
Grant Agreement: 644047

INtegrated TOol chain for model-based design of CPSs

Methods Progress Report 2

Deliverable Number: D3.2b

Version: 1.0

Date: 2016

Public Document

http://into-cps.au.dk

D3.2b - Methods Progress Report 2 (Public)

Contributors:

John Fitzgerald, UNEW
Carl Gamble, UNEW
Richard Payne, UNEW
Ken Pierce, UNEW

Editors:

Carl Gamble, UNEW

Reviewers:

Christian König, TWT
Etienne Brosse, ST
Martin Peter Christiansen, AI

Consortium:

Aarhus University AU Newcastle University UNEW
University of York UY Linköping University LIU
Verified Systems International GmbH VSI Controllab Products CLP
ClearSy CLE TWT GmbH TWT
Agro Intelligence AI United Technologies UTRC
Softeam ST

2

D3.2b - Methods Progress Report 2 (Public)

Document History

Ver Date Author Description
0.1 04-04-2016 Richard Payne Initial document
0.2 1-11-2016 Ken Pierce Workflows added
0.3 1-11-2016 Carl Gamble DSE, Traceability added
1.0 15-12-2016 Carl Gamble & Richard Payne Review comments addressed, ap-

pendices A & B added

3

D3.2b - Methods Progress Report 2 (Public)

Abstract

This document reports progress in Work package 3 (Multi-modelling Methods) in the
second year of INTO-CPS, covering workflows, design space exploration, traceability,
guidelines, and pilot studies. It contains four appendices, the first two outline specifica-
tions for the INTO-CPS SysML profile while the second two present updated versions
of the INTO-CPS traceability ontology and an example of using the ontology concepts
based upon the line follower robot pilot study.

4

D3.2b - Methods Progress Report 2 (Public)

Contents
1 Introduction 6

2 Progress on WP3 Tasks 6
2.1 T3.1: Workflows . 6
2.2 T3.2: Design Space Exploration . 7
2.3 T3.3: Provenance and Traceability . 8
2.4 T3.4: Guidelines . 8
2.5 T3.5: Pilot Case Studies . 9

A INTO-CPS SysML Metamodel Extensions 11

B Design Space Exploration Metamodel 13

C Updated INTO-CPS Traceability Ontology 15
C.1 Requirements . 15
C.2 Architecture Modelling . 17
C.3 Model Description File Export . 19
C.4 Simulation Models . 20
C.5 Model Checking . 22
C.6 FMU and Code Generation . 24
C.7 Simulation . 27
C.8 DSE . 29
C.9 Design Notes . 32

D Line Follower Example 33
D.1 Introduction . 33
D.2 User docs → Requirements . 34
D.3 Requirements → SysML Model ASD . 36
D.4 SysML Model ASD → Model Description Files 38
D.5 Library Sensor → Sensor Model Description File 39
D.6 Model Description Files Import → SysML model ASD 41
D.7 Model Description Files → Simulation Models 42
D.8 Simulation Models → FMUs . 44
D.9 Create SysML Model Connections Diagram 46
D.10 SysML Model CD → Simulation Configuration 47
D.11 Simulation Configuration and FMUs → Simulation Result 48
D.12 Simulation Result and Requirements → Design Note 50
D.13 Design Note and Controller Model → Evolved Controller Model 51
D.14 Evolved Controller Model → Evolved Controller FMU 53
D.15 New Config and FMUs → New Simulation Result 54
D.16 New Simulation Result and Requirements → New Design Note 55

5

D3.2b - Methods Progress Report 2 (Public)

1 Introduction

This report describes the work undertaken in Year 2 of INTO-CPS in Work Package 3.
New and prospective users of the INTO-CPS technologies should refer to the Deliverable
3.2a Method Guidance 2 [FGPP16].

Work Package 3 (Multi-modelling Methods) in INTO-CPS aims to provide pragmatic
methods in the form of guidelines and patterns that support the emerging tool chain. Our
focus is on ensuring that adoption of the tool chain is cost-effective by providing guidance
to help users determine the modelling technologies and patterns that best meet their needs
and integrate with their work flows, taking into account their previous experience and
processes. Ultimately, the full set of guidelines will cover the following areas:

• Workflows: multi-model construction from requirements capture in SysML, and the
integration of multi-models into existing development activities and processes.

• Design Space Exploration: the use of co-simulation to support consideration of
design options.

• Provenance and Traceability: methods for machine-assisted recording and mainte-
nance of links between models, multi-models and other design artefacts.

The guidelines are underpinned by a common concept base, and are supported by a
growing set of pilot studies that can serve as benchmarks for the methods and tools and
as illustrations for the tool chain’s capabilities.

This document outlines the progress made in the past year in these areas with further
details of the current state presented in the appendices: Appendix A presents extensions
to the INTO-CPS SysML metamodel; Appendix B presents the INTO-CPS DSE SysML
metamodel; Appendix C presents the updated traceability ontology; and Appendix D
presents an example model development for the purposes of identifying traceability and
provenance data. These appendices are presented in this document, rather than Deliv-
erable 3.2a [FGPP16] as they are either background material related to guidelines or
snapshots of living documents – the material present does not constitute user guide-
lines.

2 Progress on WP3 Tasks

2.1 T3.1: Workflows

We had aimed to test full end-to-end use of the INTO-CPS in Year 2, however we over-
estimated when the integrated tools would be stable enough to handle such testing,
particularly given the unforeseen need for WP4/5 to develop the INTO-CPS Application
from scratch. The tool chain is now sufficiently mature that we can test end-to-end use
early in Year 3 and generate guidance from our experiences.

Much of the effort in this regard was redirected into the “Tool Tsar” role established early
in Year 2. The Tool Tsar role was created to ensure that the tools are able to support
workflows described by WP3, and that releases to WP1 meet a minimum set of stability

6

D3.2b - Methods Progress Report 2 (Public)

and functionality requirements. To this end, we worked with WP4/5 to define a release
procedure that gave time for testing. As part of the release procedure, we defined basic
workflows that releases should support. These now form the “getting started” section
described in D3.2a [FGPP16], along with the associated training materials. We regularly
tested release candidates (RCs) against the pilot studies, and helped to ensure WP1
were warned of any updates that broke backwards compatibility, including providing
examples of what needed changing in such instances. Next steps here are to ensure that
this continues into Year 3 with both the tools and industrial case studies become more
complex.

Regarding specific workflows, UTRC asked for guidance on how to model networks of
distributed controllers in VDM. There is a well-established workflow in the VDM world
of building a sequential modelling, then introducing concurrency and communication, and
finally distribution across controllers in VDM-RT [LFW09]. There is however no current
guidance on how to move to a multi-modelling context where distributed controllers
described in a single VDM model become separate FMUs in a multi-model.

A first step here was to investigate how to model networked controllers in multi-models,
which lead to the material on modelling networks in D3.2a [FGPP16]. This also led
to specification being provided to WP4 on necessary extensions to the Overture FMU
exporter to support this work. The next stage is to generate guidance on bridging the
gap between this “DE-first” approach and networked FMU representation. We also in-
tend to explore equivalents for CT-first and other workflows described in the Crescendo
[FLV14].

