes a raw reading back to the sensors. The sensors then
convert this to an 8-bit value, taking into account realistic behaviours: ambient
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Figure 40: 20-sim model of the line-following robot Body

Figure 41: Top-level 20-sim model of the line-following robot Sensor

light levels, a delayed response to changes, and A/D conversion noise. The final
sensor reading is output on the lf_1_sensor_reading port.

OM_Sensor The OpenModelica version of the sensor is provided in the LineFollower
package. The SensorBlock1.mo element, shown in Figure 43 corresponds to the
20-sim model above. The model has the same interface, with internal elements for
reflectivity, ambient light, and A/D conversion noise.

Controller The VDM-RT controller model is conceptually unchanged from the original
Crescendo controller. The architecture of this model is in Figure 44. The Controller
model comprises a System class which contains a HardwareInterface instance which
contains references to the inputs, outputs and design parameters. The System class
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Figure 42: 20-sim model of the line-following robot Sensor

(a) Top-level view (b) Low-level view

Figure 43: OpenModelica model of the line-following robot Sensor

also contains a Controller class which makes the control decisions. The decisions are
based upon sensor readings obtained from two instances of the RobotSensor class,
and decisions are sent to the two RobotServo instances. In this model, a simple
algorithm is used: when both sensors see a black line the robot moves forward
(both servos are set to the same value), when only the right sensor sees the black
line the robot moves left – and vice-versa.

5.4.2 Configuration

There are several connections between the models in the multi-model.

The first collection of connections is between the Body 20-sim model and the Controller
VDM-RT model. In this collection, there are two connections corresponding to signals
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Figure 44: UML representation of line-following robot Controller model

for the actuators that power the motors for the wheels:

• from the Controller servoLeftVal variable of type real to the servo_left_input
port of the Body ; and

• from the Controller servoRightVal variable of type real to the servo_right_input
port of the Body.

The second collection of connections is between the Sensor models and the Controller
VDM-RT model. For each sensor there is one connection to the controller to represent
inputs from line-following sensors that can detect areas of light and dark on the ground.
Therefore for a two-sensor model there are two connections:

• from the Sensor1 7 lf_1_sensor_reading port to the Controller lfLeftVal vari-
able; and

• from the Sensor2 8 lf_1_sensor_reading port to the Controller lfRightVal vari-
able.

A third collection of connections exist between the body and the sensors related to the
robot position:

• from the Body robot_x port to the Sensor robot_x port;

• from the Body robot_y port to the Sensor robot_y port;

• from the Body robot_z port to the Sensor robot_z port; and

• from the Body robot_theta port to the Sensor robot_theta port.

A collection of multi-models is provided in the study for combinations of 20-sim and
OpenModelica models.

Several shared design parameters are present also: the separation of the line-following
sensors from the centre line, in metres (line_follow_x ); and the distance forward of
the line-following sensors from the centre of the robot, in metres (line_follow_y). In

7Sensor1 is an instance of either the non-replicated Sensor_Block1 or the replicated Sensor_Block
8Sensor2 is an instance of either the non-replicated Sensor_Block2 or the replicated Sensor_Block

41



D3.5 - Examples Compendium 2 (Public)

addition, design parameters are set for the controller: the forwardSpeed and values for
rotation – forwardRotate and backwardRotate.

5.5 Co-simulation

For all these multi-models, co-simulations require approximately 25-30 seconds of sim-
ulation to traverse the full map, using a fixed step size of 0.01 seconds. The example
has co-simulation set ups for each multi-model and the non-3D models have live stream
enabled for the sensed values from sensor1 and sensor2.

5.6 Analyses and Experiments

Below we detail some useful experiments to demonstrate features of the INTO-CPS tool
chain.

5.6.1 Change FMUs/parameters

The case study has several Sensor FMUs. In the multi-model configuration it is possible
to swap the FMU allocated to each sensor instance of the multi-model. We can therefore
compare the results of co-simulation using a combination of 20-sim sensors (the replicated
Sensor_Block.fmu, or Sensor_Block1.fmu and Sensor_Block2.fmu) and OpenModelica
sensors (replicated, or some combination of LineFollower_Examples_SensorBlock1.fmu
and LineFollower_Examples_SensorBlock2.fmu).

In addition, there are parameters defined for the two sensors (an x and y position
lf_position_x and lf_position_y), and of the controller (forward and rotational speeds
forwardSpeed, forwardRotate and backwardRotate). Experiments may be carried out by
defining different values for these to model different placement of the sensors on the robot
and altering the robot speeds,.

5.6.2 Simulations due to previous results

Simulations can be replayed using different design parameter values to change the position
of the robot sensors. Changing these parameters amounts to changing the design of the
robot - some value pairs will produce robots which perform in some way better (e.g. have
a faster lap time) and others will result in robots which can’t follow the line.

5.6.3 Design Space Exploration

Several Design Space Exploration experiments have been included in this pilot. They are
described in more detail in Deliverable D5.2d [Gam16], and we give an overview of the
different experiments here.

lfr-2sensorPositions: This experiment uses four design parameters, but only varies one.
The lf_position_y of sensor1 may be either 0.07 or 0.13. Four objective scripts
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are used: meanSpeed, lapTime, maxCrossTrackError and meanCrossTrackError.
The Pareto ranking only uses the lapTime and meanCrossTrackError objectives;
these determine the time taken for the robot to perform one lap of the map, and
also the mean error the robot makes when following the line.

lfr-8controllerValues: This experiment uses and varies three parameters. These pa-
rameters are all on the cyber-side of the multi-model – effecting the robot speeds set
by the controller. For each (forwardSpeed, forwardRotate and backwardRotate),
two possible values are defined - giving a design space of 8 designs. The same four
objective scripts are used as above with the same Pareto ranking.

