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Abstract

In this deliverable we show how the theory linking facilities of the UTP can be used
to compose multiple heterogeneous models in an FMI multi-model. We give a timed
relational semantics to FMI multi-models that accounts for each FMU, the connections
between them, and the master algorithm. The FMUs should be encoded as suitable UTP
theories, and a linking function to a timed relational interface given. We exemplify this
with examples from VDM-RT and Modelica, which are encoded using our UTP theo-
ries of timed and hybrid relations, respectively. We also show how such heterogeneous
multi-models can be subjected to automated Hoare logic verification using theorem prov-
ing. Finally, we give guidelines for integration of additional notations and tools into our
framework.
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1 Introduction

Deliverable D2.3a [19] demonstrates a relational semantics for FMI that abstracts over
the details of the API as previously modelled using Circus [14], which is nevertheless be-
haviour preserving. That semantics focusses on parallel composition of relational FMUs
that relate the given input values to given output values and a time step. A technique
is developed in D2.3a [19] that utilises a relational Hoare logic, built on top of Unifying
Theories of Programming [13, 5] (UTP), to demonstrate that the composition of FMUs,
together with constraints imposed by a master algorithm, exhibit certain desirable prop-
erties. This verification technique is automated in the Isabelle/HOL theorem prover,
and has been applied to prove properties of both the railways [15] and buildings case
studies [8]. It remains to show how discrete event and continuous time models can be
integrated into such relational presentations.

This deliverable shows how heterogeneous models can be integrated into an FMI co-
model by leveraging the UTP’s theory linking capabilities. We have previously shown
in Deliverable D2.2b [11] how the real-time modelling language VDM-RT, typically used
in INTO-CPS to model controllers, can be given a denotational semantics in terms of
the UTP theory of timed reactive designs. Moreover, in parallel with this deliverable we
show in Deliverable D2.3b [7] how the dynamical systems modelling language, Modelica,
can be given a semantics in terms of hybrid reactive designs. This deliverable then shows
how timed reactive designs and hybrid relations can be composed in an FMI multi-model
using a UTP theory of timed relations as a lingua franca. Our UTP theory is used to
give a semantics to an FMI multi-model, including the individual FMUs, connections,
and the master algorithm. It can be used to subject multi-models to verification using
Isabelle/UTP [10] in order to substantiate (or refute) safety properties of a cyber-physical
system.

In Section 2 we give a brief overview of theory linking in the UTP, and explain how the
latter facilitates multi-model integration. In Section 3 we explain our UTP theory of
timed relations, and in Section 4 show how this can be used to give a semantics to FMI
multi-models. In Section 5 we show how to give associated FMU semantics to VDM-RT
periodic threads, and we do the same for Modelica and the hybrid relational calculus in
Section 6. Then, in Section 7 we bring these results together to show how verification
of an FMI multi-model can be performed in Isabelle/UTP. Sections 8 and 9 then give
guidelines for integration of additional notations and tools, respectively, into our semantic
framework. Finally in Section 10 we conclude the deliverable.

2 Linking UTP Theories

The goal of the UTP is provide a unifying semantic framework for the multitude of
computational theories that underlie programming languages. Computational theories
can be used to account for discrete state, concurrency, communication, real-time, hybrid
systems, probability, object orientation, and mobility, to name a few of the fundamental
paradigmatic ideas that can be formalised in UTP. For more foundational information
on the foundations of UTP, please see Section 2 of D2.3b [7].

One part of the theory engineering activity is to formalise these computational theories,

6



D2.3d - Multi-Model Linking Semantics (Public)

as we have done in D2.2b [11] and D2.3b [7], for example, prove laws of them, and then
use these laws to create verification tools. However, another important activity is to
demonstrate the links between different theories. For example, there are clearly links be-
tween real-time systems and hybrid systems, and the UTP allows us to formally describe
these links. Often such links are described using Galois connections that demonstrate
mutual embeddings between two theory domains.

This is a clear advantage of the UTP as a semantic framework – it not only enables
us to describe semantics for heterogeneous models, but it also allows their integration.
This is why UTP is so important for describing multi-models in INTO-CPS, because
it allows us to give a precise mathematical account of the composition of models from
different languages and theoretical domains. Moreover, as we shall see, it also allows
the application of this underlying theory to verification techniques that can encompass a
wide variety of heterogeneous models.

In the remainder of this deliverable we shall show how VDM-RT and Modelica can be
integrated in an FMI multi-model using such theory linking capabilities.

3 Timed Relations

UTP is based on the alphabetised relational calculus. A relation is modelled as a logical
predicate with two kinds of variables: initial variables (x), and final variables (x ′). Thus,
a program can be modelled as a relation that shows the possible final states that can
result from a given initial state. A simple operator, like assignment (x := v), can be
modelled as a predicate: x ′ = v ∧ y ′ = y. This states that x in the final state takes the
value v, whilst any other variable y retains its previous value.

Our relational FMI model uses an extension of UTP relations that adds a special obser-
vational variable called time : R≥0 that models the passage of time using a postive real
number. It is special because, unlike regular program variables, it is restricted in how it
can evolve. For example, we cannot assign an arbitrary value to time as this would vio-
late several physical laws. Thus, a timed relation shows both the final valuation for any
program variables, and also how much time passed while computing these variables.

