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Abstract

In this deliverable, we present a formal semantics of FMI co-simulations and
mechanisation of that semantics in our theorem prover Isabelle/UTP. This,
firstly, involves embedding the Circus language in our proof tool. Secondly,
we use that embedding to encode the processes of the FMI model. Our mech-
anised encoding makes precise the structure of those processes, and takes
advantage of reasoning support and tactics available in Isabelle/UTP. We,
thirdly, illustrate how the mechanisation can be used to encode a particular
co-simulation. For illustration, we use an example from railways provided by
our industrial partners. In doing so, we relate our approach here to the one
in INTO-CPS Deliverable D2.3a, which considers an abstract co-simulation
model. We also explain how both works are part of an integrated approach
and single technique to formally encode and analyse co-simulations.
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1 Introduction

This report constitutes the final deliverable on FMI modelling foundations.
It extends the earlier deliverables D2.1d and D2.2d on this topic by describing
a comprehensive model of FMI in the Circus process algebra, and a mecha-
nisation of the model in the theorem prover Isabelle/UTP. The mechanised
model is instantiated using a case study from railways (see INTO-CPS Deliv-
erable D1.2b), and we also discuss reasoning and proof support, in particular,
in relation to the verification strategy in INTO-CPS Deliverable D2.3a.

1.1 Background and Motivation

Cyber-Physical Systems (CPS) are systems that comprise both real-world
entities and digital components. Modelling and designing CPSs typically
requires a combination of different languages and tools that adopt comple-
mentary specification paradigms. For real-world artefacts, physics models in
the form of differential equations are the norm. Digital components, such
as software controllers, are typically described via control diagrams, state
machines, and real-time programs. This diversity of specification and design
methods makes CPS challenging to study and analyse.

Co-simulation [16] is perhaps the de facto technique for analysing the be-
haviour of CPS. It requires that models of artefacts are simulated in iso-
lation, while master algorithms control the various simulators and thereby
orchestrate the co-simulation as a whole. This, however, raises issues of
interoperability between the master algorithm and simulators. The Func-
tional Mock-up Interface (FMI) Standard [11] has been proposed to alleviate
those issues, and has since been successfully used in many industrial appli-
cations.

The FMI standard prescribes how master algorithms (MA) and simulators
communicate. It does so by virtue of a bespoke API that simulators have to
implement, and that can be used to implement compliant master algorithms.
The API enables master algorithms to exchange data between the compo-
nents of a co-simulation, called FMUs (Functional Mock-up Units), perform
simulation steps, and suitably deal with errors in simulators. It also allows
for advanced features such as roll-back of already performed steps.

While (co)simulation is currently the predominant approach to validate CPS
models, we here describe a complementary technique based on a formal model
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of an FMI system. Our technique formalises both the master algorithm and
the simulated FMUs, and allows for verification of their properties.

Whereas (co)simulation helps engineers to quickly gauge the implications
of modelling and design decisions, our formal analysis has the potential to
complement simulation with universal guarantees, both about the master al-
gorithm and cosimulated system. The former is important since simulations
depend on parameters and algorithms, and are software systems (with pos-
sible faults) in their own right. The latter is important since it is usually not
possible to run an exhaustive number of simulation scenarios as a means of
testing the system towards producing strong certification evidence.

For our formal modelling, we use Circus — a process algebra with added fea-
tures for supporting stateful models. It has proved adequate and useful for
modelling master algorithms [8] due to its capabilities of capturing concisely
the data and control aspects of such algorithms, including data exchange
between the FMUs and their concurrent execution. Circus models can be
subjected to verification techniques. These include both model-checking ap-
proaches [17], refinement [7], and (automatic) theorem proving [24].

1.2 Contribution

In INTO-CPS Deliverable D2.3a, we present an abstract relational model of
FMI co-simulations that focusses on the essence of the FMI computational
paradigm. In this deliverable, we consider a concrete reactive model of FMI
that, in addition, faithfully models the FMI interface as well as master algo-
rithms. It extends and elaborates the work in the earlier INTO-CPS Deliv-
erable D2.2c by providing a comprehensive Circus model that we mechanise
in the theorem prover Isabelle/UTP [15].

Added contributions of this deliverable are summarised as follows.

1. We present a complete and final Circus model of the FMI standard for
co-simulation1;

2. We embed the Circus language into our theorem prover Isabelle/UTP;

3. We mechanise our FMI Circus model in Isabelle/UTP, using the Circus
language embedding above;

4. We illustrate the use of our mechanisation by applying it to one of the
industrial INTO-CPS case studies (a railways system);

1We note that we do not consider FMI for model exchange here.
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5. We discuss reasoning and proof support for encoded models.

With regards to (5), we pursue a technique, based on refinement, to show
compliance of master algorithms with regards to the FMI standard [1]. Unlike
other approaches such as [10], we can profit from high-level algebraic laws
and a stepwise approach that culminates in executable code, for both the
FMUs and master algorithm.