lfr-16sensorPositionsConstrained: This experiment is a more complex version of the
lfr-2sensorPositions experiment in that it varies all four design parameters –
the lf_position_x and lf_position_y coordinates of both sensor1 and sensor2.
Two possible values are defined for each parameter – giving a 16-design space. A
constraint is defined for the parameters, which limits this design space to include
only those designs which have the same y coordinate and the same absolute x
coordinate. The same four objective scripts are used as above with the same Pareto
ranking.

lfr-216controllerValues: This expands the lfr-8controllerValues experiment, pro-
viding 6 speed values for the Controller parameters (forwardSpeed, forwardRotate
and backwardRotate), producing a design space of 216 designs. The same four ob-
jective scripts are used as above with the same Pareto ranking.

lfr-2187ControllerAndSensors: The final experiment combines DSE on both DE and
CT models. Providing an insight into the possibility to trade-off between de-
velopment effort on the cyber or physical side. In this experiment there are 3
possible positions for each of the the lf_position_x and lf_position_y coordi-
nates of both sensor1 and sensor2, and also 3 values for the Controller parameters
(forwardSpeed, forwardRotate and backwardRotate). This produces a design
space of 2187 designs. The same four objective scripts are used as above with the
same Pareto ranking.

5.6.4 Code Generation

The VDM-RT model, LFRController, can be exported from Overture as a C code FMU,
in addition to the tool wrapper FMU as used above. The LFRController-SourceCode.fmu
included in this pilot is obtained directly from Overture using the “Export Source Code
FMU” option. However, this FMU does not contain binaries for co-simulation and so one
may use the FMU Builder included in the INTO-CPS Application to compile FMUs for
Windows, Mac and Linux.

This process has been performed and the resultant FMU is included in the pilot in
the FMUs folder; LFRController-Standalone.fmu. One example experiment available is
to switch this FMU for the tool wrapper version – LFRController.fmu – and compare
results.
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6 Turn Indicator

6.1 Example Description

The turn indicator model discussed here is an adaption of a model originally designed with
an industrial partner from the automotive domain9. The model specifies the behaviour
of a turn indication controller, which essentially supports left and right flashing as well
as emergency flashing. The functionality is modelled using three inputs (the voltage, the
control lever and the emergency flash button) and two outputs (the states of the left and
right turn indication lights, respectively). The model can then be used to automatically
generate test cases for a system that shall implement the specified behaviour. In addition,
desired safety properties of the system can also be verified using model checking. Both
these activities are performed using the RT-Tester Model-Based Test Case Generator
(RTT-MBT) [Ver15] and are described in more detail in Deliverable D5.2a [PLM16] and
Deliverable D5.2b [BLM16], respectively.

A key feature of this example is that it combines several features which are important for
effective modelling of system specifications using SysML state charts: It uses variables
of different types (voltage is real-valued, the other ones are integral), it uses hierarchical
state machines and concurrent components.

6.2 Usage

The example is available at https://github.com/into-cps/example_turn_indication
and can be downloaded as an example project directly from within the INTO-CPS ap-
plication. After that, the example can be used for test automation and model checking
activities.

In addition the VSI tools release bundle installs a pre-configured RT-Tester project in
the directory C:\Users\<USER>\RTT-Prj\turn-ind\. The sub-folder sut\ contains a
C implementation of the system under test. The associated FMU RTT\_TestProcedures\
SUT\TurnIndicationController_sut.fmu can be run in co-simulated test run against
a generated test driver.

6.3 SysML

The model has been developed in Modelio by means of hierarchic parallel state-charts.
Furthermore, architecture diagrams are used to structure components and ports, and
connections are used to express data flow between parallel components.

Figure 45 depicts the structure of the overall System which is decomposed in a SystemUnderTest
and a TestEnvironment component. The SystemUnderTest encompasses the desired be-
haviour of the system under test and has therefore been annotated with the SUT stereo-
type. The TestEnvironment represents the operational environment to the system under
test and is annotated with the TE stereotype.

9The detailed model is described in [PVL11].
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Figure 45: Top-level architecture diagram of the turn indicator model.

The system under test receives inputs from the environment and provides outputs. For
both of these, data flow interfaces specify the involved variables and have been associated
with the stereotypes SUT2TE and TE2SUT, respectively. The system under test receives
the following inputs from the environment:

• TurnIndLvr: The position of the turn indicator lever, which can either be neutral,
left flashing, or right flashing.

• EmerSwitch: The on/off status of the emergency flashing switch.

• voltage: The voltage of the car’s battery.

The SystemUnderTest produces the following observable outputs:

• LampsLeft: The of/off status of the indication lights on the left side.

• LampsRight: The of/off status of the indication lights on the right side.

The connection diagram in Figure 46 connects the system under test with the test envi-
ronment using the described interfaces.

Figure 46: Top-level connection diagram of the turn indicator model.

Note, that the correct stereotype annotations of the components are important for test
case generation using RTT-MBT.

In this example, the TestEnvironment does not constrain the input variables in any way
(RTT-MBT automatically ensures that the values assigned during test case generation are
within the specified range). The relevant logic is thus implemented in SystemUnderTest,
which is divided into two hierarchical state charts called FLASH_CTRL and OUTPUT_CTRL as
expressed by the class diagram in Figure 47. The component FLASH_CTRL is responsible
for deciding whether the left or the right side has to flash depending on the turn-indicator
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Figure 47: System under test architecture diagram of the turn indicator model.

lever and the emergency switch. This general decision for the two sides is fed into the
OUTPUT_CTRL which is responsible for periodically turning the lights on and off. This data
flow between the two components is expressed by the connection diagram in Figure 48.

Figure 48: System under test connection diagram of the turn indicator model.