Technically, a timed relation is modelled using our theory of generalised reactive relations
that we describe in sister deliverable D2.3b [7, Section 3] on the continuous time seman-
tics. Briefly, a reactive relation is a UTP relation with an observational variable tr that
is used to model the trace. The trace can be any instance of a “trace algebra”, whose
models include positive real numbers, discrete event sequences, and piecewise continuous
functions. The latter are employed in our theory of hybrid relations for the semantics of
Modelica. Here, we shall use the trace variable to model the time variable.

The healthiness condition for reactive relations is RR which is defined below.

Definition 3.1 (Reactive Healthiness Conditions).

R1(P) , P ∧ tr ≤ tr ′

R2c(P) , P[ε, tr ′ − tr/tr , tr ′]2 tr ≤ tr ′3P

RR(P) , (∃ ok, ok ′,wait,wait ′ • R1(R2c(P)))
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R1 requires that the trace monotonically increases. R2c forbids dependence upon the
history of interaction before a given process began executing. We form the theory of
timed relations with tr : R≥0, and by using the definitions of x ≤ y, x+y, and x−y from
real number theory. Then, the healthiness condition R1 has the specialised definition of
time only being allowed to advance, and not reverse, as we mentioned previously. R2c
means that any timed relation cannot observe the specific time at which it started to
execute. It can only record the amount of time that has elapsed since its execution
began. This is a kind of time invariance property.

The theory of timed relations allows the description of timed imperative programs fea-
turing the following usual programming operators, all of which are closed under RR, and
thus can be used together to construct well-formed timed programs.

• sequential composition (P ; Q), and its iterated relative ( # i ∈ I • P(i));

• assignment (x :=r v);

• if-then-else conditional (P 2 b3Q) – (if b then P, else Q);

• non-deterministic choice (P u Q) and its indexed relative (
d
i ∈ I • P(i);

• finite iteration (P∗
);

• miraculous program (false).

As usual, we also have IIr as the degenerate assignment that updates no variables; it
is the unit of sequential composition (IIr ; P = P ; IIr = P). We also have a more
general version of the assignment operator 〈σ〉r , where σ is a mapping from variables
to expressions, that allows multiple simultaneous assignments. For example, x :=r v is
equivalent to 〈{x 7→ v}〉r , and IIr to 〈id〉r .

We also introduce a frame operator a : [P], the effect of which is to specify that timed
relation P determines how state variables within a (the frame) can change. All other
state variables outside of frame a retain the same values in the final state. For example,
the relation x : [x ′ = 7] states that only x can change value, and in the final state will take
the value 7. It is therefore equivalent to an assignment x :=r 7.

In this language of timed relations, we impose a number of restrictions on syntactically
valid programs. An assigned expression v can only refer to state variables, and not the
time variable. The same restriction follows for an if-then-else condition b, since b can
refer only the initial values of state variables and the initial value of time has no meaning
as enforced by R2c. We are also not permitted to assign to time as this may result in
unhealthy behaviour. Finally, we require that in a framed relation a : [P], P can only
refer to variables within frame a.

The Kleene star operator P∗ has the usual definition of a non-deterministic choice of all
finite repetitions of the enclosed behaviour, as defined below.

Definition 3.2 (Kleene Star).

P∗
,

l
i ∈ N • P i

Here, P i is defined to be i sequential iterations of P, with P0 = IIr . The timed relational
operators obey the usual algebraic laws of programming and relational calculus, some of
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which we enumerate below.

Theorem 3.1 (Timed Relation Laws). If P,Q,R are RR healthy then

IIr ; P = P ; IIr = P
false ; P = P ; false = false

(P ; Q) ; R = P ; (Q ; R)
x :=r v ; P = P[v/x ]

P 2 true3Q = P
P 2 false3Q = Q

(P 2 b3Q) ; R = P ; R2 b3Q ; R
P u Q = Q u P

P u false = P
a : [IIr ] = IIr

a : [P ; Q] = a : [P] ; a : [Q]

a : [P] ; b : [Q] = b : [Q] ; a : [P] a ∩ b = ∅
P∗

= P ; P∗

These laws of programming should be mostly familiar from relational calculus [12, 13].
The second to last law deserves comment, however. It states that two framed timed
relations can be commuted provided their frames are disjoint. This law follows because
neither of the sequentially composed programs can interfere with each others’ state vari-
ables.

Additionally, we implement an operator for delays in timed relations.

Definition 3.3 (Delay Operator).

wait(n) , (st ′ = st ∧ time′ = time + n)

This operator simply leaves all state variables (st) unchanged and advances the time by
n. A couple of additional useful identities follow from this operator.