2.2 T3.2: Design Space Exploration

In Year 2 of INTO-CPS it was identified that the definitions guiding the DSE scripts
just appear with no meaningful links to the any other artefacts in the tool chain. This
has two effects, firstly there is no traceability back to the requirements from which we
might understand why the various objectives (measures) were being evaluated or why
they were included in the ranking definition. Secondly, since the configurations were
created manually for each new DSE experiment it is easy to imagine that the DSE
analysis and ranking might not be consistent among the experiments. To address this
issue it was decided to make the definition of the objectives of DSE explicit early on,
i.e. in the architectural phases, of the INTO-CPS workflow by creating a DSE SysML
profile [FGPP16]. The profile (designed using a metamodel in Appendix B contains a
number of views allowing the definition of the objectives to be computed, their links back
to requirements, the method for ranking and the connections between the multi-model
and the analysis such that the required data may be obtained. The purpose of the view is
to support traceability back to requirements, facilitate description of the DSE analysis to
stakeholders and to permit automated generation of consistent DSE configurations.

The second year has also seen the development of the first closed loop DSE script in
INTO-CPS. The scripts themselves are reported under T5.1 and described in [Gam16],
however the genetic script has options both in terms of how the algorithm works and also
parameter that may be tunes for different design spaces. Thus experiments varying the
algorithm options and parameters have been run with a set of design spaces based upon
the line follower robot and three tank water tank models. These experimental results,

7

D3.2b - Methods Progress Report 2 (Public)

which at the time of writing are being compiled measure the costs of DSE in terms of
the number of simulations performed to obtain a result and the quality of that result by
comparing the Pareto front obtained with one obtained from an exhaustive search. These
results can be used for the basis of guidance by users regarding which algorithm to use,
what parameters and how many times to run a script to obtain the best results.

2.3 T3.3: Provenance and Traceability

The second year of traceability work has seen the abstract ontology work in year one
progress towards implementable design through the development of concrete examples.
The line follower robot has once again proved its worth by acting as the subject of this
example which runs from the elicitation of requirements through to simulation results
and a design change based upon those results. The example, which may be found in
Appendix D describes the individual steps taking the design from requirements through
to results focussing on the activities performed, the relations that need to be captured
and giving concrete examples of the messages in the JSON format.

The ontology that describes the relations the INTO-CPS aims to capture has also been
updated to maintain step with the rapidly changing tool chain.

Validation of the task efforts is important here to ensure they are in line with the industrial
partner needs. To this work package 1 have taken part in both written surveys and also
more recently structured interviews conducted over the telephone. The results of the
structured interviews, which are currently being reviewed, have revealed a strong desire
for a prescriptive approach to traceability where the engineer is directed toward the
important relations needed to support their traceability goals.

2.4 T3.4: Guidelines

In the second year of INTO-CPS, we had several objectives. First we maintained the
concept base created in the first year – including new terms as required based upon new
developments in the project, and ensuring any disagreements with existing terms are
rectified. The concept base has also yielded a common glossary to be used in the project,
separate to Deliverable 3.2a [FGPP16] containing the concept base.

This concept base has been circulated to the project – first to Work Package leaders,
and subsequently to the remainder of the project, with discussion following in relation to
Hardware-in-the-Loop and Software-in-the-Loop testing. These caused difficulties due to
the terms being used in both industry and test automation, with subtly different views.
As the concept base is to be used for the project, it was decided that we use the term as
associated in the Test Automation task (T5.2). Any alternative use of the term should
therefore acknowledge that it differs from the project view.

The second aim is to ensure guidelines on various project technologies are made available
and accessible within the project – especially for industrial users. Therefore the task
managed a series of webinars, hosted by TWT. To date, there have been four webinars:

8

D3.2b - Methods Progress Report 2 (Public)

concepts; joint WP3 and WP4 tutorial on co-simulation1; workflows; and design space
exploration. A webinar for traceability was planned, but has been moved to next year to
ensure that usable technology is available.

Finally, the task worked with Task 3.1 on guidelines for requirements engineering and with
T2.1 on extensions to the INTO-SysML profile (reported in Appendix A and Deliverables
D3.2a [FGPP16] and D4.2c [BQ16]). The requirements engineering guidelines use outputs
from the traceability and provenance task (T3.3) and from responses from the T2.1
industrial partner survey from year 1 of the project.

2.5 T3.5: Pilot Case Studies

In Deliverable D3.4 [FGP+15], produced in the first year of the project, we proposed a
roadmap to expand coverage of the pilot study compendium. Deliverable D3.5 [PGP+16]
presents an updated collection of pilot studies that aim to meet the identified short-
comings and proposals of newly available approaches from the technology providers in
INTO-CPS. In addition, a large effort of this task was to migrate pilots from baseline
technologies to the INTO-CPS technologies as they were made available.

The migration aspect took some effort, as technologies were not always stable, and bugs
were identified and rectified. As such, this took more time than was previously as-
sumed.

The main shortcoming identified was the lack of network communication in the pilot
studies. As such, along with T3.1 we have developed the Ether pilot which may be
used to model network-based communication. We have begun including this in the UAV
Swarm pilot, however, issues with the COE have caused difficulties. This aspect of the
study is therefore currently withheld from the publicly accessible examples.

The pilots provide coverage of all INTO-CPS simulation technologies (VDM-RT, 20-sim
and OpenModelica), have architectural models in SysML using the INTO-SysML profile,
may be co-simulated with the INTO-CPS application, can perform DSE and have support
for test automation. We currently do not support code generation or traceability in the
pilot studies. Preliminary examples exist within T3.3 and T5.4 respectively, however the
tool support is not mature enough; therefore they have not been integrated into the pilots
compendium.

As stated in Deliverable D3.5 [PGP+16], the focus for the final year is to propagate the
network communication in existing studies (UAV Swarm and Smart Grid are natural
candidates), to support additional features of the INTO-CPS tool chain as they become
available and to add to the compendium with new studies as appropriate.

1This was produced prior to the development of the INTO-CPS Application, and described the tasks
for architectural modelling, simulation modelling and co-simulation

9

D3.2b - Methods Progress Report 2 (Public)

References

[AdLG15] Nuno Amálio, Juan de Lara, and Esther Guerra. FRAGMENTA: A theory of
fragmentation for MDE. In MODELS 2015. IEEE, 2015.

[APCB15] Nuno Amalio, Richard Payne, Ana Cavalcanti, and Etienne Brosse. Founda-
tions of the SysML profile for CPS modelling. Technical report, INTO-CPS
Deliverable, D2.1a, December 2015.

[BQ16] Etienne Brosse and Imran Quadri. SysML and FMI in INTO-CPS. Technical
report, INTO-CPS Deliverable, D4.2c, December 2016.

[FGP+15] John Fitzgerald, Carl Gamble, Richard Payne, Ken Pierce, and Jörg Brauer.
Examples Compendium 1. Technical report, INTO-CPS Deliverable, D3.4,
December 2015.

[FGPP16] John Fitzgerald, Carl Gamble, Richard Payne, and Ken Pierce. Method
Guidelines 2. Technical report, INTO-CPS Deliverable, D3.2a, December
2016.

[FLV14] John Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef, editors. Col-
laborative Design for Embedded Systems – Co-modelling and Co-simulation.
Springer, 2014.

[Gam16] Carl Gamble. DSE in the INTO-CPS Platform. Technical report, INTO-CPS
Deliverable, D5.2d, December 2016.