The FLASH_CTRL state machine in Figure 49 controls the impact of operating the turn
indicator and emergency flashing switch. If the emergency switch is not pressed, the
state machine simply enables flashing on a specific side if the turn indicator lever is
in the respective position. If the emergency switch is pressed, the composite state in
Figure 50 decides whether both sides should flash. Observe, that using the turn indicator
lever while the emergency switch is pressed can override emergency flashing. The lamps
resume flashing on both sides when the turn indicator level is returned to the neutral
position.

OUTPUT_CTRL depicted in Figure 51 implements two modes for setting the outputs. It
can be in either idle or flashing mode, where the flashing mode itself is implemented as
composite state that can switch from off to on and vice versa. It does so in a regular
interval if the system has enough power and a lever or the emergency button has been
used. The state machine also implements a counter that ensures that left or right flashing
is still flashing for three times if the turn indicator level is only operated for a short
duration.

Observe that certain states and transitions in the model have been annotated with require-
ments. For example, the transition from state TURN_IND_OVERRIDE→ EMER_ACTIVE in
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Figure 49: The FLASH_CTRL state machine.

Figure 50: The EMER_ON composite state in the FLASH_CTRL state machine.
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Figure 51: The OUTPUT_CTRL state machine.

Figure 50 has been linked to requirement REQ-007 via a satisfy relation. Likewise, state
TURN_IND_OVERRIDE has been linked to requirement REQ-006. Linking requirements in
that way specifies that the associated structural elements of the model help to realise the
given requirement.

Furthermore, some requirements are attached to classes in conjunction with an LTL
formula as can be seen in Figure 47. The LTL formula specifies an abstract execution
trace that could serve as a witness to demonstrate that the requirement is fulfilled by an
implementation.

6.4 Analyses and Experiments

6.4.1 Test Automation and Model Checking

As mentioned earlier, this pilot can be used to automatically generate test cases for a
system that shall implement the specified behaviour. In addition, desired safety prop-
erties of the system can also be verified using model checking. Both these activities are
performed using the RT-Tester Model-Based Test Case Generator (RTT-MBT) and are
described in more detail in Deliverable D5.2a [PLM16] and Deliverable D5.2b [BLM16],
respectively.
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7 UAV

7.1 Example Description

This pilot study originates from a master thesis study presented in [GN16]. The study
models the physical dynamics as well as the discrete controller of an Unmanned Aerial
Vehicle (UAV). Focus on the details of the model contribute to a high model fidelity,
enabling the multi-model to be used to compare alternative control algorithms.

Figure 52 shows a 3D model of the UAV and some of its main components, including
the airframe, which is the main body the UAV, the propulsion system consisting of
rotors, motors, and electronic speed controllers, along with the battery and the
controller platform. Additionally, a UAV have a range of different sensors and a
telemetry system used to communicate with a pilot or a ground control center.

Motor

Rotor

ESC

Battery

Controller
Airframe

Figure 52: UAV 3D model

7.2 Usage

The example is available from the INTO-CPS application menu at File>Import Example
Project or at https://github.com/into-cps/case-study_UAV in the master branch.
There are several subfolders for the various elements: FMU – contains the various FMUs
of the study; Models – contains the constituent models defined using the INTO-CPS
simulation technologies; Multi-models – contains the multi-model definitions and co-
simulation configurations – with 3D and non-3D options; and SysML – contains the SysML
model defined for the study.

In the abstract_intocps branch, the original discrete event control model have been re-
placed with an abstract control model in order to enable high-level control prototyping. A
prototype of an autonomous vertical waypoint controller is exemplified. The same model
is found in the abstract_crescendo branch, where DESTECS technology is used instead of
INTO-CPS technology. This can be used to compare the two technologies [TN16].
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7.3 INTO-CPS SysML profile

The INTO-CPS SysML profile is used to create an Architecture Structure Diagram (ASD)
and a Connections Diagram (CD), shown in Figure 53 and Figure 54 respectively. The
ASD expresses that the system UAV is a composition of a cyber part ArduPilot, a physical
part ArduCopter, and an optional 3D animation.

ArduPilot is a discrete event controller described in VDM-RT. It takes a number of
sensor inputs and outputs a control signal for each of the four motors of the UAV. By
adjusting the motor setpoints, it is able to make the UAV fly to predefined waypoints,
taking into account feedback from sensors.

ArduCopter is a model of the physical dynamics of the UAV described in 20-sim. The
inputs to the ArduCopter model are the four motor setpoints. Based on these, it cal-
culates the angular position described with roll, pitch, and yaw angles, and the spatial
position described with a latitude, longitude, and altitude (X,Y,Z), and the velocities and
accelerations of the UAV. Additionally, corresponding sensor outputs are simulated for a
3-axis accelerometer, a 3-axis gyroscope and a GPS.

Angular and spatial positions are used by the 3D animation.

Figure 53: UAV Architecture Structure Diagram

The connection between the constituent models is a one-to-one mapping between ArduPilot
and ArduCopter, with the exception that the 3D animation is connected to ArduCopter
as well, as shown in Figure 54.
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Figure 54: UAV Connections Diagram
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7.4 Multi-model

7.4.1 Models

The system comprises a continuous-time (CT) model ArduCopter and a discrete event
(DE) model ArduPilot.

ArduCopter: The physical dynamics of the UAV is described in 20-sim. In Figure 55
an overview of the Quadcopter model is shown. It includes the rigid body dynamics
of the airframe, the aerodynamics of the rotors, the electronics and mechanics
of the motors and the electronic speed controllers, as well as sensor noise,
inaccuracies, and rounding errors.