Theorem 3.2 (Delay Properties).

wait(0) = IIr (3.2.1)

wait(m) ; wait(n) = wait(m + n) (3.2.2)

wait(m) ; (P 2 b3Q) = (wait(m) ; P)2 b3(wait(m) ; Q) (3.2.3)

wait(n) ; x :=r v = x :=r v ; wait(n) x /∈ fv(v) (3.2.4)

a : [wait(n)] = wait(n) (3.2.5)

Property (1) shows that a zero wait is simply the timed relational identity, since no time
has elapsed. Property (2) shows that two sequential delay results in a single delay that is
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the sum of the parts. Property (3) shows that a delay distributes from the left through
a conditional; this follows because b cannot depend upon time. Property (4) shows that
assignment and delays commute, provided the delay expression does not depend on x .
At first sight this may seem counter-intuitive, but it holds because we only observe the
final values of variables and not their intermediate observations. This is faithful to FMI,
where we only perceive variables following a time step of the FMUs. Finally, property (5)
shows that framing a delay has no effect since all state variables retain their value.

4 FMI in Timed Relations

Following D2.3a we give an abstract relational semantics to networks of FMUs. However,
we here use our theory of timed relations as the basis of the semantics. An FMI multi-
model consists of n FMUs with connections between them, an initialisation routine to
provide initial values for input variables, and a master algorithm to orchestrate their exe-
cution. We consider a simplified model of FMUs that consist of a state space, containing
the input, output, and internal variables; an instantiation routine inst, which is called
from fmi2Instantiate; and a step routine step, which is called from fmi2DoStep.
We represent an FMI structure using a timed relation of the following form where the n
FMUs (FMUi) are indexed by a set I = {1..n}.

Definition 4.1 (FMI Timed Relation).

( # i ∈ I • si : [FMUi .inst]) ; 〈Init〉r ;(
〈Wiring〉r ;

(l
t ∈ MA • ( # i ∈ I • si : [FMUi .step(t)]) ; wait(t)

))∗

Such a timed relation operates over a state space consisting of all variables of all FMUs in
the composition. The state space of each FMU is a set of variables si , and we have it that
∀ i, j ∈ I • i 6= j ⇒ si ∩ sj = ∅. Init and Wiring are both variable assignments that set
initial values for variables, and connect FMU outputs to FMU inputs, respectively. We
assume that any problematic algebraic loops have been filtered out using the verification
techniques in D2.3a [19].

There are two phases to co-simulation: initialisation and execution. In the initialisation
phase, each of the constituent FMUs is first instantiated. This involves executing inst
for every FMU in the network, each of which is framed by the corresponding FMU state
space si . Since the state spaces are disjoint, we can execute the instantiations in any order
and obtain the same result. We therefore chose to do so in the order of the given indices
using iterated sequential composition ( # ), but we can also re-order them if necessary.
Following instantiation, we need to provide initial values for FMU input variables which
is done through the Init assignment. Actually, for convenience we choose to populate
initial values for all output variables, since the Wiring assignment will copy these to the
corresponding input variables.

In the execution phase, the FMUs are all stepped forward by a chosen time step t. We
first prime them all for execution through the Wiring assignment, which provides values
for the input variables. Following this, we non-deterministically pick a time t that the
master algorithm is willing to permit. Then we step each of the FMUs forward by t, and

10



D2.3d - Multi-Model Linking Semantics (Public)

insert a delay of the given time period. Again, the FMUs operate on distinct section of
the state space and therefore we can step them forward in any sequential order. This
main body of execution is then iterated a finite number of times using the Kleene star
operator, P∗ , that corresponds to reflexive transitive closure. Thus, the semantics of an
FMI network is the set of all permissible sequences of time steps allowed by the master
algorithm, with the network wired together using Wiring, and started in initial state
Init.

We represent the master algorithm by a set of positive reals: MA : P(R≥0). For example,
we can define a fixed step and variable step master algorithms as below.

Definition 4.2 (Sample Master Algorithms).

FixedStep(t) , {t}
ArbStep , {t ∈ R≥0 | t > 0}

The FixedStep(t) master algorithm permits only time steps of length t, whilst ArbStep
permits any non-zero time step which is chosen non-deterministically.

The master algorithm, of course, is not solely responsible for picking the step size, and
there must also be agreement from the FMUs. An FMU is stepped forward using step(t),
which constructs a timed relation corresponding to all t length evolutions. If t is not
a valid time step for the current FMU state, then the behaviour will be false: the
miraculous relation. Since false is a zero for sequential composition, the entireity of
the behaviour for that time step will be miraculous. Moreover, false is a unit for non-
deterministic choice (

d
), and therefore any such miraculous time steps are effectively

excluded by the overall orchestration. In other words, both the master algorithm and all
FMUs must agree on the length of each time step.

We exemplify this with an adapted version of the Water Tank pilot study from D3.6 with
two FMUs: one to model the continuous behaviour of the tank, and one to model the
controller. We create a state-space for each of them. The tank state-space consists of
two variables valve : B that models whether the valve is open or shut, and level : R that
models the current water level in the tank. The controller state-space also consists of two
variables: valveOn : B and levelSensor : R that correspond to an actuator and sensor for
the two correspond tank entities. We then take the conjunction of the two state-space,
with namespaces tank and ctr applied to the respective variable names.

The water tank relational FMI, with a particular configuration, can then be modelled as
given below.
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Example 4.1 (Water Tanks in relational FMI).