We also explain how our work here completes the general reasoning tech-
nique presented in INTO-CPS Deliverable D2.3a. That technique proposes
a refinement-based approach: we start with a discrete abstraction of a co-
simulation that does not need to consider the MA and is used to establish
fundamental safety properties. Our work in this deliverable fills an important
gap: the transformation of an abstract FMU model into a concrete one that
can be translated into code.

The rest of the report is structured as follows. In Section 2, we review pre-
liminary material. This is the Functional Mock-up Interface (FMI), Circus,
and the Isabelle/UTP proof tool. Section 3 presents a comprehensive Circus
model of the FMI standard and interface, and in Section 4 we discuss its
mechanisation in Isabelle/UTP. This also includes an account on embedding
the Circus language in Isabelle/UTP. The case study and its mechanisation
are described in Section 5. In Section 6, we conclude and discuss noteworthy
related work.

8
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2 Preliminaries

We begin by reviewing preliminary material: the Functional Mock-up Inter-
face (FMI) in Section 2.1, Circus and CSP in Section 2.2, and Isabelle/UTP
in Section 2.3.

2.1 The Functional Mock-up Interface

Co-simulation of CPSs is a popular technique in industry but poses practical
challenges. The most significant one is how to couple different simulators
for particular languages and models, and orchestrate their use to drive the
co-simulation process. To address this problem, the FMI standard [1] has
been developed jointly by the Modelica Association and several industrial
partners. At its heart, it defines an API that prescribes the interaction of
simulation components with tools that manage and control them.

Simulators are referred to as Functional Mock-up Units (FMUs). They are
passive black-box entities (slaves) that are orchestrated by a master algo-
rithm (MA). The master algorithm instantiates the FMUs, initialises them,
sets their parameters, and performs data exchange between them during co-
simulation steps. All of these tasks are facilitated by functions of the FMI
API, and the FMI standard moreover specifies the protocol by which inter-
actions for these tasks have to be preformed.

The MA is also responsible for determining the size of simulation steps, using
a number of different strategies adequate for the co-simulation. Thereby, it
ensures fidelity of the simulation with respect to the underlying real-world
system.

The high-level conceptual view of an FMI architecture, illustrated in Fig. 1,
entails one master algorithm and several FMUs that wrap vendor-specific
simulation components. Typically, the master algorithm reads outputs from
all FMUs and then forwards them to those FMUs that require them as in-
puts. After this, the MA notifies the FMUs to concurrently compute the next
simulation step. Some MAs assume a fixed step size while others enquire the
largest step size that the FMUs are cumulatively willing to accept. Addi-
tionally, MAs can sometimes perform roll-backs of simulation steps.

The three key aspects of the FMI paradigm are that (a) FMUs do not commu-
nicate directly with each other, so that all data exchange is carried out by the
MA; (b) they proceed synchronously, following the BSP (Bulk Synchronous
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FMU 1 FMU 2 FMU n

Master Algorithm

FMI API

Figure 1: High-level view of the FMI design pattern.

Parallel) model of concurrency [27]; and (c) the dependency between FMUs
implied by their connected input and output ports is free of algebraic loops.
The third caveat ensures stability of the co-simulation, but does not exclude
feedback systems as long as they do not exhibit cycles with direct depen-
dencies. Finally, the FMI standard also constrains what kind of data can be
exchanged between FMUs: real, integer, boolean and string values.

The FMI specification standard [1] is elaborate and extensive but informal.
This motivates our work here to provide a formal semantics that can be used
to reason about co-simulation architectures.

2.2 Circus

Circus is a process algebra similar to CSP [19], but with additional support
for defining data operations and state. Circus inherits many of its process
operators from CSP, including sequential and parallel composition, input
and output communications on a channel c, synchronisation, external choice,
interrupt, guard and recursion. A summary of Circus constructs relevant to
our models in this deliverable is given in Table 1.

To define a process state, a Circus process declares a record in its state
paragraph, whose fields define a data model. Data operations can either be
written as Z operation schemas [28] or constructs from Morgan’s refinement
calculus [23], such as specification statements, assignments, conditionals and
iteration. Circus has a rich set of laws that can be used for verification and
refinement [7]; it is thus an ideal language for developing state-rich imple-
mentations from abstract specifications of reactive systems.

A notable trade-off in Circus is that the language enforces non-interference of
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Name Syntax Description

Sequence A ; B Execute A and B in sequence.

Parallel Comp. A J cs K B Execute A and B in parallel, synchronising
on the channels in the channel set cs.

External Choice A @ B The environment decides whether to execute
A or B ; communication resolves the choice.

Synchronisation c −→A Synchronisation on a (typeless) channel c.
Input Prefix c?x −→A(x ) Input a value x on a typed channel c.
Output Prefix c!e −→A Output a value e on a typed channel c.
Guarded Action g N A Proceed with A only if g is true.
Interrupt A4 c −→ B A is interrupted by synchornisation on channel c.
Recursion µX • F (X ) Execution recursive action F .
Assignment x := e Assignment to a state component x .