[LFW09] Peter Gorm Larsen, John Fitzgerald, and Sune Wolff. Methods for the De-
velopment of Distributed Real-Time Embedded Systems using VDM. Intl.
Journal of Software and Informatics, 3(2-3), October 2009.

[PGP+16] Richard Payne, Carl Gamble, Ken Pierce, John Fitzgerald, Simon Foster,
Casper Thule, and Rene Nilsson. Examples Compendium 2. Technical report,
INTO-CPS Deliverable, D3.5, December 2016.

10

D3.2b - Methods Progress Report 2 (Public)

A INTO-CPS SysML Metamodel Extensions

We have extended the INTO-CPS SysML metamodel and profile to allow a multi-model to
include an FMU for visualisation and the environment, the addition of the CComponents
type and an extension for FlowPorts to support minimum and maximum values in later
versions of the SysML-FMI translation.

In this appendix we present the extensions to INTO-SysML in metamodel fragments as
presented in [APCB15]. In Figure 1, we extend the F_Blocks metamodel fragment to
include CComponents, additional ComponentKind enumerations and the repositioning of
Flowport ownership – changes are shown in red. The diagram shows that a CComponent
is a subtype of Component, and contains no additional attributes. To support mod-
elling of non-CPS components, three extra ComponentKind enumerations are added:
environment, visualisation and composition. Finally, where previously the Block
stereotype was the owner of FlowPorts, we have adjusted that relationships so that
neither System or CComponent instances can own FlowPorts.

Figure 1: Extension to F_Blocks fragment – extensions are highlighted with a red dotted
line

A minor update to the FlowPort definition is shown in Figure 2. The extension is to allow
minimum and maximum values for flowports to be defined. The min and max attributes
are of type PType – the primitive types of INTO-SysML.

11

D3.2b - Methods Progress Report 2 (Public)

Figure 2: Extension to F_Props fragment – extensions are highlighted with a red dotted
line

The metamodel extensions are realised in SysML profile diagrams in Deliverable D4.2c [BQ16].

12

D3.2b - Methods Progress Report 2 (Public)

B Design Space Exploration Metamodel

The metamodel for the DSE SysML extensions is presented in three fragments (we use
Fragmenta [AdLG15] as in Deliverable D2.1a [APCB15]). The first fragment, in Fig-
ure 3, shows the elements required for defining DSE Parameters. A DSEAnalysis block
is defined along with several Parameters and ParameterConstraints. Parameters have
values and refers to Component Variables. ParameterConstraints have a defined predi-
cate.

Figure 3: Metamodel for DSE Parameter Diagram elements

The DSEObjective elements are defined in Figure 4. A DSEAnalysis block is defined, as in
the DSEParameterDiagram with a collection of Objectives and ObjectiveConstraints.
Objectives have a collection of FlowPorts that are related to the FlowPorts owned by
component BlockInstances of the INTO-SysML profile. The metamodel dictates two
specialisations of Objectives – ExternalScripts which have an associated file name, and
InternalFunctions which have a function type. ParameterConstraints have a defined
predicate.

The final metamodel fragment, in Figure 5, shows the model elements of for DSE Ranking.
This fragment also uses a DSEAnalysis block and a collection of Ranking blocks. At
present only the Pareto ranking is supported, which contains several ParetoValues –
each with a direction.

13

D3.2b - Methods Progress Report 2 (Public)

Figure 4: Metamodel for DSE Objective Diagram elements

Figure 5: Metamodel for DSE Ranking Diagram elements

14

D3.2b - Methods Progress Report 2 (Public)

C Updated INTO-CPS Traceability Ontology

In this section we describe an ontology that will form the basis of the provenance and
traceability data in INTO-CPS. The ontology is presented as a collection a views where
the majority of the views are centred around one or more activities that will take place
while using the INTO-CPS tool chain. The figures contain a collection of SysML blocks:
blue element represent an activity ; a yellow element represents an entity ; and an orange
element represents an agent.

C.1 Requirements

Starting with requirements, Figure 6 shows the activity of requirements engineering. This
activity makes use of design notes and requirement sources, which are the primary docu-
ments from the stakeholders and it produces requirements. The requirements correspond
to the requirements defined in the Requirement Definition View as described in Deliver-
able D3.2a [FGPP16]. Note that the requirement itself has two OSLC relations to itself,
these are to support the relationships between individual requirements to be recorded,
only two are shown here however it is suggested that others from the OSLC requirements
management specification also be allowed. Figure 7, shows that we expect there to be
requirements documents that will contain one or more requirements – these documents
may be SysML models or Excel files also described in Deliverable D3.2a [FGPP16].

Figure 6: Block Definition Diagram (BDD) of the requirements activity

15

D3.2b - Methods Progress Report 2 (Public)

Figure 7: BDD of the requirements files

16

D3.2b - Methods Progress Report 2 (Public)

C.2 Architecture Modelling

The activity of architecture modelling is presented in Figure 8. Architecture modelling
is influenced by requirements, design notes and also previous version of its outputs, it
produces the two views defined in the INTO-CPS SysML profile (architecture structure
diagram and connection diagram) and the architecture subsystems they contain. The
architecture subsystems may be related to any requirements they satisfy. The files that
represent the architecture are shown in Figure 9.

Figure 8: BDD Architecture modelling

The activity of architecture configuration creation is presented in Figure 10. Architecture
configuration creation uses the architecture model to generate an architecture configura-
tion.

17

D3.2b - Methods Progress Report 2 (Public)

Figure 9: BDD Architecture modelling elements

Figure 10: BDD Architecture modelling elements

18

D3.2b - Methods Progress Report 2 (Public)

C.3 Model Description File Export

The connection between the architecture and the simulation and model checking models
is provided by the model description file and the model description export is presented in
Figure 11. This functionality is provided by the INTO-CPS Application.

Figure 11: BDD of the model description export activity

19

D3.2b - Methods Progress Report 2 (Public)

C.4 Simulation Models

There are two distinct activities shown in Figure 12, model description import, which
creates a skeleton model in the chosen simulation tool, and simulation modelling, which
represents the population of the model to do something useful. The output of both
of these activities are the component simulation model and simulation model container.
Figure 13 shows the file elements involved, where the simulation model container, for
example a 20-sim .emx file, contains one or more component simulation models. The
component simulation models may be linked to any requirements they satisfy via the
OSLC_am:satsifies relation.

Figure 12: BDD showing simulation model creation activities

20

D3.2b - Methods Progress Report 2 (Public)

Figure 13: BDD showing simulation model files

21

D3.2b - Methods Progress Report 2 (Public)

C.5 Model Checking

Model checking (Figure 14)begins with an identical structure (model description im-
port and model check modelling) as we saw for simulation models previously. Figure 15
shows the structure around both the model checking and model check test creation ac-
tivities, these respectively output model check results and model check test case. The
model check test result is the first time we have seen evidence that models meet or do
not meet the specification, thus we see that it may connect via the OSLC_am:verifies
or into:doesNotVerify relations. The relationships between the files involved in model
checking are shown in Figure 16

Figure 14: BDD showing model check model creation

22

D3.2b - Methods Progress Report 2 (Public)

Figure 15: BDD showing the activities of model checking

Figure 16: BDD showing the file elements around model checking

23

D3.2b - Methods Progress Report 2 (Public)

C.6 FMU and Code Generation

The generation of Functional Mockup Units (FMUs) and compilable source code is nec-
essary before any simulation may take place in the INTO-CPS tool chain. Figure 17
presents the elements surrounding the FMU export activity, these are the simulation
models, model check models and test cases from which FMUs can be generated and the
tools used to generate them. The output is the FMU itself.