Init ,
{

tank:valve 7→ true, tank:level 7→ 5,
ctr:valveOn 7→ false, ctr:levelSensor 7→ 0

}
Wiring , {tank:valve 7→ ctr:valveOn, ctr:levelSensor 7→ tank:level}

MA , FixedStep(0.001)

WT (minl,maxl) , TankFMU .inst ; CtrFMU .inst ; 〈Init〉r ;(
〈Wiring〉r ;

(l
t ∈ MA •

(
TankFMU .step(t) ;
CtrFMU .inst(t)

)
; wait(t)

))∗

The overall behaviour is given by the parametric timed relation WT (minl,maxl). Pa-
rameters minl and maxl represent the minimum and maximum level allowable by the
water tank system, and correspond to the design parameters of this particular example.
In general we can make FMI networks parametric over the design parameters. The two
FMUs are modelled as timed relations, but they can be defined in different UTP theories
and then mapped to timed relations. This is the requirement we have for composing
heterogeneous system models.

Next, we will show how lift both VDM-RT and Modelica models into such an FMI
composition.

5 Lifting VDM-RT

In D2.2b [11] we showed how to give a semantics to VDM-RT in terms of timed reactive
designs and the language CML. This semantics is quite complex, and deals with all aspects
of the VDM-RT language, including features not used in the INTO-CPS case studies, such
as concurrency. The majority of case studies and pilot studies have controllers whose
behaviour is defined by a single periodic thread which executes certain stateful behaviour
every time a period of time elapses. Thus, in order to support models more amenable to
verification we will give a direct semantics to periodic threads in timed relations that will
then be directly usable in our relational FMI semantics. We note, though, that the more
complex semantics can also be supported if required since CML timed reactive designs
can, in theory, be collapsed to timed relations.

In order to model periodic threads, we need to add a further observational variable:
ctdown : R≥0. This is used to model the periodic thread countdown timer in the state
and is required for a VDM-RT FMU. Essentially, whenever such an FMU is instructed
to step forward, any remaining time on the countdown timer is first removed from the
timer. If the time step causes the countdown timer to become 0, then the behaviour of
the thread is executed and the countdown timer is reset. For the purposes of simplicity,
we assume that the code of the periodic thread can be executed instantaneously. If
delays are required then they can be inserted using the wait operator. We also disallow
VDM-RT FMUs from being stepped forward beyond the remaining countdown time, as
this is usually when input variables and read and output variables are written to, which
information must be shared with sibling FMUs.
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We then give the following definition for a VDM-RT periodic thread.

Definition 5.1 (Periodic Thread).

periodic(n,P) ,
(

(wait(ctdown) ; P ; ctdown :=r n) u
(
d

t | 0 < t ∧ t < ctdown • ctdown :=r ctdown − t ; wait(t))

)

A periodic thread is parametrised by the period n : R≥0 and a timed relation P, represent-
ing the body of the thread. There are two possible behaviours which are combined using
the non-deterministic choice operator (u). The first option is to wait for the entirety of
the remaining periodic countdown, execute the body of the perioidic thread P, and then
reset the countdown time to n. Alternatively, the countdown timer can be reduced by
any amount of time strictly greater than 0 and strictly less than the remaining periodic
countdown. Any time step greater than the periodic countdown timer is thus excluded,
and an attempt to do so will result in miraculous behaviour.

With this semantics for periodic threads, we can now give a semantics to the water tank
controller. The main body of the VDM-RT controller is implemented by the following
code1, which is the body of a period thread with a period of 1 ms.
let level : real = levelSensor.getLevel()
in
(

if (level >= HardwareInterface‘maxlevel.getValue())
then valveActuator.setValve(open);

if (level <= HardwareInterface‘minlevel.getValue())
then valveActuator.setValve(close);

);

This code first obtains the present level from the level sensor, and checks its present value.
If it is at or above the maximum threshold, then the valve is opened. If it is at, or below
the minimum, the valve is closed. We add an error of 0.1 onto each of the thresholds to
allow for the sensor latency. This behaviour can be represented by the following timed
relations.

Definition 5.2 (Controller FMU).

CtrFMU(minl,maxl).inst , ctdown :=r 0.001

CtrFMU(minl,maxl).step , periodic

0.001,

valveOn :=r false
2 levelSensor ≤ minl + 0.13
valveOn :=r true
2 levelSensor ≥ maxl − 0.13IIr


The links between the VDM-RT FMU and the the other FMU networks, which in the
code above are provided by different VDM-RT classes and objects, are here abstracted to
assignments to connector variables. The instantiation relation simply assigns an initial

1See https://github.com/into-cps/case-study_single_watertank/blob/master/
Models/SingleWT/Controller.vdmrt
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value to the countdown timer of 0.001, to set the initial period. The step relation imple-
ments the body of the periodic thread. Every millisecond the controller checks the status
of the water level from the input variable levelSensor , whose value is provided by Wiring.
If it is above the maximum, the output variable valveOn is assigned the value true. If
it is below the minimum, valveOn is assigned the value false. Otherwise, all variables
remain the same. Though a simple example, all the operators of the relational calculus
can be utilised to formally encode imperative controller models in this way.