Table 1: Overview of relevant Circus action operators.

parallel computations; this endows it with a monotonic parallel composition
operator that facilitates piecewise and compositional development.

An example of a Circus process Timer is included in Fig. 2. It is part of the
FMI model that we discuss in more detail in the next section. The process
defines a state record State that introduces two variables: currentTime and
stepSize of type TIME (which models simulation time). It also includes a
local action Step.

The main action after the ‘•’ at the bottom prescribes the behaviour of the
process. In our example, it first initialises the state variables and then pro-
ceeds by calling Step. For initialisation, we refer to the variables ct and
hc, which are parameters of the process. Step is an external choice (opera-
tor @) that offers communication on the channels setT , updateSS , step and
end . These channels are declared (with their types) by the two channel
constructs above the process, the first introducing typed channels and the
second introducing untyped channels used for synchronisation only.

The channel events here are used by co-simulation (master) algorithms to
model the progression of time during co-simulation steps. The environment
can change currentTime and stepSize through communication on the chan-
nels setT and updateSS , respectively. In addition, when a step event occurs,
modelling a co-simulation step, both these values are communicated and
currentTime is increased by stepSize. Lastly, an end event may occur only
if currentTime = tN , where tN is a process parameter specifying the simu-
lation end time. The stop action that follows effectively refuses any further

11
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channel setT : TIME ; updateSS : TIME ; step : TIME × NZTIME ;
channel end ;
process Timer =̂ ct , hc, tN : TIME • begin
state State =̂ [currentTime, stepSize : TIME ]

Step =̂



(setT?t : t < tN −→ currentTime := t) @
(updateSS?ss −→ stepSize := ss) @
(step!currentTime!stepSize −→
currentTime := currentTime + stepSize) @

(currentTime = tN N end −→ stop)


; Step

• currentTime, stepSize := ct , hc ; Step
end

Figure 2: Timer process of the Circus FMI specification.

interaction. Otherwise, the Step action behaves recursively, repeating the
previously described behavioural pattern.

An important modelling paradigm in Circus is that processes can encapsu-
late particular isolated concerns. They do so by restricting the events and
communications that can occur in a system, namely when processes are com-
posed in parallel and have to synchronise on their channels. The general form
of parallel composition in Circus is P Jcs KQ , where cs provides the synchro-
nisation channels. When there is no synchronisation, we also write P 9 Q
for the interleaving of two processes.

To conclude the preliminary material, we briefly describe our theorem prover
Isabelle/UTP.

2.3 Isabelle/UTP

Isabelle/UTP is a theorem prover implemented within the Isabelle proof
assistant and logic of HOL. It supports proof in the context of Hoare and
He’s Unifying Theories of Programming (UTP) [20]. This is a general and
unifying framework to define programming language semantics, and we have
used it to encode Circus, amongst other languages.

The UTP adopts a predicative approach that represents computational mod-
els as relations over a theory-specific alphabet of variables. Those variables
determine the observable quantities and can, for instance, include the state

12
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variables of a program, traces of a reactive process, or trajectories of a hybrid
system. State spaces in Isabelle/UTP are modelled by record types (named
tuples). In Isabelle/UTP, we use the command alphabet to construct such
types. Below is an example that introduces three variables, x, y and z.

The alphabet command is similar to Isabelle/HOL’s built-in record com-
mand for introducing record types, but caters for some additional set-up in
the context of UTP. We give a detailed technical explanation of it in [15].
To give an example of a predicate encoding, let us consider a model of the
assignment z := x ∗ y . We encode it as follows in Isabelle/UTP.

The above corresponds to the hand-written relational predicate

x ′ = x ∧ y ′ = y ∧ z ′ = x ∗ y .

Primed variables are used to refer to the values of variables after a computa-
tion has finished, and plain (unprimed) variables refer to their values at the
start of a computation. Whereas the third conjunct specifies the new value
of z , we note that the first two conjuncts are necessary to ensure that x and
y retain their values.

The encoding illustrates a few salient points about Isabelle/UTP. First of
all, variables have to be prefixed with either & or $, depending on whether
they are used in the context of a plain predicate that does not allow primed
variables, or in the context of a relational predicate that does so, like the one
above. Secondly, operators (such as ‘=’ above) usually have to be subscripted
to delineate them from HOL operators. There are a few exceptions to this;
for instance, arithmetic operators can be written as in HOL.

Important to note is that the general view of the UTP modelling computa-
tions as predicates facilitates a contractual view. For instance, more gener-
ally, predicates of the form ok ∧ P ⇒ ok ′ ∧ Q specify total-correctness pro-
grams as familiar pre- and postcondition pairs (P ,Q). Here, ok and ok ′ are
special boolean variables that record whether a computation has started or
terminated. The refinement of specifications into programs is simply reverse
implication in this model, which we call the UTP theory of designs.