Figure 55: 20-sim model of the UAV

ArduPilot: Figure 56 shows an overview of the ArduPilot model, which is described in
VDM-RT. The main class of the model ArduPilot starts a Scheduler and a Flight
controller. To improve model fidelity, sensor values are updated periodically by
the scheduler to emulate the real update frequencies of the various sensors. The
flight controller takes input from a pilot and from sensor data, on which sensor
fusion is performed, and is responsible for calculating desired accelerations for the
UAV. These accelerations are translated, by the Motors class, into motor setpoints
for each motor. The translation involves a complex tradeoff between roll, pitch, and
yaw accelerations and total thrust. The MotorsQuad class is shown to illustrate that
the Motors class can be extended to support any number or configuration of motors.

The Flight Control class contains the core functionality of the model and is prob-
ably also the most complex part. It can operate in multiple flight modes, which
make use of either an attitude controller or both an attitude and a position con-
troller. The attitude controller is capable of obtaining and maintaining any given
attitude, whereas the position controller is capable of controlling the altitude. Both
the attitude and position controllers depend on a number of low level controllers,
such as Proportional-Integral-Derivative (PID) controllers and a number of different
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filters to remove unwanted noise and vibrations caused by the fast spinning rotors.

Figure 56: ArduPilot model overview

7.4.2 Configuration

This pilot study does not use any parameters and the connections should be self explana-
tory from Figure 54.

7.5 Co-simulation

Two multi-models are defined for this pilot study. The only difference between the two
is whether the 3D animation is included or not.

Figure 57: 3D visualization of the UAV
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8 Ether

8.1 Example Description

This example explores ways to model network communications between controllers. This
involves passing messages —VDM values encoded as strings— from a model called Sender
to a model called Receiver. This is either done directly, as illustrated in Figure 58(a), or
via a third model called the Ether, as illustrated in Figure 58(b).

While this example demonstrates that direct connection is possible, for multi-models
with large numbers of connected controllers (for example swarms or cooperative vehicles)
it becomes unwieldy. This example includes an Ether model, which represents an ab-
stract communication mechanism, that handles message passing between the Sender and
Receiver. This Ether can be used in other models.

The introduction of a model of communications also permits a range of realistic and
faulty behaviours to be introduced, such as message delay, duplication, and loss. The
ether pattern which this example implements is described in greater detail in Deliverable
D3.2a [FGPP16], and includes a discussion of realistic and faulty behaviour.

(a) Sender and Receiver con-
nected directly

(b) Sender and Receiver connected via the Ether

Figure 58: Topology of the ‘Direct’ and ‘Ether’ multi-models.

8.2 Usage

The example is available from the INTO-CPS application menu at File > Import Example
Project or at https://github.com/into-cps/case-study_ether in the master branch.
There are several subfolders for the various elements: FMU – contains the various FMUs
of the study; Models – contains the constituent models defined using the INTO-CPS
simulation technologies; Multi-models – contains the multi-model definitions and co-
simulation configurations – with Direct and Ether configurations.

The case-study_ether folder can be opened in the INTO-CPS application to run
various co-simulation experiments. To run a simulation, expand the emphDirect or em-
phEther models, then open the co-sim_direct or co-sim_ether experiments and click Sim-
ulate. Section 8.5 below gives some suggestions of how to explore the multi-model.

Warning! Values printed from Overture FMUs are not visible in the COE status window
in the INTO-CPS Application version 2.1.0 or below.
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8.3 Multi-model

8.3.1 Models

There are three models in this example, all of which are DE models written in VDM:

Sender: This model has a single output port called out, of type String. The Controller
class generates random messages every 0.1 seconds, and passes them to the output
port. Each message consists of three integers in the range (0,10), and are converted
to a string representation using the VDMUtil standard library. The time and content
of each message is printed to the console.

Receiver: This model has a single input port called iin, of type String. The Controller
class listens for messages on the input port and attempts to convert message strings
back to a VDM type representation using the VDMUtil standard library. Empty
strings are often received at the start of co-simulation, and these are ignored. If
conversion is successful, the time and content of the message is printed to the con-
sole.

Ether: This model represents an abstract communication medium. It has an input port
called sender and an output port called receiver, both of type String. The
Ether class passed strings from the sender port to the receiver port. Although
in this example only one message will be received at a time, in general there may
be multiple messages for the same destination during a single update, so the Ether
class collects messages in a list and passes on a string of strings that the destination
(i.e. in this case Receiver) must decode.

The connections in the Ether class are determined by the values passed to the
constructor, which is called in the System class. The constructor takes a map of
named input ports, a map of named output ports and a set of pairs indicating
which inputs are connected to which outputs. The Ether class does not examine
the value of the messages that it passes. This model can be reused in other multi-
models where message-based communications between models are required.

8.3.2 Configuration

There are two multi-model configurations included in the example:

Direct In this configuration, the Sender.out port is connected directly to the Receiver.in
port.

Ether In this configuration, the Sender.out port is connected to the Ether.sender
port and the Sender.reciever port is connected to the Receiver.in port.

These two different configurations allow exploration of the consequences of introducing
the Ether FMU. The Sender model does not need to know if it is connected to the Ether
or not. Since the Ether allows one-to-many communications, it passes lists of values, so
the Receiver must check whether it received a single value from the Sender directly, or
a list containing a single value via the Ether. This could be avoided in this example by
letting the Ether assume that there is only one connection, but would make the Ether
less general. The included implementation means that the Ether can be used directly in
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other multi-models — only the HardwareInterface class and called to the constructor
of Ether would need to be changed for the context of the new model.

8.4 Co-simulation

The simulation time for the multi-model is set to one second, which is sufficient to see the
behaviour of the system. During this time, 10 messages are sent from the Sender. Not
all messages are received by the Receiver since at least one extra update cycle is needed
to process the final message, or final two messages in the case of communication via the
Ether.