6 Lifting Modelica

In D2.3c [6] we give a semantics to Modelica in terms of the hybrid relational calculus
and reactive designs. A hybrid relation is a form of reactive relation where the trace is
a piecewise continuous function over the continuous state. Such a timed trace records at
every instant the value of every continuous variable in the state space. We describe a
simplified water tank with a linear ODE to represent the level in Modelica as below.
model Tank

RealInput level;
BooleanInput valve;

equation
der(level) = if valve then 1 else -1;

end Tank;

This behaviour of the simplified water tank is given by the following hybrid relation.

Definition 6.1 (Water Tank Hybrid Relation).

Tank , 〈 level : (λ l • −1) 〉2 valve3 〈 level : (λ l • 1) 〉

If valve is initially true then the water level should be dropping and so we assign the
derivative −1 using the ODE operator 〈 x : f 〉. This is a slightly specialised version of
the operator given in D2.3c in that it also has an implicit frame attached. Specifically,
any variable other than x is held constant during evolution. If the valve is off, then
the water level will rise. Naturally, much more complicated ODEs can be assigned in a
realistic system.

For FMI, a hybrid relation encodes more information than is necessary to perform time
steps. Thus it is necessary to convert a hybrid relation to a timed relation to enable
integration of Modelica models into relational FMI. We first define the following function,
which allows us to step a hybrid relation a given time period t.

Definition 6.2 (Stepping a Hybrid Relation).

HyStept(P) , ((P ∧ ` = t ∧ rl(v) ∧ d = d ′) �r st :c)

Function HyStept(P) produces an untimed relation between inputs and outputs that
effectively encodes the possible behaviours of the model at the time step t, subject to

14



D2.3d - Multi-Model Linking Semantics (Public)

particular inputs. This function simply takes the value of continuous variables at the end
of an evolution, ignoring intermediate values, combined with a record of the evolution
length. The relation can be primed with initial values for the variables in order to obtain
the outputs at time instant t.

The definition is quite complex and uses additional operators for manipulating alphabets
of the underlying relations. We first conjoin the hybrid relation P with three statements:
(1) the duration length ` is the same as t, (2) each relational output variable is equated
with the right limit of the corresponding trajectory variable, and (3) the discrete variables
(d) are left unchanged. We then restrict the alphabet to the continuous variables using
relational alphabet restriction operator �r . The result is a relation consisting of only
continuous state variables and no observational variables.

We then use the stepping function to define a further function H2T that converts a hybrid
relation to a timed relation.

Definition 6.3 (Hybrid Relations to Timed Relations).

H2T (P) ,
(l

t • wait(t) ; HyStept(P)
)

Function H2T non-deterministically selects a time step, introduces a delay of this length,
and then steps the hybrid relation using HyStep. The result then is a timed relation
which relates the Modelica FMU’s inputs to its output and the time expended.

As an example, consider the hybrid relation x = 5 ∗ ti, which states that continuous
variable x at each instant has the value 5 ∗ ti. If we apply H2T to it, we obtain the timed
relation x ′ = 5 ∗ (time′ − time). Its behaviour is simply to assign the final value of the
continuous variable at each time instant.

We can prove a useful set of laws for H2T .

Theorem 6.1 (H2T Identities).

H2T(IIr) = IIr

H2T(P 2 b3Q) = H2T(P)2 b3 H2T(Q)

H2T(〈σ〉h) = 〈σ〉r

H2T({x 7→ f (v, ti)}h) =
(l

t | t > 0 • wait(t) ; x :=r f (v, t)
)

H2T has the expected effect on a relational identity, and distributes through conditional.
〈σ〉h is a version of assignment where only continuous variables are assigned, and it
maps directly to timed relation assignment. Finally, we have the case for an evolution
statement {x 7→ f (v , ti)}h which states that x at every instant is determined by a given
function on the initial value of the state v and time ti. The resulting timed relation
non-deterministically chooses a non-zero amount of time to progress, inserts a delay of
this period, and finally assigns to x the result of f at t with initial value v .

Using this function, we can now define the Tank FMU for our multi-model.
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Definition 6.4 (Tank FMU).

TankFMU.inst , IIr

TankFMU.step , H2T (Tank)

The instantiation for a Modelica FMU is simply IIr as there is no need to set internal
variables. Then, applying the laws from Theorem 6.1 and relational calculus, we can
calculate the following result.

Theorem 6.2 (Tank FMU Calculation).

TankFMU.step =
(l

t | t > 0 • wait(t) ; (level :=r level + t 2 valve3 level :=r level − t)
)

The behaviour of this FMU is to step forward a strictly positive amount of time, and
depending on the status of the value either increment or decrement level by t. Thus,
our multi-model can now be entirely expressed in the language of timed relations, and
subjected to verification using Hoare logic as detailed in deliverable D2.3a [19].

7 Multi-Model Verification

In this section we show how the formal multi-model developed in the above sections
can be subjected to verification using Hoare logic. A Hoare logic triple has the form
{ p } S { q }, where S is a block of program code, and p and q are predicates on the
program’s state variables. The Hoare triple states that, if S is started in a state that
satisfies predicate p, then when it terminates the final state will satisfy predicate q. For
example, the statement { x ≥ Y } x := x + 1{ x > Y } is provable since if we knew that
x was greater or equal to Y initially, and then we increment x by 1, then x must be
greater than Y in the final state.