As part of INTO-CPS Deliverable D2.3b, we extend the notion of contract
to reactive contracts. These enable us to specify the observable interactions
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of a reactive process — that is, a processes that communicates with its en-
vironment. To write such contracts, we use the notation [P | R � Q ] where
P is the contract’s precondition, Q its postcondition, and R its pericondi-
tion. Whereas pre- and postcondition play similar roles as in sequential pro-
grams, the pericondition characterises nonterminating albeit nondivergent
behaviours, since reactive computations may not terminate and yet do useful
things by meaningfully communicating and interacting with their environ-
ment. The three predicates typically impose constraints on a trace variable
tr , recording histories of interactions, and refusal variable ref , recording the
willingness of a process to communicate on a channel.

We summarise by noting that Isabelle/UTP is a complex tool that, at present,
supports many of the theories described in the UTP book [20], as well as
those relevant to the models in this report. The earlier mentioned artefacts
in encoding UTP (vs HOL) predicates arise since we adopt a deep logical
representation of UTP predicates in which variables are first-class entities,
and operators from nominal logic can be formalised too.

This concludes our introduction of UTP and Isabelle/UTP. Next, we present
a general description of our analysis and verification technique for FMI.

14
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Channel Name Channel Type

fmi2Get FMI2COMP ×VAR ×VAL× FMI2ST
fmi2Set FMI2COMP ×VAR ×VAL× FMI2STF
fmi2DoStep FMI2COMP × TIME ×NZTIME × FMI2STF
fmi2Instantiate FMI2COMP × Bool
fmi2SetUpExperiment FMI2COMP × TIME × Bool × TIME × FMI2ST
fmi2EnterInitializationMode FMI2COMP × FMI2ST
fmi2ExitInitializationMode FMI2COMP × FMI2ST
fmi2GetBooleanStatusfmi2Terminated FMI2COMP × Bool × FMI2ST
fmi2GetMaxStepSize FMI2COMP × TIME × FMI2ST
fmi2Terminate FMI2COMP × FMI2ST
fmi2FreeInstance FMI2COMP × FMI2ST
fmi2GetFMUState FMI2COMP × FMUSTATE × FMI2ST
fmi2SetFMUState FMI2COMP × FMUSTATE × FMI2ST

Table 2: Channels that model FMI API functions.

3 The Circus Model of FMI

As explained in Section 2.1, the FMI standard [1] defines an API used by
master algorithms to communicate with simulators (FMUs). The FMI API
consists of C functions used by the master algorithm to drive and orchestrate
the co-simulation. We model these functions as Circus channels whose types
correspond to the input and output types of those functions. The respective
channels are summarised in Table 2.

To represent instances of FMUs, we use a given type FMI2COMP. In FMI,
these are pointers to FMU-specific structures that contain the information
needed to simulate them. Here, we use symbolic identifiers for them.

Variable names and values are represented by elements of the sets VAR and
VAL. We do not model the FMI type system separately, which includes
reals, integers, booleans, and strings; however, it is not difficult to cater for
such types in Circus, which has a strongly-typed setting that also supports
parametric and generic types. We hence pursue a shallow embedding of types
that harness typing in Circus (and HOL) to validate FMU types. This is a
simple and standard approach. Extensions to types are expected in future
versions of FMI, and we are well equipped to accommodate them.

The type FMI2ST contains flags of FMI type fmi2Status that are returned
by most of the API functions. We consider the values fmi2OK, fmi2Error,
and fmi2Fatal, which indicate, respectively, that all is well, the FMU en-
countered an error, and the computations are irreparable for all FMUs. The
extra flag fmi2Discard is also included in the super-type FMI2STF; it can
only be returned by fmi2Set and fmi2DoStep. In doing so, fmi2Set indi-
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cates that a status cannot be returned, and in the case of fmi2DoStep that a
smaller step size is required or the requested information cannot be returned.
We do not include fmi2Warning, used only for logging, and fmi2Pending,
used for asynchronous simulation steps.

Our Circus model only captures the discrete observations of the simulation
steps and their associated data exchanges. It is compatible with the view of
a co-simulation as a sequence of discrete steps that define points for synchro-
nisation and exchange of data. Modelling continuous behaviour takes place
within particular FMU models, and wrapper processes are used to extract
discrete simulation behaviours from those continuous models. Details of this
are the subject of INTO-CPS Deliverable D2.3d on linking models.

FMUSTATE contains values that represent internal states of an FMU. It
comprises all values (of parameters, inputs, buffers, and so on) needed to
continue a simulation at a desired point in time. The FMU state can, for
instance, be recorded by a master algorithm to support roll-back of simulation
steps that have already been carried out. We note that the concrete definition
of the FMUSTATE type depends on the particular FMU architectures.