Figure 17: BDD showing simulation FMU generation

The creation of an FMU to support Hardware in the loop (HiL) simulation differs slightly
in that instead of being generated from an simulation or model check model it will take a
model description file as its input, Figure 18. Associated with this activity is a software
agent that actually configures and compiles the FMU to permit communication with the
hardware asset.

The activity of code generation is shown in Figure 19, where its inputs are simulation
and model check models and its output is some form of source code. The files associated
with code generation are presented in Figure 20.

24

D3.2b - Methods Progress Report 2 (Public)

Figure 18: BDD showing FMU generation to allow HiL simulation

Figure 19: BDD Showing the activity of code generation

25

D3.2b - Methods Progress Report 2 (Public)

Figure 20: BDD showing the files associated with code generation

26

D3.2b - Methods Progress Report 2 (Public)

C.7 Simulation

Before simulation can take place we must produce a multi-model configuration file, this
activity is shown in Figure 21. Here the INTO-CPS Application uses the generated FMUs
and the architecture configuration to produce a multi-model configuration.

Figure 21: BDD showing the multi-model configuration activity

The Simulation Configuration Creation activity uses the aforementioned multi-model
configuration to create a simulation configuration, shown in Figure 22.

Figure 22: BDD showing the simulation configuration activity

Figure 23 shows the activity of simulation itself. Here we see that it makes use of
the COE, multi-model configuration, simulation configuration, and the FMUs that have
already been generated. Here we also see that the FMUs themselves may make use of
component simulation models, and simulation tools if the FMU is a wrapper or may
reference a hardware asset if it is a HiL FMU.

27

D3.2b - Methods Progress Report 2 (Public)

Figure 23: BDD showing the activity of simulation

Finally, Figure 24 shows the files associated with simulation. The simulation result may
be linked to a requirement, providing evidence for or against that requirement being
met.

Figure 24: BDD showing the files associated with simulation

28

D3.2b - Methods Progress Report 2 (Public)

C.8 DSE

Figure 25 shows the DSE configuration creation activity. The activity takes a multi-
model configuration and queries the user to define the range of parameters and algorithm
choices for the actual DSE itself (output in the DSE search and DSE analysis configura-
tions).

Figure 25: BDD showing the DSE configuration

Figure 26 shows the DSE Analysis Creation activity, which generates a DSE analysis
script and scenario data.2

Figure 26: BDD showing the DSE configuration

The DSE activity (shown in Figure 27) uses the multi-model, simulation, DSE search
and DSE analysis configurations to select the appropriate scripts and scenarios to launch
simulations, evaluate the objective values of each simulation, and then rank them as a
result.

2Both this activity and the DSE configuration creation activity will be updated in Year 3 to reflect
the use of the INTO-CPS DSE SysML profile as described in Deliverable D3.2a [FGPP16].

29

D3.2b - Methods Progress Report 2 (Public)

Figure 27: BDD showing the DSE activity

Finally in DSE, Figure 28 shows the files associated with these activities. Again we note
that the DSE result, which is here shown as a single file but is likely not to be, may be
linked to requirements as either evidence for or against it being met.

30

D3.2b - Methods Progress Report 2 (Public)

Figure 28: BDD showing the DSE files

31

D3.2b - Methods Progress Report 2 (Public)

C.9 Design Notes

Throughout the previous views on the ontology many of the activities have made use of
a design note. Here a design note may be any document that records rationale, decisions
and directions for the modelling process. These may be produced at any point and are
a vital part of understanding why the final product of a design process takes the form it
does. In Figure 29, we see that the activity of design note creation may be linked to the
outputs of many of the main activities in the INTO-CPS tool chain, this is important so
we may revisit the evidence from which the note was created. Figure 30 shows the files
associated with design notes.

Figure 29: BDD showing design note creation

32

D3.2b - Methods Progress Report 2 (Public)

Figure 30: BDD showing the design note files

D Line Follower Example

D.1 Introduction

The robot example presented here is inspired by the work that took place to produce
the line following robot pilot study, shown in Figure 31. The example depicts a fictitious
version of the development of this robot model starting with the generation of require-
ments from a stakeholder document through to the simulation of a model that meets
those requirements. The example depicts the development of models from scratch and
also the reuse of a library model.

Figure 31: 3D view of the line follow robot generated by its co-model.

The example is broken down into steps at the granularity of the activities defined in
the traceability ontology, Appendix C, and shows the modelling artefacts (entities) that

33

D3.2b - Methods Progress Report 2 (Public)

are used and generated while performing those activities. Each step includes a text
description of the activities that are performed, the OSLC triples that would record the
activity and a sequence of data gathering and archiving steps required.

D.2 User docs → Requirements

D.2.1 Element Graph

D.2.2 Textual Description

Line following robot statement of needs is the user document entities which inform a
model requirements. In this step the Requirements Engineering activity used those User
Documents and the Modelio tool. The RobotSysML model, Requirements Diagram and
requirements R1 (the robot must sense a black line) and R2 (the robot must move faster
than 5cm/sec) were generated by the Requirements Engineering activity which elaborate
the needs identified in the User Documents. Finally, the Requirements Engineering activ-
ity is associated with the agent RP and the RobotSysML model, Requirements Diagram

34

D3.2b - Methods Progress Report 2 (Public)

and requirements R1 and R2 are attributed to the agent RP.

D.2.3 Prov and OSLC Traces

• RobotSysML#1:Requirements.R1 : OSLC_Elab : UserDoc#1
• RobotSysML#1:Requirements.R2 : OSLC_Elab : UserDoc#1
• RobotSysML#1 : prov_attrib : Agent.RP
• RobotSysML#1:Requirements.Requirements_Diagram : prov_attrib : Agent.RP
• RobotSysML#1:Requirements.R1 : prov_attrib : Agent.RP
• RobotSysML#1:Requirements.R2 : prov_attrib : Agent.RP
• RobotSysML#1 : prov_wgb : Activity.Requirement_Engineering
• RobotSysML#1:Requirements.Requirements_Diagram : prov_wgb :

Activity.Requirement_Engineering
• RobotSysML#1:Requirements.R1 : prov_wgb : Activity.Requirement_Engineering
• RobotSysML#1:Requirements.R2 : prov_wgb : Activity.Requirement_Engineering
• Activity.Requirement_Management : prov_used : UserDoc#1
• Activity.Requirement_Management: prov_used : Tool.Modelio
• Activity.Requirement_Management : prov_assoc : Agent.RP

D.2.4 Data Gathering and Archiving

1. SysML model saved to modelio working files.

2. Modelio queries the use for their ID.

3. SysML model exported to SysML/<modelname>.zip. This file is committed to
GIT, Modelio records the version number.

4. Modelio queries the user to indicate which diagrams/submodels have been up-
dated/created.

5. Modelio creates a list of tracebility links based upon the new requirements added
and their origin properties

6. Modelio creates the provenance relations

7. The traceability and provenance relations, in OSLC triples, are sent to the trace-
ability Daemon.

35

D3.2b - Methods Progress Report 2 (Public)

D.3 Requirements → SysML Model ASD

D.3.1 Element Graph

D.3.2 Textual Description

The next step concerns the Architectural Modelling activity which uses the Modelio tool
to create a new version of the SysML robot model. Requirements R1 and R2 are used by
this activity to generate the SysML elements in a SysML Model : an Architecture Structure
Diagram, the Robot system; a Controller cyber component; a Sensor physical component
and a Body and Motor physical component. These SysML components in turn satisfy
the requirements: the Controller and Sensor components satisfy requirement R1 and
the Controller Body and Motor components satisfy requirement R2. The Architectural
Modelling activity is associated with the agent RP, to whom the new version of the
SysML model, the Architecture Structure Diagram, and Robot, Controller, Sensor and
Body and Motor SysML elements are attributed.