8.5 Analyses and Experiments

The following experiments are instructive in demonstrating the effects on introducing
the Ether and the effects of the relative speeds up the Sender, Ether and Receiver on
messages. All three FMUs print messages and times to the COE console.

1. Run the Direct co-simulation and observe that messages arrive at Receiver one step
(0.1 seconds) later. Run the Ether co-simulation and observe that messages arrive
two steps (0.2 seconds) later.

2. Change the frequency of the Ether to 20Hz or higher. Run the Ether co-simulation
and observe that messages arrive at Receiver one step (0.1 seconds) later. This is
because the Ether can now update in between steps of the Receiver.

3. Set the Ether back to 10Hz and change the frequency of the Sender to 20Hz or
higher. Run the Ether co-simulation and note how messages are not lost because
they are changed by the Sender before they are read by the Ether.

4. Set the Sender back to 10Hz and change the frequency of the Receiver to 20Hz or
higher. Run the Ether co-simulation and note how messages are now duplicated
because the Receiver is reading them twice or more.

If elimination of message loss or duplication is important in a multi-model, the descrip-
tion of the ether pattern in Deliverable D3.2a [FGPP16] gives some initial guidance on
overcoming such problems by introducing extra logic to give quality of service (QoS)
guarantees in message-passing.
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9 Swarm of UAV

9.1 Example Description

The Unmanned Aerial Vehicle (UAV) Swarm pilot study is concerned with a collection
of UAVs that communicate in order to achieve some global behaviour. The pilot study
is related to the previous UAV study in Section 7, however this does not focus on the
low-level physical details. The pilot uses a simplified physical model to allow simulation
of multiple UAVs simultaneously communicating.

In this pilot, each UAV is able to adjust its pitch, yaw and roll to move in 3D space using
rotors. Figure 59 shows a single UAV with its motors, rotors and battery – each UAV has a
controller which is able to communicate with its environment. In a swarm, the UAVs may
cooperate in order to avoid collide, to achieve some predefined topology, or collaborate to
provide some functionality. In this study, we demonstrate the use of a central controller
to dictate the desired movements of the UAVs comprising the swarm.

Figure 59: UAV 3D model

9.2 Usage

The example is available from the INTO-CPS application menu at File>Import Exam-
ple Project or at https://github.com/into-cps/case-study_uav_swarm in the master
branch. There are several subfolders for the various elements: FMU – contains the various
FMUs of the study; Models – contains the constituent models defined using the INTO-
CPS simulation technologies; Multi-models – contains the multi-model definitions and
co-simulation configurations – with 3D and non-3D options; and SysML – contains the
SysML model defined for the study.

The case-study_uav_swarm folder can be opened in the INTO-CPS application to run
various co-simulation experiments. To run a simulation, expand one of the multi-models
and click ‘Simulate’ for an experiment.
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9.3 INTO-CPS SysML profile

Using the INTO-SysML profile, we model a subset of the pilot study. The reason for
modelling only a small subset will become clear in this section. In Figure 60, we show an
Architecture Structure Diagram (ASD) depicting 3 UAVs – each comprised of a UAVCon-
troller component and a UAV component, a component for 3D visualisation UAV 3D,
and a UAV Global Controller component. Each component has a large number of inputs
and outputs. Briefly the UAV has inputs for setting the pitch, yaw, roll and throttle, and
outputs for the position, velocity and battery status. The UAV Controller has the same
ports, but with reversed direction and also ports to receive commands from the global
controller. The optional UAV 3D takes as input the position, pitch, yaw and roll of each
UAV. Finally, the UAV Global Controller has a collection of ports for target locations for
each UAV.

Figure 60: UAV Swarm Architecture Structure Diagram

Due to the large number of ports and connectors in this pilot, it not appropriate to repre-
sent them all on the same diagram. As such, we create a single Connections Diagram (CD)
per UAV each containing the same system instance (swarm : UAVSwarm). Combining
all CDs produces a complete configuration for that system instance. The CD in Figure 61
depicts connections between the UAVController component and a UAV component of
UAV1, and the connections to the UAV 3D and UAV Global Controller components re-
lated to UAV1. Note that the UAV 3D and UAV Global Controller instances have a
subset of their ports shown.
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Figure 61: UAV Swarm Connections Diagram showing connections relating to UAV1

9.4 Multi-model

9.4.1 Models

There are three models defined here (we do not include a description of the UAV 3D
model.

UAV: The physical model – UAV is defined in 20-sim. The UAV model represents the
motors, rotors, battery and implicitly the frame of the UAV. The top-level structure
of the model is shown in Figure 62.

Figure 62: 20-sim model for UAV taking part in a Swarm

As can be seen from Figure 62, there are several input and output signal ports –
these correspond to those ports defined in the SysML model above – for setting
the pitch, yaw and roll and reporting various aspects for control and visualisation
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purposes. The model is simplified and more abstract from that in Section 7, in that
it is better suited to modelling shallow pitch and roll angles and contains several
simplifications. The inputs from the controller enter the UAV model in two places
with the pitch, roll and yaw entering the RotationResponse block while the throttle
setting enters the quad block. This model of the UAV abstracts away the fact of
there being four distinct rotors and so a simplified model of their effects on the
orientation of the UAV, so instead of torques from the four rotors being applied
to the UAV body and the acceleration calculated, the RoationResponse considers
the difference between the current and requested pitch and roll and yaw rate an
simulates a damped transition from the current to the requested. The resulting
orientations are sent to the quad where they are combined with the throttle setting
and battery voltage to give thrust vectors along the vertical, front and side axis
of UAV. These vectors along with the UAV yaw are sent to the translationToXYZ
where the thruse vectors are mapped onto the X,Y and Z axis and drag, acceler-
ations, velocities and positions computed. The final two blocks BatteryModel and
WirelessBatteryChargin calculate the charge going into and out of the battery so
that its working voltage may be output to the quad model.