The signature of the channels in Table 2 captures the FMI standard restric-
tions on the use of the API in our Circus model. It is, for instance, not
possible to call fmi2DoStep with a non-positive step size, as such would raise
a type error.

Unlike the FMI standard, which provides separate fmi2Get and fmi2Set
functions for different types, we only define a single pair of channels. Their
inconsistent use, however, results in deadlock in our model. While verification
techniques using model checking and proof can show the absence of deadlocks,
a proof of well-formedness of an FMI architecture, as described in INTO-
CPS Deliverable D2.3a, already ensures that FMU models behave in a type-
conformant manner, so that deadlock cannot occur due to this issue.

The API function fmi2Instantiate returns a pointer to a component, and
the null pointer if instantiation fails. Since we do not model pointers, we
use a boolean to cater for the possibility of failure. Lastly, the function
fmi2GetMaxStepSize is not part of the standard. It is typically used in MA
implementations to avoid roll-back, see the example in [10].

The overall structure of our model of a co-simulation is depicted in Fig. 3. The
visible channels by an environment are fmi2Get, fmi2Set, and fmi2DoStep.
The other channels are internal and enforce the expected control flow of
a master algorithm. They are used for communication between the pro-
cess MAlgorithm that models an MA and each process FMUInterface(i) that
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Cosimulation

MAlgorithm

FMIWrapper

FMUInterface(1) FMUInterface(2) FMUInterface(3)

endsimulation,fmi2∗ fmi2Set , fmi2Get , fmi2DoStep

Figure 3: High-level structure of a co-simulation model.

models an FMU. We call FMIWrapper the collection of FMU interfaces: they
execute independently and in parallel, and bridge between the models of
particular simulators and the Circus model of the complete co-simulation as
described here.

The control channel endsimulation is used to shutdown the simulation. Since
an FMU may fail, its termination may not be carried out gracefully, via
fmi2Terminate and fmi2FreeInstance. So, endsimulation is used to indi-
cate the end of the experiment, causing the termination of all Circus pro-
cesses that are part of the model.

In what follows, we describe our specifications of MAlgorithm (Section 3.1)
and FMUInterface (Section 3.2), which provide a correctness criterion for
these components. In Section 3.3, we describe how to construct models of
specific FMUs. We recall that mechanisation and instantiation of the model
with an example is the subject of Sections 4 and 5.

3.1 Master Algorithms

A master algorithm (MA) is a monolithic program that exchanges data be-
tween FMUs, determines the size of simulation steps, and handles any errors
raised by an FMU. In our model, we consider each of these aspects of a mas-
ter algorithm separately. The overall structure of the proposed MAlgorithm
process is described in Fig. 4. It provides a general characterisation of the
valid history of interactions of a master algorithm, as per the FMI 2.0 stan-
dard [1]. It does not commit to specific policies to define step sizes and error
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TimedInteraction

Timer endSimulation

step, end, SetT

updateSS

endsimulation

FMUStatesManager

endsimulation

fmi2.*

fmi2GetFMUState

fmi2SetFMUState

ErrorHandler

ErrorMonitor

Interaction

FatalErrorMonitor

ErrorManager

error

fmi2*
endsimulation

fmi2*, endsimulation

Figure 4: Structure of a model of a master algorithm.

handling in case of an API function returning fmi2Discard. The treatment
of fmi2Error and fmi2Fatal is restricted by the standard.

MAlgorithm has three main components described next. Firstly, the Circus
process TimedInteraction specifies the co-simulation steps and orchestration
of the FMUs. Secondly, FMUStatesManager controls access to the internal
state of the FMUs. And lastly, ErrorHandler monitors the occurrence of an
fmi2Error or fmi2Fatal from the API functions.

The TimedInteraction process has two components. The Timer process was
already presented in Section 2.2. It uses channels step and end to drive
the Interaction process, which performs the orchestration of the FMUs.
Interaction is the core process that restricts the order in which the API
functions can be used by an implementation of a master algorithm. We note
that algorithms with roll-backs or a variable step size can in particular make
use of the channels setT and updateSS exposed by the Timer process to
modify the current simulation time and step size. The Timer process can be
terminated by synchronisation on endsimulation raised by Interaction.