We have developed a Hoare logic for timed relations which allows us to prove properties
of multi-models in Isabelle/UTP. The main contribution is a tactic called fmi_hoare
that uses the rules of Hoare logic to break a desired specification of an FMI network into
a collection of verification conditions for discharge. The laws we make use of are standard
for Hoare logic, and in particular they can be found in related UTP publications [13, 4].
The novelty lies in both the mechanisation of the multi-model, and the tactic that enables
verification.

We describe the definition of the water tank example multi-model itself in Isabelle/UTP,
in terms of its principal types and definitions. We will then prove a safety property of
the example using our FMI proof tactic.

Figure 1 shows the principle state space (alphabet) types for the two constituent FMUs,
which are called tank_st and ctr_st, and and the overall FMI network state space,
wt_st, which composes the two constituent state spaces. The controller state space,
ctr_st, extends the VDM-RT state space template vrt_st which adds the special
ctdown variable used to schedule executions of the periodic thread. Figure 2 shows
the initialisation and wiring topology for the FMI network. The initialisation sets initial
values for each of the variables in the overall state space, wt_st. The wiring connects
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Figure 1: Water tank state types Figure 2: Water tank topology and initialisation

Figure 3: Water tank definitions

FMU outputs to FMU inputs. In this case it connects the controller output variable
valveOn to the tank input variable valve, and tank output level to controller input
levelSensor.

Figure 3 has the definition of each of the FMUs and the overall network. FMU Tank
is constructed using the function Modelica_FMU, which takes a hybrid relation as in-
put, and produces a timed relation. Internally this function is implemented using the
H2T function we described in Section 6. FMU Ctr is a parametric FMU with the min-
imum and maximum levels as design parameters. It is constructed using the function
VDMRT_FMU, which is uses the periodic function from Section 5 to construct a periodic
thread FMU with a period of 1 millisecond. Finally, the actual FMI network is con-
structed using the function FMI, which takes as input the initialisation, a list of FMUs,
a master algorithm specification, and a wiring relation. The function FMI[s, P] takes
as input the state-space s for the given FMU, and its behavioural specification P. Since
ctr and tank are disjoint variables of the state space, these two FMUs can be executed
in any order without risk of incorrect interference.

Figure 4 then shows how we go about proving properties of an FMU network using
our mechanised Hoare logic. The property we want to prove is wt_safe at the bottom
which states that, given minimum and maximum levels of 0 and 10, respectively, the tank
level should never go above 10. The precondition is true because the instantiation and
initialisation of the FMUs provides starting values for all state variables, and therefore
we need assume nothing. The postcondition is effectively quantified over every evolution
of the system allowed by the FMUs and master algorithm. Thus, this specification states
that for any evolution it should never be the case that the tank overflows 10.
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Figure 4: Water tank verification

In order to prove this, we first have to observe that the controller will not respond to the
tank reaching its maximum until up to 1ms after this occurs. This is due to the periodic
nature of the VDM-RT thread, and this is why we have subtracted an error of 0.1 from
the maximum level. Thus, when the water level reaches 9.9, the sensor will detect this
and start to act, but the tank will rise a little more. Of course the dynamics of this model
is very simple, and more complex dynamics would lead to a more realistic system and
challenging verification problem.

As usual for Hoare logic proofs, we cannot directly use the property of level < 10 as
an invariant of the system, as it is too weak. Specifically, just knowing that, at a given
instant, the water level is less than 10, does not guarantee that it will also be at the next
instant. The controller, for example, may not respond quick enough if the level is 9.99999,
which is closer to the level than the rate at which it rises in 1ms, but still satisfies the
invariant. Thus, we need an enriched invariant that characterises the states of the system
more precisely, and in particular accounts for the behaviour of the controller.

WTI is an invariant of the water tanks system that can be directly proved. It states that
the system must be in one of three states:

1. The water level is well below the limit of 10 (level < 9.9);

2. The water level is getting close to the limit (9.9 < level < 9.95), but the valve has
not yet turned on (¬valveOn);

3. The water level is almost, but not quite at the limit (9.9 < level < 10), and the
valve has been switched on.

The crucial point to observe is there is a region 9.95 < level < 10 where the valve must
have been turned on, and consequently the water level must be dropping even if we enter
that region. As a result the system dynamics will not allow the water level to overflow.
The region below this (9.9 < level < 9.95) is a safe region in which water level could still
rise, but it can’t enter the former region without the valve controller responding. Since
the system can only be in one of these three states, and each of them satisfies our original
property level < 10, this is a sufficient invariant for us to prove. Note that we also have
to conjoin the requirement that ctdown = 0.001, that is, at the beginning of every cycle
the periodic thread needs to expend 0.001 seconds before it can execute. This is true
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because we have chosen a fixed-step master algorithm. A variable step would require a
more complex assumption about the periodic countdown timer.