UAVController: The first of two VDM-RT models – UAVController – has a similar
architecture to other pilots (e.g. the line follower robot in Section 5), in that the
System has an instance of a HardwareInterface class containing ports for the inputs
and outputs of the model. The System class also has an instance of the Controller
class, which owns several instances which sense or make changes to the environment
– they are Actuators, Sensors and Commands. The controller has a collection of
operations that aim to control the movement of the underlying UAV – the top-
level control loop takes the commands from the environment with target locations.
Given the X, Y and Z coordinate the UAV should meet, the controller calculates
the throttle, yaw and roll to achieve the change form the current position to that
target. Those values are sent on the output ports.

Figure 63: UAV Controller architecture

GlobalUAVController: The global controller for the UAV Swarm study is a simple
model, which sends target locations to the different UAVs in the study at differing
times. The System class contains the HardwareInterface class with ports for outputs
of the model, and a Controller class which owns instances of objects which set those
output values. In addition, the Controller includes a Command class that contains
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the main control loop. This loop will change the target coordinates of each UAV
at different time steps, which are sent as outputs to the correct UAV.

Figure 64: Global UAV Controller architecture

9.4.2 Configuration

The multi-model configuration comprises a collection of connections between the FMUs.
We do not use parameters in the example. The connections may be grouped into three
classes: between UAV and UAVController, between UAVController and GlobalController
and UAV to 3DUAV. These groups are repeated for each UAV in the pilot, therefore we
only describe one set of connections – see Section 9.5 for different co-simulation experi-
ments.

The first set is between the UAV and UAVController :

• from the UAV velX port to the UAVController velXIn port;

• from the UAV velY port to the UAVController velYIn port;

• from the UAV velZ port to the UAVController velZIn port;

• from the UAV batteryCharge port to the UAVController batteryCharge port;

• from the UAV posX port to the UAVController posXIn port;

• from the UAV posY port to the UAVController posYIn port;

• from the UAV posZ port to the UAVController posZIn port;

• from the UAVController throttleOut port to the UAV throttle port;

• from the UAVController pitchOut port to the UAV pitch port;

• from the UAVController yawOut port to the UAV yaw port; and

• from the UAVController rollOut port to the UAV roll port.

The second set is between the UAVController and GlobalController :

• from the UAVGlobalController uavTargetX port to the UAVController targetX
port;
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• from the UAVGlobalController uavTargetY port to the UAVController targetY
port; and

• from the UAVGlobalController uavTargetZ port to the UAVController targetZ
port.

The final set is between the UAV and 3DUAV :

• from theUAV currentPitch port to the 3DUAV quad.RotationResponse.pitchOut
port;

• from the UAV currentYaw port to the 3DUAV quad.RotationResponse.yawOut
port;

• from theUAV currentRoll port to the 3DUAV quad.RotationResponse.rollOut
port;

• from the UAV posX port to the 3DUAV quad.TranslationToXYZ.PosX port;

• from the UAV posY port to the 3DUAV quad.TranslationToXYZ.PosY port; and

• from the UAV posZ port to the 3DUAV quad.TranslationToXYZ.PosZ port.

9.5 Co-simulation

Four multi-model configuration variations are defined to enable different co-simulation
experiments. Those different multi-models vary by the number of UAVs (the number of
UAV and UAVController FMU instances) and the inclusion of the 3DUAV FMU for
visualisation:

3-UAV-3D This multi-model comprises 4 FMUs: 3 instances ofUAV.fmu; 3 ofUAVCon-
troller.fmu; 1 instance of 3DanimationFMU.fmu; and 1 instance of UAVGlobalCon-
troller.fmu. The multi-model has a co-simulation experiment with a run time of 10
seconds and with a variable step size. The 3D visualisation shows the flight paths
of the UAVs.

3-UAV-Non-3D The 3-UAV non-3D multi-model is the same as the above study, how-
ever without the 3DanimationFMU.fmu instance. Without the 3D view, livestream
values are enabled for the x-position of the 3 UAVs – this may be changed.

5-UAV-3D The 5-UAV-3D multi-model is the same as in the 5-UAV-3D version, how-
ever with 5 instances of UAV.fmu and UAVController.fmu.

5-UAV-Non-3D Again, the 5-UAV-Non-3D multi-model is the same as in the 5-UAV-
Non-3D version, however with 5 instances of UAV.fmu and UAVController.fmu.

The 3D visualisation offered by those 3D multi-models opens a 3D visualisation window
as shown in Figure 65 which depicts the state of the swarm as the simulation progresses.
It should be noted that the FMU has a fixed number of UAV objects, therefore the FMU
must be extended to handle a greater number of UAVs in a swarm.
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Figure 65: UAV Swarm visualisation
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10 Smart Grid

10.1 Example Description

A smart grid is an electricity power grid where integrated ICT systems play a role in
the control and management of the electricity power supply. cite? Such ICT elements
include distributed control in households, control of renewable energies and networked
communications.

In this section we outline a Smart Grid model to explore different design decisions in the
cyber control of an electricity power grid. The model presented here is a small illustrative
example, which omits complexities of a real Smart Grid. For example, the change from
three-phase AC power to one-phase DC power allowing us to use simpler physical models.
A second simplification is in the number of houses present in the grid model. We model
only five houses, assumed to be in a small local area supplied by a single substation. We
do not consider the remainder of the grid. To ensure that any effect due to changes in
the power consumption by those properties are observed by the other houses, we skew
the resistance of the transmission lines between the power generation and substation, and
substation to houses.