The complete Interaction process is presented in Fig. 5. The only action that
has been omitted is Step, which we discuss separately later on.
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process Interaction =̂ begin
state State == [ rinps : PORT 7→ VAL ]

Instantiation =̂ (; i : FMUs • fmi2Instantiate.i?sc −→ skip)
InstantiationMode =̂ (; (i , x , v) : parameters • fmi2Set !i !x !v?st −→ skip);; i : FMUs • fmi2SetUpExperiment !i !startTime!stopTimeDefined · · ·

· · ·!stopTime?st −→ skip

 ;

(; i : FMUs • fmi2EnterInitializationMode.i?st −→ skip)
InitializationMode =̂

(; ((i , x ), v) : initialValues • fmi2Set !i !x !v?st −→ skip);
(; i : FMUs • fmi2ExitInitializationMode!i?st −→ skip)

TakeOutputs =̂ rinps := ∅ ;

(; out : outputs • fmi2Get .(FMU out).(name out)?v?st −→
(; inp : pdg(out) • rinps := rinps ∪ {inp 7→ v})

DistributeInputs =̂

(; inp : inputs • fmi2Set .(FMU inp).(name inp)!rinps(inp)?st −→ skip)

Step =̂ t : TIME ; ss : NZTIME • · · · (See Fig. 6 on page 22)

slaveInitialized =̂



(end −→ Terminated) @

step?t?ss −→


TakeOutputs;
DistributeInputs;
Step(t , ss);
NextStep





NextStep =̂



(updateSS?d −→ NextStep)
@
(setT?t −→ NextStep)
@
(slaveInitialized)
@
(Terminated)


Terminated =̂

(; i : FMUs • fmi2Terminate.i?st −→ fmi2FreeInstance.i?st −→ skip);
endsimulation −→ skip

• Instantiation ; InstantiationMode ; InitializationMode ; slaveInitialized
end

Figure 5: Definition of the Interaction process.
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The main action of Interaction is the sequential composition of Instantiation,
InstantiationMode, InitializationMode and slaveInitialized . These four local
actions model the phases of a co-simulation [1, page 103]. The precise be-
haviour of these actions depends on the configuration of the FMUs. That
configuration is provided by several global constants which we refer to in the
process definition, and describe next in more detail.

Before proceeding, we introduce the notion of a port. A port is a pair of an
FMU identifier and variable, hence of type FMICOMP × VAR. To obtain
the FMU of a port, we use the function FMU; and to obtain its variable, we
use the function name. A configuration is then characterised by:

1. a sequence of FMU identifiers FMUs of type seq(FMI 2COMP);

2. a sequence parameters of type seq(FMI2COMP × VAR × VAL) that
provides the parameters of FMUs and their values;

3. a sequence inputs of type seq(PORT) of input ports;

4. a sequence outputs of type seq(PORT) of output ports;

5. a sequence initialValues of type seq(PORT × VAL) that specifies an
initial value for each input;

6. a port dependency graph [10] pdg of type PORT 7→P(PORT) that maps
outputs ports to their connected input ports; and

7. a function idd of type PORT 7→ P(PORT) that records direct depen-
dencies between inputs and outputs inside FMUs.

The idd function is not relevant for the Circus model but important to check
well-formedness of an architecture. Namely, the union of both graphs pdg
and idd must be acyclic to show the absence of algebraic loops. Details of
this are in INTO-CPS Deliverable D2.3a.

The first action Instantiation (see Fig. 5) instantiates the FMUs. It is an
iterated sequence of actions fmi2Instantiate.i?sc −→ skip, where i ranges
over FMUs and skip is the action that does nothing and terminates.

As per the FMI standard [1], it is valid to instantiate the FMUs in any
order, and so we could potentially have the events fmi2Instantiate.i?sc in
interleaving. Accommodating this flexibility is a simple change from an it-
erated sequence (; i : FMUs • . . .) to an iterated interleaving of actions
(||| i : FMUs • . . .). Our model captures good design practice: handling all
FMUs in a specific order, which also facilitates model checking. That order
is determined by the user in setting the value of FMUs (1).
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InstantiationMode and InitializationMode perform the setting of parameters
and initial values of inputs before calling the API function fmi2ExitIni-
tializationMode that signals the start of the next phase. We recapture the
definition of InitializationMode from Fig. 5 below.

InitializationMode =̂

(; ((i , x ), v) : initialValues • fmi2Set !i !x !v?st −→ skip);
(; i : FMUs • fmi2ExitInitializationMode!i?st −→ skip)

As with the Instantiation action, we can easily generalise the model to allow
for an interleaving of the events involved.

The local action slaveInitialized , recaptured below, corresponds to the main
phase of the co-simulation; it is driven by the Timer process.

slaveInitialized =̂

(end −→ Terminated) @

step?t?ss −→


TakeOutputs ;
DistributeInputs ;
Step(t , ss);
NextStep




Two interactions are possible. Firstly, synchronisation on the channel end
initiates termination of a co-simulation. Termination is carried out by the
local action Terminated , which raises fmi2Terminated and fmi2FreeInstance
events for all of FMUs, in sequence (see Fig. 5 for its definition).

The step.t .ss event is raised by the Timer process. Its purpose is to perform
the next co-simulation step. Such consists of a sequence of three conceptual
tasks: (a) recording the outputs of all FMUs (TakeOutputs); (b) forward-
ing their values to their connected inputs (DistributeInputs); and (c) telling
FMUs to compute the next simulation step result (Step). The purpose of
the fourth action NextStep is essentially to recurse back into slaveInitialized ,
albeit making additional interactions available, to set the current time (setT )
and update the simulation step size (updateSS ).