D.3.3 Prov and OSLC Traces

• RobotSysML#2:Architecture/Controller : OSLC_Sat : RobotSysML#1:Requirements.R1
• RobotSysML#2:Architecture/Sensor : OSLC_Sat : RobotSysML#1:Requirements.R1
• RobotSysML#2:Architecture/Controller : OSLC_Sat : RobotSysML#1:Requirements.R2
• RobotSysML#2:Architecture/Body_and_Motor : OSLC_Sat : RobotSysML#1:Requirements.R2

36

D3.2b - Methods Progress Report 2 (Public)

• RobotSysML#2 : prov_attrib : Agent.RP
• RobotSysML#2:Architecture/Controller : prov_attrib : Agent.RP
• RobotSysML#2:Architecture/Sensor : prov_attrib : Agent.RP
• RobotSysML#2:Architecture/Robot : prov_attrib : Agent.RP
• RobotSysML#2:Architecture/Body_And_Motor : prov_attrib : Agent.RP
• RobotSysML#2:Architecture/ASD : prov_attrib : Agent.RP
• RobotSysML#2 : prov_wgb : Activity.Architecture_Modelling
• RobotSysML#2:Architecture/Controller : prov_wgb :

Activity.Architecture_Modelling
• RobotSysML#2:Architecture/Sensor : prov_wgb : Activity.Architecture_Modelling
• RobotSysML#2:Architecture/Robot : prov_wgb : Activity.Architecture_Modelling
• RobotSysML#2:Architecture/Body_And_Motor : prov_wgb :

Activity.Architecture_Modelling
• RobotSysML#2:Architecture/ASD : prov_wgb : Activity.Architecture_Modelling
• Activity.Architecture_Modelling : prov_used : RobotSysML#1:Requirements.R1
• Activity.Architecture_Modelling : prov_used : RobotSysML#1:Requirements.R2
• Activity.Architecture_Modelling : prov_used : Tool.Modelio
• Activity.Architecture_Modelling : prov_assoc : Agent.RP

D.3.4 Data Gathering and Archiving

1. SysML model saved to Modelio working files

2. Modelio queries user for their ID

3. Modelio queries local GIT for previous version number of SysML/<modelname>.zip

4. SysML model exported to SysML/<modelname>.zip. This file is committed to
GIT, Modelio records the new version number.

5. Modelio queries the user to indicate which diagrams/submodels have been up-
dated/created.

6. Modelio creates traceability links based upon the new/modified elements and read-
ing in the URIs of the requirements elements

7. Modelio creates provenance links new/modified elements and reading in the URIs
of the requirements elements

8. The traceability and provenance relations, in OSLC triples, are sent to the trace-
ability Daemon.

37

D3.2b - Methods Progress Report 2 (Public)

D.4 SysML Model ASD → Model Description Files

D.4.1 Element Graph

D.4.2 Textual Description

The Model Description Export activity uses the Modelio tool. The Controller and Body
and Motor SysML entities are used to generate controller.xml and body.xml model de-
scription files. This Model Description Export activity is associated with the agent RP, to
whom the controller.xml and body.xml model description files are attributed. The model
description files satisfy the requirements R1 and R2.

D.4.3 Prov and OSLC Traces

• controller.xml#1 : prov_derived : RobotSysML#2:Architecture/Controller
• body.xml#1 : prov_derived : RobotSysML#2:Architecture/Body_and_Motor
• controller.xml#1 : prov_attrib : Agent.RP
• body.xml#1 : prov_attrib : Agent.RP
• controller.xml#1 : prov_wgb : Activity.Model_Description_Export

38

D3.2b - Methods Progress Report 2 (Public)

• body.xml#1 : prov_wgb : Activity.Model_Description_Export
• controller.xml#1 : OSLC_satisfies : RobotSysML#1:Requirements.R1
• body.xml#1 : OSLC_satisfies : RobotSysML#1:Requirements.R2
• Activity.Model_Description_Export : prov_used :

RobotSysML#2:Architecture/Controller
• Activity.Model_Description_Export : prov_used :

RobotSysML#2:Architecture/Body_and_Motor
• Activity.Model_Description_Export : prov_used : Tool.Modelio
• Activity.Model_Description_Export : prov_assoc : Agent.RP

D.4.4 Data Gathering and Archiving

1. Exported model description files saved to MDFs/body.xml and MDFs/controller.xml

2. Modelio queries user for their ID

3. MDFs/body.xml and MDFs/controller.xml are committed to GIT and their version
numbers recorded

4. Modelio creates provenance relations based upon the URIs

5. Modelio creates OSLC triples and sends them to the traceability daemon

D.5 Library Sensor → Sensor Model Description File

D.5.1 Element Graph

D.5.2 Textual Description

The Library Elements Extraction activity uses a Sensor.zip library package to generate
sensor.fmu and sensor.xml entities. These entities are therefore derived from the library
package. The activity uses an Extraction Tool and is associated with the agent RP. The
model description and FMU files satisfies the requirement R1.

39

D3.2b - Methods Progress Report 2 (Public)

D.5.3 Prov and OSLC Traces

• sensor.fmu#1 : prov_derived : Sensor.zip#1
• sensor.xml#1 : prov_derived : Sensor.zip#1
• sensor.fmu#1 : prov_wgb : Activity.Library_Elements_Extraction
• sensor.xml#1 : prov_wgb : Activity.Library_Elements_Extraction
• sensor.fmu#1 : OSLC_satisfies : RobotSysML#1:Requirements.R1
• sensor.xml#1 : OSLC_satisfies : RobotSysML#1:Requirements.R1
• Activity.Library_Elements_Extraction : prov_used : Sensor.zip#1
• Activity.Library_Elements_Extraction : prov_used : Tool.Extraction_Tool
• Activity.Library_Elements_Extraction : prov_assoc : Agent.RP

D.5.4 Data Gathering and Archiving

1. The sensor.fmu and sensor.xml file are extracted by the extraction tool to
FMUs/sensor.fmu and MDFs/sensor.xml

2. The app queries user for their ID

3. The app queries for latest versions of requirements, user is able to tag sensor.fmu
and sensor.xml with the appropriate requirements

4. FMUs/sensor.fmu and MDFs/sensor.xml are committed to GIT and their version
numbers recorded

5. The app creates provenance relations based upon the URIs

6. The app creates OSLC triples and sends them to the traceability daemon

40

D3.2b - Methods Progress Report 2 (Public)

D.6 Model Description Files Import → SysML model ASD

D.6.1 Element Graph

D.6.2 Textual Description

The Import Model Description activity uses the Modelio tool to create a new version
of the SysML robot model. The activity uses the sensor.xml model description file to
generate the Library Sensor component entity in the new SysML model, which is added to
the SysML Architecture Structure Diagram entity, replacing the old Sensor component,
and satisfies the requirement R1. . This Import Model Description activity is associated
with the agent RP, and the new SysML model and Library Sensor component entity is
attributed to RP.