Once the invariant is formulated in WTI, we can then attempt to discharge it using our
tactic fmi_hoare. This takes as parameters the collection of all definitional equations,
and then applies Hoare logic deduction rules and relational calculus to simplify the re-
sulting verification conditions. In this instance, the resulting arithmetic properties of the
system dynamics are sufficiently simple that Isabelle/HOL can discharge them automat-
ically, and thus we show that the system satisfies WTI.

Finally, we can return to our original property. We first strengthen the postcondition to
be WTI. This requires that we prove WTI ⇒ level < 10, which is indeed provable, and
we discharge this using the relational calculus tactic, rel-auto. Finally, we can make
use of the invariant property lemma, wt_lemma_1, to discharge the proof goal. Thus we
have shown how to perform multi-model verification with heterogeneous models.

8 Integration of Additional Notations

In this section we provide guidelines for integration of additional notations into our foun-
dational semantics model. Our relational model of FMI is fundamentally open in nature,
and can be extended by additional notations and languages. The semantic domain for
this is our UTP theory of timed relations, and it is necessary to map models into this
domain.

In the, UTP semantic meta-models are constructed by composition of one or more UTP
theories that characterise the underlying paradigms of the language. For example, the
Modelica language is formalised in terms of hybrid reactive designs, a theory which com-
bines a theory of imperative programs with termination (reactive designs), and a theory
of hybrid computation (hybrid relations). There are therefore three steps to integrating
a new language in this UTP setting.

(1) Theory Engineering. The language’s underlying paradigms must be formalised and
mechanised as UTP theories. This is the most difficult step of integration, as it requires in-
depth knowledge of the mathematics that lie behind the language. However, there already
exist a large number of UTP theories for various paradigms which have been developed by
the UTP community. For example, there are UTP theories for concurrency [13, 5], object-
orientation [17], real-time programming [18], hybrid computation [9], and probability [2],
to name a few. In all likely-hood, therefore, UTP theories already exist that can be used
to construct a denotational semantics for the given language. Indeed, this is the “theory
supermarket” idea: that a semantics engineer can simply pick existing theories off the
shelf to support construction of verification tools for their target language.

(2) Denotational Semantics. Once a semantic model has been fixed, the syntax
and semantics of the language should be defined and mechanised in Isabelle/UTP. This
involves giving denotations for each of the language operators in terms of the target
semantic model. UTP theories invariably import standard relational operators like se-
quential composition, whilst creating specific operators for given paradigms, and so many
such operators may be directly usable. This is the case for the hybrid relational calculus,
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where the specialised operators include ODEs, continuous function evolution, and evolu-
tion interruption. Hybrid relational calculus, though, is effectively an intermediary UTP
theory and the actual language we give semantics to there is Modelica, of course. Deliv-
erable D2.3b shows how to give the Modelica block language a semantics as a number
of block constructors an composition functions, the target of which is a hybrid relation.
Technically at this point one can also automate the translation from the source language’s
abstract syntax tree into Isabelle/UTP definitions. This would allow us to subject the
individual models to theorem proving, and pave the way for multi-model verification as
well.

(3) Theory Linking. Finally, a function mapping the source semantic model into the
theory of timed relations must be defined, like H2T . In many instances such a function
will be injective if the model can be losslessly encoded as a timed relation. This is the
case, for example, with VDM-RT models. However, inevitably this may involve loss of
some information about the model since FMI is fundamentally discrete time in nature, in
that it only permits observation of a model at particular instants and not continuously.
Lossy functions may be Galois connections [13], rather than injections. The linking
function should demonstrate how elements of the source theory should be represented as
timed relations. For Modelica this involves throwing away the trajectory information,
and recording all possible snapshots of the continuous state for any given time step from
a given initial state, in the function H2T . Once this behaviour has been defined, cases for
the different operators of the language can be proved as theorems, as shown for example
in Theorem 6.1. This then gives the stepping behaviour of the individual FMUs.

Once all of these three activities are completed, the source language can be integrated into
an FMI multi-model. Moreover, when one comes to prove theorems about multi-models
we can proceed by decomposing the required invariant into individual FMU invariants.
These FMU invariants can then be converted, through the prism of the mapping function,
to a property of the individual model. This therefore enables both integration, and a
holistic multi-model verification technique.

9 Integration of Additional Tools

In this section we provide complementary information on integrating additional tools into
the tool-chain, building on the formal approach highlighted in Section 8. Suppose that
we want to include a new tool in the INTO-CPS tool chain. There are two aspects to
this: adding a new solver to the FMI architecture used for co-simulation; and adding a
new notation to the foundations for INTO-CPS. We address both.

1. Our aim is to be able to include the new tool in our FMI architecture for co-
simulation. For that, we require formal semantics for both (a) continuous-time and
(b) reactive behaviours. The former (a) is to account for the model of FMUs, already
expressed in notations such as Modelica, VDM-RT and 20-sim used by INTO-CPS,
while the latter (b) accounts for the semantics of the FMI co-simulation itself, which
is a reactive system. An additional aim, from the foundations work package, is to
be able to prove universal properties of FMI architectures and co-simulations, for a
possibly infinite set of initial values and scenarios; for this we need formal semantics.
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2. Aspects (a) and (b), however, do not have to be supported within the *same* seman-
tic theory. Since co-simulation decouples Master Algorithms (Mas) from simulated
components, both of them can live in the realm of their own semantic theory. An
important exception to this is HIL scenarios, where the execution time of the simu-
lator is also important. In such a setting, (b) would also have to support reasoning
about discrete time.