Similarly to that of InitializationMode, the definition of TakeOutputs (Fig. 5)
uses an iterated sequence, now over outputs . Once the value v of an output
port out is obtained, we store it inside the rinps state component of the
process. More precisely, what we record is a tuple (inp, out) for each input inp
connected to the output out . Those inputs are obtained by pdg(out) as pdg
captures the FMI diagram structure. Outputs are read using communications
on fmi2Get , corresponding to calls of the fmi2Get API function.
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process Interaction =̂ begin
state State == [ rinps : PORT 7→VAL ]

· · ·

Step =̂ t : TIME ; ss : NZTIME • ; i : dom(FMUs) •

if i = 0−→ (stepToComplete −→ fmi2DoStep.FMUs(1).t .ss?st −→ skip)
8i < length(FMUs)−→

µX •


(fmi2GetBooleanStatusfmi2Terminated .FMUs(i − 1)?b?st −→X )

@
(fmi2GetMaxStepSize.FMUs(i − 1)?t?st −→X ))

@
(fmi2DoStep.FMUs(i).t .ss?st −→ skip)


8i = length(FMUs)−→

µX •


(fmi2GetBooleanStatusfmi2Terminated .FMUs(i − 1)?b?st −→X )

@
(fmi2GetMaxStepSize.FMUs(i − 1)?t?st −→X ))

@
(stepAnalysed −→ skip)


fi


· · ·
end

Figure 6: Definition of the Step action.

DistributeInputs uses rinps to set the inputs of the FMUs using the fmi2Set
channel. Step proceeds with a call to fmi2DoStep; its definition (omit-
ted in Fig. 5) is included in Fig. 6. Two further control events are used
here: stepToComplete to signal that a step was initiated, and stepAnalysed
to signal that a step has been completed. As before, FMUs are processed in
the order prescribed by the FMUs sequence.

After the first FMU has been stepped, we enable interactions that corre-
spond to API calls on fmi2GetBooleanStatusfmi2Terminated and fmi2-
GetMaxStepSize. The first one can be invoked after fmi2DoStep returns
fmi2Discard, namely to check whether a slave FMU wants to terminate the
co-simulation. The second one yields the maximum step size an FMU is
willing to partake in.

While Interaction is the heart of our model of an MA, we next consider
processes dealing with FMU states management and error handling.
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process FMUStatesManager =̂ i : FMI 2COMP • begin
AllowAGet =̂ fmi2GetFMUState.i?s?st −→ AllowsGetsAndSets(s)
AllowsGetsAndSets =̂ s : FMUSTATE •

fmi2GetFMUState.i?t?st −→ AllowsGetsAndSets(t)
@
fmi2SetFMUState.i !s?st −→ AllowsGetsAndSets(s)

• fmi2Instantiate.i?b −→ AllowAGet
end

Figure 7: Model of FMUStateManager

FMUStatesManager controls the use of the functions fmi2GetFMUState and
fmi2SetFMUState for each of the FMUs. It is an interleaving of instances
of the process FMUStateManager(i) in Fig. 7 for all i ∈ FMUs . Once an
FMU is instantiated, it is then possible to retrieve its state. After that, both
gets and sets are allowed. The actual values of the state are defined in the
FMUs, but recorded in the master algorithm via fmi2GetFMUState for later
use with fmi2SetFMUState as defined in FMUStateManager(i).

The ErrorHandler process contains two components: monitors for fmi2Error
and fmi2Fatal . If any of the API functions returns an error, they signal that
to the ErrorManager via a channel error . Upon an error, the ErrorManager
interrupts the main flow of execution. In the case of an fmi2Fatal error, the
simulation is stopped via endsimulation. In the case of an fmi2Error , a call
to fmi2FreeInstance is allowed, before the simulation is terminated.

3.2 FMU Interfaces

The model of an FMU is simpler than the MA. It is captured by the process
FMUInterface declared below, which takes the FMU identifier as a param-
eter. This process captures the control flow of an FMU, specifying, at each
stage, the API functions to which it can respond. Unsurprisingly, it has
some of the restrictions of a master algorithm, but it is less restrictive in
that it captures just the expected capabilities of an FMU. Its purpose hence
not to enforce all constraints of the standard but provide a guideline for
implementations.

processFMUInterface =̂ i : FMUs • begin
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state State == [status : B]
· · ·

First of all, we introduce a state component status to record the result of the
last call to an API function.

Upon start-up of the co-simulation, the only API function that is available is
fmi2Instantiate. The simple action below specifies this behaviour.

Instantiation =̂ fmi2Instantiate.i?b−→
b N status := fmi2OK ; Instantiated
@
¬ b N status := fmi2Fatal ; RUN(FMUAPI(i))


· · ·

In this case, the state component status is updated according to the boolean b
returned by fmi2Instantiate. If the instantiation is successful, the behaviour
is described by Instantiated , sketched below; otherwise, it is unrestricted and
specified by RUN(FMUAPI(i)), which allows the occurrence of any sequence
of API functions, capturing that the FMU does not have to make any guar-
antees on its subsequent behaviour when instantiation fails.