D.6.3 Prov and OSLC Traces

• RobotSysML#3 : prov_wgb : Activity.Import_Model_Description
• RobotSysML#3 : prov_attrib : Agent.RP
• RobotSysML#3:Architecture/Controller : prov_derived :

RobotSysML#2:Architecture/Controller
• RobotSysML#3:Architecture/Controller : OSLC_satisfies :

RobotSysML#1:Requirements.R1
• RobotSysML#3:Architecture/Controller : prov_attrib : Agent.RP
• RobotSysML#3:Architecture/Body_and_Motor : prov_derived :

RobotSysML#2:Body_and_Motor
• RobotSysML#3:Architecture/Body_and_Motor : OSLC_satisfies :

RobotSysML#1:Requirements.R2
• RobotSysML#3:Architecture/Body_and_Motor : prov_attrib : Agent.RP
• RobotSysML#3:Architecture/Library_Sensor : prov_attrib : Agent.RP
• RobotSysML#3:Architecture/Library_Sensor : prov_derived : sensor.xml#1

41

D3.2b - Methods Progress Report 2 (Public)

• RobotSysML#3:Architecture/Library_Sensor : prov_wgb :
Activity.Import_Model_Description

• RobotSysML#3:Architecture/Library_Sensor : dct_replaces :
RobotSysML#3:Architecture/Library_Sensor

• RobotSysML#3:Architecture/Library_Sensor : OSLC_satisfies :
RobotSysML#1:Requirements.R1

• Activity.Import_Model_Description : prov_used : RobotSysML#2
• Activity.Import_Model_Description : prov_used : sensor.xml#1
• Activity.Import_Model_Description : prov_used : Tool.Modelio
• Activity.Import_Model_Description : prov_assoc : Agent.RP

D.6.4 Data Gathering and Archiving

1. Modelio queries GIT to obtain the current version number of the SysML model.

2. SysML model saved and exported to SysML/<modelname>.zip

3. The app queries user for their ID

4. SysML/<modelname>.zip is committed to GIT and the new version recorded

5. The app creates provenance relations based upon the URIs

6. The app creates OSLC triples and sends them to the traceability daemon

D.7 Model Description Files → Simulation Models

D.7.1 Element Graph

42

D3.2b - Methods Progress Report 2 (Public)

D.7.2 Textual Description

In this example, there are two instances of the model description import activity. In this
text, we refer to only one, as they are broadly similar. The Model Description Import
activity uses the 20-sim tool and the body.xml model description files to generate a Body
Simulation Model Container and skeleton model element – in this case a 20-sim Body
block. This model container and skeleton models are therefore derived from the body.xml
model description file and attributed to the agent RP.

D.7.3 Prov and OSLC Traces

• BodySimModel#1 : prov_derived : body.xml#1
• BodySimModel#1 : prov_wgb : Activity.Model_Description_Import#1
• BodySimModel#1 : prov_attrib : Agent.RP
• BodySimModel#1.Body_Block : prov_wgb : Activity.Model_Description_Import#1
• BodySimModel#1.Body_Block : prov_attrib : Agent.RP
• Activity.Model_Description_Import#1 : prov_used : body.xml#1
• Activity.Model_Description_Import#1 : prov_used : Tool.20-sim
• Activity.Model_Description_Import#1 : prov_assoc : Agent.RP

• ControllerSimModel#1 : prov_derived : controller.xml#1
• ControllerSimModel#1 : prov_wgb : Activity.Model_Description_Import#2
• ControllerSimModel#1 : prov_attrib : Agent.RP
• ControllerSimModel#1.ControllerClass : prov_wgb :

Activity.Model_Description_Import#2
• ControllerSimModel#1.ControllerClass : prov_attrib : Agent.RP
• Activity.Model_Description_Import#2 : prov_used : controller.xml#1
• Activity.Model_Description_Import#2 : prov_used : Tool.Overture
• Activity.Model_Description_Import#2 : prov_assoc : Agent.RP

43

D3.2b - Methods Progress Report 2 (Public)

D.7.4 Data Gathering and Archiving

1. Overture/20-sim query GIT to obtain the current version appropriate model de-
scription file.

2. Overture/20-sim save their respective models

3. The app queries user for their ID

4. Models are committed to GIT, version numbers are recorded

5. Overture/20-sim query the user to identify sub-models to be traced

6. Overture/20-sim create provenance and traceability relations based upon the URIs

7. Traceability data is sent to the traceability daemon

D.8 Simulation Models → FMUs

D.8.1 Element Graph

44

D3.2b - Methods Progress Report 2 (Public)

D.8.2 Textual Description

As with the previous step, there are two instances of the FMU export activity. The
FMU Export activity used a completed Body Simulation Model Container entity and the
20-sim tool to generate a body.fmu FMU file. The FMU satisfies requirement R2. The
activity is associated with the agent RP, and the body.fmu FMU file is attributed with
the agent RP. The FMU Export 2 activity is largely the same, from the perspective of
using the Overture tool with the robot controller.

D.8.3 Prov and OSLC Traces

• body.fmu#1 : prov_derived : BodySimModel#1.BodyBlock
• body.fmu#1 : prov_wgb : Activity.FMU_Export#1
• body.fmu#1 : prov_attrib : Agent.RP
• body.fmu#1 : OSLC_satisfies : RobotSysML#1:Requirements.R2
• Activity.FMU_Export#1 : prov_used : BodySimModel#1.BodyBlock
• Activity.FMU_Export#1 : prov_used : Tool.20-sim
• Activity.FMU_Export#1 : prov_assoc : Agent.RP

• controller.fmu#1 : prov_derived : ControllerSimModel#1.ControllerClass
• controller.fmu#1 : prov_wgb : Activity.FMU_Export#2
• controller.fmu#1 : prov_attrib : Agent.RP
• controller.fmu#1 : OSLC_satisfies : RobotSysML#1:Requirements.R1
• Activity.FMU_Export#2 : prov_used : ControllerSimModel#1.ControllerClass
• Activity.FMU_Export#2 : prov_used : Tool.Overture
• Activity.FMU_Export#2 : prov_assoc : Agent.RP

D.8.4 Data Gathering and Archiving

1. Overture/20-sim export their respective FMUs

45

D3.2b - Methods Progress Report 2 (Public)

2. Overture/20-sim query user for their ID

3. FMUs are committed to GIT, version numbers are recorded

4. Overture/20-sim create provenance and traceability relations based upon the URIs

5. Traceability data is sent to the traceability daemon

D.9 Create SysML Model Connections Diagram

D.9.1 Element Graph

D.9.2 Textual Description

The Architecture Modelling 2 activity defines a connections diagram in a new version
of the Line follow Robot SysML Model. It should be noted that this activity could be
performed earlier. The activity uses requirements R1 and R2, and the Modelio tool;
generating a new version of the Line follow Robot SysML Model with a connections
diagram and block instances r, c, s and b, attributed to agent RP. The connection
diagram satisfies requirements due to using existing component definitions.