10.2 Usage

This is a work-in-progress pilot (available at https://github.com/into-cps/case-study_
smart_grid) and not currently intended to be used for co-simulation; the master branch
therefore contains no models or FMUs. The work-in-progress artefacts are available in
the development branch. There are several subfolders for the various elements: FMU – con-
tains the various FMUs of the study; Models – contains the in development constituent
models defined using the INTO-CPS simulation technologies; Multi-models – contains
the multi-model definitions and co-simulation configurations; and SysML – contains the
SysML models defined for the study.

10.3 INTO-CPS SysML profile

The SysML model of the Smart Grid comprises an Architectural Structure Diagram
(ASD) and a single Connections Diagram (CD). The ASD in Figure 66, shows that the
multi-model is composed of four EComponents: FiveHouseGrid, SubstationController,
DataNetwork and HouseController. We model one CT physical element – the grid itself
– in 20-sim, and three DE models for the ICT control and communication features.

The CD in Figure 67 shows that the FiveHouseGrid model sends voltage and current
details to both the SubstationController and each of the five HouseController model
instances. This is intended to represent sensed meter readings at different parts of the
grid. The SubstationController and each of theHouseControllers communicate via the
DataNetwork model – all having a set of input and output connections.

It should be noted, in Deliverable D3.1a [FGPP15], we presented two SysML models
for a Smart Grid CPS. In these models we split the FiveHouseGrid into a collection of
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Figure 66: Architecture Structure Diagram for Smart Grid multi-model

Figure 67: Connection Diagram for Smart Gridmulti-model
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separate EComponents to represent the different subparts of the physical infrastructure.
At present, this is not feasible due to constraints on algorithmic loops formed between
the elements. We will continue developing this in Year 3 of the project.

10.4 Multi-model

10.4.1 Models

The Smart Grid multi-model comprises four ‘simulation’ models: a single 20-sim model
corresponding to the electrical grid and three VDM models for the substation controller,
house controller and data network.

As alluded to in Section 10.3, the physical aspects of the Smart Grid CPS is contained
in a single physical model. The use of bonds to connect the various internal elements
(such as Power Generation, Transmission and Step-down Transformer) limits the ability
to spilt the physical model into smaller models.

FiveHouseGrid: In the CT model we begin by defining a top-level block diagram in
the 20-sim tool. This allows the composition of a model in terms of the different
physical elements of the Smart Grid CPS, and also to identify connections to the
DE controller. This is shown in Figure 68. It is important to note that in 20-sim,
we model both effort and flow – corresponding to voltage and current as we are
modelling the electrical domain.

!

Figure 68: Top-level 20-sim block diagram connected by signals and energy bonds

The top-level block diagram is subsequently decomposed into different physical con-
stituent elements: Power Generation, Transmission Lines, Substation and Houses.
Each of these 20-sim blocks is given a graphical icon and may be ‘exploded’ to show
their internal structure in terms of 20-sim elements.

Defining the Power Generation in Figure 69, we take an abstract view, comprising;
a source of effort (SE in the model) representing a constant power source. For the
purposes of this model, the voltage (effort) is defined as being 11000 volts.

The Transmission Line, shown in Figure 70 is modelled simply as a resistor –
corresponding to the power drop experienced over such transmission lines. The
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Figure 69: 20-sim elements comprising the Power Generation

resistance defined for the Transmission Lines differs between the high voltage line
between Power Generation and Substation and the lower voltage Transmission Line
between the Substation and the Houses.

 

Figure 70: 20-sim elements comprising the Transmission Lines

A Substation, shown in Figure 71 and as defined in the SysML architectural model,
has two physical parts. Firstly, the Step-down Transformer alters the voltage from
the high transmission voltage to the target local voltage of 230 volts. The Substation
Meter is modelled as a smart meter, in Figure 72 using effort and flow meters (an
‘e’ and ‘f’ surrounded by a circle) to monitor the voltage and current observed in
the substation.

 

Figure 71: 20-sim elements comprising the Substation

Finally, the Houses, shown in Figure 73, are each modelled as containing a House
Meter and a set of devices. The House Meters are modelled in the same way as
the Substation Meter. The Devices are defined as being a variable resistor. The
resistance is calculated using a variable powerUsage. This value is provided by a
source external to the model.

The final 20-sim artefact to consider is the link to the DE controller. This element
receives an array input (the voltage and current provided by the Substation Meter)
and a matrix of House Meter readings (again voltage and current). The controller
returns an array of values corresponding to the power usage of the different houses.
The software controller itself is defined in a VDM-RT model, described in the next
section.

HouseController The HouseController VDM-RT model dictates, and aims to manage,
the power usage of each house. The power usage takes two forms: unmanaged pro-
files of usage – where devices are used solely at the behest of the user; and managed

67



D3.5 - Examples Compendium 2 (Public)

!

Figure 72: 20-sim elements comprising a Smart Meter

 

Figure 73: 20-sim elements comprising a House

power use – where the controller may manage the power use. The architecture is
shown in Figure 74. The System class contains an instance of the Controller, Hard-
wareInterface and IOFactory classes. The HardwareInterface class contains input
and output ports for the model – communication with the FiveHouseGrid model
(inputs are the house voltage and current, with the house power usage as output),
and with the DataNetwork (with input and outputs for data communication).

Figure 74: Architecture of HouseController model

In the case of unmanaged power usage, this may mean that the home owner turns
devices and appliances on and off at will, or where some appliances change power
usage at set times through the day (heating, for example). In the VDM-RT model,
we define a collection of appliance and device power use profiles, a map of time
to power use, which will always occur during simulation. Each house is initialised
with a collection of device power profiles.

Managed power sources are modelled in a similar manner to unmanaged sources,
apart from the fact they have a shorter profile, and no fixed start time. The House-
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Controller may, therefore, change the start time of a managed device depending
upon a policy defined in the controller. At present, once a device has started, it
can not be paused, however this may be changed in future.