3. We should distinguish between easy (decidable) and difficult (non-decidable) prop-
erties of co-simulations. Decidable properties include the absence of algebraic loops,
type conformance, non-divergence of MA models, and the solution of certain kinds
of differential equations. Non-decidable properties include high-level safety prop-
erties and the conformance of MA implementations to their specification (in the
general case, at least). The formal semantics for the new tool should be mecha-
nised and equipped with a set of rules to evaluate decidable properties, as well as
enable reasoning about non-decidable properties. Our work shows that code gener-
ation and evaluation are valuable techniques to deal with emergent complexity of
models and the overhead of the proof system in reasoning about them.

4. With respect to foundational work, the formal semantics for the new tool ought
to be equipped with a refinement calculus, in order to enable proofs about co-
simulations, and in particular to modularise proofs that consider discrete, continu-
ous, and reactive properties and aspects of a model. There are three major phases in
this refinement approach. Discrete abstractions of models are used to prove safety
properties, and are then refined into continuous models that preserve them. The
co-simulation state is still centralised at that level, and data is exchanged through
shared variables. The MA is introduced as yet another refinement step; namely, to
distribute shared data between FMUs.

5. As the problem of reasoning about co-simulations is highly non-trivial, the key
challenge a tool must address is abstraction and modularisation of proofs. The
question of building semantics cannot be decoupled from the strategy to reason
about co-simulations. Each of the above-mentioned stages will require their own
laws and strategies that a tool should be aware of to assist the developer. The
UTP and Isabelle/UTP proof tool have been shown to address this issue very well,
by offering a large spectrum of semantic theories and proof strategies that could
potentially be employed and linked to each other.

As an example of our methodology, consider adding an additional modelling paradigm
to the INTO-CPS toolchain. As a concrete example, we addressed the task of adding
probabilistic modelling and analysis. The context was the multi-modelling of robot con-
trollers. We have already linked INTO-CPS to the UK EPSRC project, RoboCalc (see
deliverable D2.1a [1] and [3]), where we restricted and extended the INTO-SysML pro-
file for cyber-physical systems, implemented in RoboTool for modelling and analysis of
RoboChart diagrams.

We extended the INTO-SysML/RoboChart language with probabilistic semantics to be
analysed adding a probabilistic model checker to RoboTool. This required new semantics
for the extensions and for the translation to existing probabilistic model checkers. A
number of important tools use the same input format (the Reactive Modules formalism)
for a range of different tools, including PRISM, IsCAS, Storm, LiQour, and MRMC.
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The input format has different semantics that cover deterministic and nondeterministic
Markov processes, as well as discrete and continuous time probabilistic automata.

Collaboration with the Federal University of Pernambuco in Brazil has led to implement-
ing the translation from the new semantics, so that RoboChart diagrams are mapped
to the probabilistic guarded command language, and from there to PRISM. This gives
access to five different model checkers. Another route goes via the FDR model checker
and on to the PRISM formalism, giving a total of 10 different routes from model syntax
to tools and the different semantics for these models. The results have different analysis
characteristics. The advantage of this is that a problem can be matched to the best
semantics and analysis technique. Future work will address theorem proving as well as
model checking.

This work was carried out as part of the EPSRC RoboCalc project 2 and the Royal
Academy of Engineering’s Newton Fund project on Robotics and Autonomous Systems
in Brazil.

10 Conclusion

In this deliverable we have shown how the UTP’s theory linking capabilities can be used
to compose heterogeneous models to produce formal semantics for a heterogeneous FMI
multi-model. The common semantic domain for this in our theory of timed relations that
shows how variables of a model change for a given time step. Provided that a language
supports output into this domain, we can formally link them together in a multi-model
and subject them to verification using Hoare logic. All of theory described herein has
also been mechanised in Isabelle/UTP [10].

There are several areas for future work. Currently we have shown how two different
languages can be formally integrated using FMI, and in the future it would be useful to
support additional notations and tools using the approaches outlines in Sections 8 and
9.

The integration and verification technique we have shown for FMI could be applied to
larger examples, with more complex invariants in order to gain further experience. This
would also allow us to assess the scalability of our verification platform for larger examples.
Likely there will be a need for additional proof tactics and tools that deal efficiently with
different classes of continuous mathematical problems that arise from such verifications,
possibly building on technical results from related tools [16]. Moreover, our requirement
language for FMI is currently limited to state invariants, and it would be useful to consider
more expressive notations, such as modal and temporal logics.

From a technical standpoint, our verification tool, though powerful, is currently academic
in nature. Thus, it would be useful to develop appropriate high-level tool support for
this technology for industrialists, including model transformations from FMI, VDM-RT,
Modelica, and other languages, into Isabelle/UTP in order to automate the verification
process.

2RoboCalc Website: https://www.cs.york.ac.uk/circus/RoboCalc/
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