D.9.3 Prov and OSLC Traces

• RobotSysML#4:Architecture/CD : OSLC_satisfies : RobotSysML#1:Requirements.R1
• RobotSysML#4:Architecture/CD : OSLC_satisfies : RobotSysML#1:Requirements.R2
• RobotSysML#4 : prov_wgb : Activity.Architecture_Modelling#2
• RobotSysML#4:Architecture/CD : prov_wgb : Activity.Architecture_Modelling#2
• RobotSysML#4:Architecture/r : prov_wgb : Activity.Architecture_Modelling#2
• RobotSysML#4:Architecture/r.c : prov_wgb : Activity.Architecture_Modelling#2

46

D3.2b - Methods Progress Report 2 (Public)

• RobotSysML#4:Architecture/r.s : prov_wgb : Activity.Architecture_Modelling#2
• RobotSysML#4:Architecture/r.b : prov_wgb : Activity.Architecture_Modelling#2
• RobotSysML#4 : prov_attrib : Agent.RP
• RobotSysML#4:Architecture/CD : prov_attrib : Agent.RP
• RobotSysML#4:Architecture/r : prov_attrib : Agent.RP
• RobotSysML#4:Architecture/r.c : prov_attrib : Agent.RP
• RobotSysML#4:Architecture/r.s : prov_attrib : Agent.RP
• RobotSysML#4:Architecture/r.b : prov_attrib : Agent.RP
• Activity.Architecture_Modelling#2 : prov_used : RobotSysML#3:Requirements.R1
• Activity.Architecture_Modelling#2 : prov_used : RobotSysML#3:Requirements.R2
• Activity.Architecture_Modelling#2 : prov_used : Tool.Modelio
• Activity.Architecture_Modelling#2 : prov_assoc : Agent.RP

D.9.4 Data Gathering and Archiving

1. Modelio queries the local GIT to obtain the current version of the SysML model

2. Modelio saves the SysML model and exports the .zip version for archiving

3. Modelio queries the user for their ID

4. The zip version of the model is committed to GIT and the version number recorded

5. Modelio creates provenance and traceability relations based upon the URIs

6. Traceability data is sent to the traceability daemon

D.10 SysML Model CD → Simulation Configuration

D.10.1 Element Graph

D.10.2 Textual Description

The Configuration Creation activity uses the Line follow Robot SysML Model (in par-
ticular the block definitions, block instances and their connections defined in the Archi-
tecture Structure Diagram and Connections Diagram), two new FMUs (body.fmu and

47

D3.2b - Methods Progress Report 2 (Public)

controller.fmu), the library sensor.fmu. and the INTO-CPS Application to generate the
config_mm.json Multi-model Configuration entity. This config_mm.json contains de-
tails of the FMUs to use, the connections between the FMUs and any shared design
parameters.

D.10.3 Prov and OSLC Traces

• config_mm.json#1 : prov_wgb : Activity.Configuration_Creation
• config_mm.json#1 : prov_attrib : Agent.RP
• Activity.Configuration_Creation: prov_used : RobotSysML#4
• Activity.Configuration_Creation: prov_used : Body.FMU#1
• Activity.Configuration_Creation: prov_used : Controller.FMU#1
• Activity.Configuration_Creation: prov_used : Sensor.FMU#1
• Activity.Configuration_Creation : prov_used : Tool.INTO-CPS_Application
• Activity.Configuration_Creation : prov_assoc : Agent.RP

D.10.4 Data Gathering and Archiving

1. The INTO-CPS application queries the local GIT to obtain the current version of
the SysML model and the versions of the FMUs used to generate the configuration

2. The INTO-CPS application saves the multi-model configuration

3. The INTO-CPS application queries the user for their ID

4. The multi-model configuration is committed to GIT and the version number recorded

5. The INTO-CPS application creates provenance and traceability relations based
upon the URIs

6. Traceability data is sent to the traceability daemon

D.11 Simulation Configuration and FMUs→ Simulation Result

D.11.1 Element Graph

48

D3.2b - Methods Progress Report 2 (Public)

D.11.2 Textual Description

The Simulation activity uses the config_mm.json Multi-model and Simulation Config-
uration entities; the collection of FMUs: body.fmu, sensor.fmu and controller.fmu; and
the INTO-CPS Application tool. The activity generates the results.csv simulation results
which are attributed to the agent RP.

D.11.3 Prov and OSLC Traces

• results.csv#1 : prov_wgb : Activity.Simulation
• config_mm.json#1 : prov_wgb : Activity.Simulation
• results.csv#1 : prov_attrib : Agent.RP
• Activity.Simulation : prov_used : config_mm.json#1
• Activity.Simulation : prov_used : body.fmu#1
• Activity.Simulation : prov_used : sensor.fmu#1
• Activity.Simulation : prov_used : controller.fmu#1
• Activity.Simulation : prov_used : Tool.INTO-CPS_Application
• Activity.Simulation : prov_assoc : Agent.RP

D.11.4 Data Gathering and Archiving

1. The INTO-CPS application queries the local GIT to obtain the current version of
Multi-model configuration and the FMUs used

2. The INTO-CPS application queries the user for final simulation parameters and
saves the simulation configuration file

3. The simulation is then run and, if the user deems it to be a useful result the data
gathering and archiving continues

4. The INTO-CPS application queries the user for their ID

5. The simulation configuration and simulation result are committed to GIT and the
version numbers recorded

6. The INTO-CPS application creates provenance and traceability relations based
upon the URIs

7. Traceability data is sent to the traceability daemon

49

D3.2b - Methods Progress Report 2 (Public)

D.12 Simulation Result and Requirements → Design Note

D.12.1 Element Graph

D.12.2 Textual Description

The Design Note Creation activity uses the results.csv simulation results and require-
ments R1 and R2 in the Robot SysML model. The results.csv results verify that re-
quirement R2 holds and that the results.csv results do not verify requirement R2. The
activity, associated with agent RP, generates a Design Note that is attributed to agent
RP.

D.12.3 Prov and OSLC Traces

• Design_Note#1 : prov_wgb : Activity.Design_Note_Creation
• Design_Note#1 : prov_attrib : Agent.RP
• Activity.Design_Note_Creation : prov:used : RobotSysML#5:Requirements.R1
• Activity.Design_Note_Creation : prov:used : RobotSysML#5:Requirements.R2
• Activity.Design_Note_Creation : prov_used : results.csv#1
• results.csv#1 : OSLC_verifies : RobotSysML#5:Requirements.R2
• results.csv#1 : INTO_doesNotVerify : RobotSysML#5:Requirements.R1
• Activity.Design_Note_Creation : prov_assoc : Agent.RP

50

D3.2b - Methods Progress Report 2 (Public)

D.12.4 Data Gathering and Archiving

1. The user creates a design note, which is the generic term for any document other
than a model that we wish to store and registers it with the INTO-CPS application,
the design note is committed to GIT

2. The INTO-CPS application queries the GIT for the version number of the design
note

3. The INTO-CPS application allows the user to find the version numbers of entities
they want to relate to the design note for traceability, in this case these are the
URIs for the requirements and simulation results.

4. The INTO-CPS application creates provenance and traceability relations based
upon the URIs

5. Traceability data is sent to the traceability daemon

D.13 Design Note and Controller Model → Evolved Controller
Model

D.13.1 Element Graph

51

D3.2b - Methods Progress Report 2 (Public)

D.13.2 Textual Description

Due to the previous activity identifying that the multi-model does not meet requirement
R2, theSimulation Modelling 2 activity evolves the model in the Controller Simulation
Model Container entity; generating a new Evolved Controller Simulation Model Container
derived form the first (we refer to version n and n+1 in the traces to signify the version
changes. This evolved model satisfies requirement R1. The activity uses the Design Note
and the Overture tool, and is associated with the agent RP. The new Evolved Controller
Simulation Model Container is attributed to the agent RP.