The HouseController has several control mechanisms for managing the controlled
devices in that household. These include:

No controlled devices: In this mode the house controller cancels all controllable
devices from starting. This can be reversed, however at present if the start
time passes whilst cancelled, the device will not turn on in the future. This
mode does not stop already running devices.

No management: The controlled devices operate as requested – the controller
does not alter the start time.

Local control: The decision to start a controlled device is based upon the local
meter readings at a set time before the device is scheduled to start. Each house
has a voltage threshold – which dictates the minimum voltage permitted for
a smart device to be turned on. If the voltage is below this threshold, the
starting time of the smart device is increased by a set time.

Request: The HouseController makes an explicit request to the substation to check
if controlled devices may start.

Additional control mechanisms may be added at a later time.

SubstationController: The SubstationController VDM-RTmodel architecture is shown
in Figure 75. The SubstationController aims to manage the power across a set of
houses. The controller takes, as input, the voltage and current at the substation
and also receives meter readings from all the houses it is managing. A network may
be modelled for the transmission of these readings, allowing for the modelling of a
faulty network. In this project we abstract from the network and assume a perfect
network.

The SubstationController is able to make decisions and influence the behaviour of
the individual HouseControllers based upon the meter reading values at any point.
The SubstationController has two control mechanisms available to a policy designer:

Reporting: This is the simplest mode, whereby it receives readings from each of
the houses but takes no action. In this mode, however, the SubstationCon-
troller may still respond to requests made by the different HouseControllers.

Substation control: In this mode, the SubstationController takes control of con-
trolled devices of all houses in the neighbourhood. Modelling this is beyond
the scope of the project, however we could envisage multiple subtypes of this
control mode depending on how the engineer decides upon which devices to
allow to start, for example depending on financial incentives.

DataNetwork Not yet defined – in Year 3 of the project, we shall implement this model
using the Ether pilot study – see Section 8.
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Figure 75: Architecture of SubstationController model

10.4.2 Configuration

In this pilot, we see four groups of connections.

The first, between the physical FiveHouseGrid and the cyber SubstationController, relate
to the metering of voltage and current at the substation of the grid. The connections
are:

• from the FiveHouseGrid ss_i port to the SubstationController i port, and

• from the FiveHouseGrid ss_v port to the SubstationController v port.

Next, connections exist between the physical FiveHouseGrid and the each of the five
cyber HouseControllers, relating to the metering of voltage and current at the substation
of the grid. In addition, there is a connection carrying the current power usage commands
from the controller to the grid. Due to the number of connections, we consider only one
house instance here. The connections are:

• from the FiveHouseGrid h_i port to the HouseController i port,

• from the FiveHouseGrid h_v port to the HouseController v port, and

• from the HouseController powerUsage port to the FiveHouseGrid h_p port.

The next collection contains two connections between the DataNetwork and Substation-
Controller to represent the flow of data into and out of the SubstationController.

• from the DataNetwork ss_nw_out port to the SubstationController nw_in port, and

• from the SubstationController nw_out port to the DataNetwork ss_nw_in port.

Finally, we present two connections between the DataNetwork and HouseController to
represent the flow of data into and out of the HouseController. Again, we consider only
one house instance here.

• from the DataNetwork h_nw_out port to the HouseController nw_in port, and

• from the HouseController nw_out port to the DataNetwork h_nw_in port.

70



D3.5 - Examples Compendium 2 (Public)

10.5 Co-simulation

FMUs have not yet been generated from the models of this study and therefore co-
simulation has not yet been performed. This shall follow in Year 3 of INTO-CPS.
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11 Roadmap for Pilot Studies

In the final 12 months of the project, the pilot studies will demonstrate the range of
INTO-CPS technologies as they become available during the final year. In addition,
future pilot studies must continue to exhibit network communication – a key property of
CPSs. Initial efforts have been demonstrated in the Ether case study in Section 8, the
UAV swarm (Section 9) and Smart Grid (Section 10) studies are natural candidates for
deploying the Ether.

11.1 Future INTO-CPS Technology Demonstration Needs

In the final 12 months, those technologies developed in the project should be demonstrable
by the pilot studies. As a part of producing a roadmap, the technology developers in the
project were asked for some properties required of future studies. In this section, we
briefly outline characteristics the future studies should target. We do not aim to identify
which studies may test these specific areas, only that they should be targets.

Code Generation Code generation has been used in three pilots. In the coming year,
we aim to apply code generation for additional pilots. Additional language data
structures will be supported as necessary.

Design-Space Exploration Pilot studies demonstrating DSE should use the DSE SysML
profile (as detailed in Deliverable D3.2a [FGPP16]. Pilots should also demonstrate
the use of both exhaustive, genetic algorithms and other search algorithms as ap-
propriate. All ranking mechanisms should be demonstrated.

Test Automation The Test Automation feature has been demonstrated on only two
studies. In the coming year, we aim to cover more studies.

Model Checking Model checking has been demonstrated in the turn indicator pilot
only, we seek better coverage in the final deliverable.

Traceability The use of traceability links and queries for impact analysis should be
supported in pilots. The line follow robot pilot has example traces defined in De-
liverable D3.2a [FGPP16] – these should be implemented in the final pilot study
deliverable.

INTO-SysML profile The INTO-SysML profile has been extended in the latter part
of this year. The architectural models of the pilot studies should be altered to
take advantage of new stereotypes, and where appropriate use the new DSE and
TA (see above) profiles. In addition, for the purposes of Task T2.1, we require: a
connection diagram that is different from the port-dependency graph (in that there
may be connections that do not lead to a dependency) and showing algebraic loops.
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