D.13.3 Prov and OSLC Traces

• ControllerSimModel#2 : prov_wgb : ControllerSimModel#2
• ControllerSimModel#2 : prov_attrib : Agent.RP
• ControllerSimModel#2 : prov_derived : ControllerSimModel#1
• ControllerSimModel#2 : OSLC_satisfies : RobotSysML#5:Requirements.R1
• Activity.Simulation_Modelling#2 : prov_used : ControllerSimModel#1
• Activity.Simulation_Modelling#2 : prov_used : Design_Note#1
• Activity.Simulation_Modelling#2 : prov_used : Tool.Overture
• Simulation_Modelling#2 : prov_assoc : Agent.RP

D.13.4 Data Gathering and Archiving

1. Once the new version of the controller is produced in response to the design note,
the user saves the model

2. Overture queries the GIT for the currently committed version of the controller
model and records this value

3. The new controller model is committed and the new version recorded

4. Overture queries the user for their ID, they are also permitted to add a reference
to the design note by retrieving its version from GIT

5. Overture constructs the traceability and provenance triples

6. Traceability data is sent to the traceability daemon

52

D3.2b - Methods Progress Report 2 (Public)

D.14 Evolved Controller Model → Evolved Controller FMU

D.14.1 Element Graph

D.14.2 Textual Description

The FMU Export 3 activity used the new Evolved Controller Simulation Model Container
entity and the Overture tool to generate a new controller_v2.fmu FMU file, which satisfies
requirement R1. The activity is associated with the agent RP, and the controller_v2.fmu
FMU file is attributed with the agent RP.

D.14.3 Prov and OSLC Traces

• controller.fmu#2 : prov_derived : ControllerSimModel#n+1
• controller.fmu#2 : prov_wgb : Activity.FMU_Export#1
• controller.fmu#2 : prov_attrib : Agent.RP
• controller.fmu#2 : OSLC_satisfies : RobotSysML#5:Requirements.R1
• Activity.FMU_Export#3 : prov_used : ControllerSimModel#n+1
• Activity.FMU_Export#3 : prov_used : Tool.Overture
• Activity.FMU_Export#3 : prov_assoc : Agent.RP

D.14.4 Data Gathering and Archiving

1. Overture queries the GIT for the currently committed version of the controller FMU
and records this value

2. Overture exports the new controller FMU

3. The new controller FMU is committed and the new version recorded

4. Overture queries the user for their ID

5. Overture constructs the traceability and provenance triples

6. Traceability data is sent to the traceability daemon

53

D3.2b - Methods Progress Report 2 (Public)

D.15 New Config and FMUs → New Simulation Result

D.15.1 Element Graph

D.15.2 Textual Description

Given the evolved system design, the Simulation 2 activity uses the config_mm.json
Multi-model Configuration entity; the collection of FMUs: body.fmu, sensor.fmu and
evolved controller_v2.fmu; and the INTO-CPS Application tool. The activity generates
a new results_v2.csv collection of simulation results which are attributed to the agent
RP.

D.15.3 Prov and OSLC Traces

• results.csv#2 : prov_wgb : Activity.Simulation#2
• results.csv#2 : prov_attrib : Agent.RP
• Activity.Simulation : prov_used : config_mm.json#1
• Activity.Simulation : prov_used : body.fmu#1
• Activity.Simulation : prov_used : sensor.fmu#1
• Activity.Simulation : prov_used : controller.fmu#2
• Activity.Simulation : prov_used : Tool.INTO-CPS_Application
• Activity.Simulation : prov_assoc : Agent.RP

D.15.4 Data Gathering and Archiving

1. The INTO-CPS application queries the local GIT to obtain the current version of
Multi-model configuration and the FMUs used

2. The INTO-CPS application queries the user for final simulation parameters and
saves the simulation configuration file

3. The simulation is then run and, if the user deems it to be a useful result the data
gathering and archiving continues

4. The INTO-CPS application queries the user for their ID

54

D3.2b - Methods Progress Report 2 (Public)

5. The simulation configuration and simulation result are committed to GIT and the
version numbers recorded

6. The INTO-CPS application creates provenance and traceability relations based
upon the URIs

7. Traceability data is sent to the traceability daemon

D.16 New Simulation Result and Requirements → New Design
Note

D.16.1 Element Graph

D.16.2 Textual Description

The Design Note Creation 2 activity uses the new results_v2.csv simulation results and
requirements R1 and R2 in the SysML robot model. The new design note states that
the results.csv results verify that requirements R1 and R2 hold. The activity, associated
with agent RP, generates a Design Note 2 that is attributed to agent RP.

55

D3.2b - Methods Progress Report 2 (Public)

D.16.3 Prov and OSLC Traces

• Design_Note#2 : prov_wgb : Activity.Design_Note_Creation#2
• Design_Note#2 : prov_attrib : Agent.RP
• Activity.Design_Note_Creation#2 : prov:used : RobotSysML#5:Requirements.R1
• Activity.Design_Note_Creation#2 : prov:used : RobotSysML#5:Requirements.R2
• Activity.Design_Note_Creation#2 : prov_used : results.csv#2
• results.csv#2 : OSLC_verifies : RobotSysML#5:Requirements.R2
• results.csv#2 : INTO_doesNotVerify : RobotSysML#5:Requirements.R1
• Activity.Design_Note_Creation#2 : prov_assoc : Agent.RP

D.16.4 Data Gathering and Archiving

1. The user creates a design note, which is the generic term for any document other
than a model that we wish to store and registers it with the INTO-CPS application,
the design note is committed to GIT

2. The INTO-CPS application queries the GIT for the version number of the design
note

3. The INTO-CPS application allows the user to find the version numbers of entities
they want to relate to the design note for traceability, in this case these are the
URIs for the requirements and simulation results.

4. The INTO-CPS application creates provenance and traceability relations based
upon the URIs

5. Traceability data is sent to the traceability daemon

56

	Introduction
	Progress on WP3 Tasks
	T3.1: Workflows
	T3.2: Design Space Exploration
	T3.3: Provenance and Traceability
	T3.4: Guidelines
	T3.5: Pilot Case Studies

	INTO-CPS SysML Metamodel Extensions
	Design Space Exploration Metamodel
	Updated INTO-CPS Traceability Ontology
	Requirements
	Architecture Modelling
	Model Description File Export
	Simulation Models
	Model Checking
	FMU and Code Generation
	Simulation
	DSE
	Design Notes

	Line Follower Example
	Introduction
	User docs Requirements
	Requirements SysML Model ASD
	SysML Model ASD Model Description Files
	Library Sensor Sensor Model Description File
	Model Description Files Import SysML model ASD
	Model Description Files Simulation Models
	Simulation Models FMUs
	Create SysML Model Connections Diagram
	SysML Model CD Simulation Configuration
	Simulation Configuration and FMUs Simulation Result
	Simulation Result and Requirements Design Note
	Design Note and Controller Model Evolved Controller Model
	Evolved Controller Model Evolved Controller FMU
	New Config and FMUs New Simulation Result
	New Simulation Result and Requirements New Design Note