Instantiated =̂

status = fmi2Fatal N RUN(FMUAPI(i)
@
status 6∈ {fmi2Error , fmi2Fatal}N

fmi2Get .i?n?v?st −→ status := st ; Instantiated
@
fmi2DoStep.i?t?ss?st −→ status := st ; Instantiated
@
· · ·


@
status = fmi2Error N fmi2FreeInstance!i?st −→ . . .

• Instantiation

Again, if there is a fatal error, the behaviour is unrestricted. If there is no er-
ror, all functions except fmi2Instantiate are available, though we do not re-
strict their use. Finally, if there is a non-fatal error, only fmi2FreeInstance
is possible. The main action here executes the local action Instantation.
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While a pattern of calls is defined by a master algorithm, so that, for example,
all outputs are obtained before the inputs are distributed, the FMU is passive
and does not impose such a policy on its use. So, the various actions enforce
precisely the restrictions in the FMI standard [1, p.105].

Although it is possible to specify a more restricted behaviour for FMUs,
such a specification rules out robust FMU implementations that handle calls
to the API functions that do not necessarily follow the strict pattern of a
co-simulation. Such patterns are described in more detail in INTO-CPS
Deliverable D2.2c.

3.3 Specific FMU Models

In the previous section, we have presented a general model for an FMU. The
particular model of an FMU depends, of course, on its functionality, and
must conform to a (trace) refinement of our general model. This can be
proved by refinement laws for Circus [7].

Whereas the particular structure of the concrete FMU model is implemen-
tation dependent, we can generate a sketch of the model of an FMU using
information about its structure: that is, its parameters paramsi , inputs cinpsi ,
outputs coutsi , and internal state components statei . FMU models in par-
ticular languages, such as Modelica and VDM-RT can be transformed into
complete formal models, as explained in INTO-CPS Deliverable D2.3d.

The technique that we describe in INTO-CPS Deliverable D2.3a observes
that models of FMUs can be expressed as relations on the inputs and outputs,
as well as the FMU’s internal state. This is also in agreement with Broman’s
FMI semantics [10], which uses functions in place of relations, as he restricts
his attention to deterministic models only.

With the above information, we can lift a relational FMU model into a Circus
process corresponding to its reactive model. Fig. 8 illustrates the shape of the
resulting process. Its state includes paramsi , cinpsi , coutsi and statei which
are fixed for i ∈ FMUs, besides the current and simulation end time.

Its structure is similar to that of the Interaction process used to model a
master algorithm. In all cases, the interactions signal success (fmi2OK ). If
an FMU makes assumptions about its inputs, the possibility of error can be
modelled as well. For example, Instantiation indicates success, but to explore
the possibility of failure, we can define it as fmi2Instantiate.i?b −→ skip,
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process FMUSketch =̂ i : FMI2COMP • begin
state State ==

[cparamsi , cinpsi , coutsi , cstatei ; currentTime, endTime : TIME ]

Instantiation =̂ fmi2Instantiate.i !true −→ skip
InstantiationMode =̂

fmi2Set .i .pi?v !fmi2OK −→ cparamsi [pi ] := v ; InstantiationMode
@
fmi2SetUpExperiment .i?t0!true?tN !fmi2OK −→currentTime, endTime := t0, tN ;

fmi2EnterInitializationMode.i !fmi2OK −→ skip




InitializationMode =̂

fmi2Set .i .inpi?v !fmi2OK −→ cinpsi := v ; InitializationMode
@
fmi2ExitInitializationMode.i !fmi2OK −→ CalculateStep


slaveInitialized =̂

µX •



fmi2Get .i .outi !coutsi [outi ]!fmi2OK −→ skip
@
fmi2Set .i .inpi?v .fmi2OK −→ cinpsi [inpi ] := v
@
fmi2DoStep.i?t?ss !fmi2OK −→ UpdateState)


; X

•
Instantiation ; InstantiationMode ; InitializationMode;
slaveInitialized

4
fmi2Terminate.i !fmi2OK −→ fmi2FreeInstance.i !fmi2OK −→ stop

end

Figure 8: Sketch of a model for a specific FMU.
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which also admits the interaction fmi2Instantiate.i .false−→skip, in addition
to fmi2Instantiate.i .true −→ skip.

The action CalculateStep is obtained from the aforementioned relational
FMU model. It is this action that specifies the functionality of the FMU. It
corresponds to a computation that reads the values of cparami , cinpsi and
cstatei , and sets the values of coutsi . It may also refer to the variables t and
ss , locally introduced by the fmi2DoStep communication and corresponding
to the current time and step size.

If the FMU supports retrieval and update of its state, we need to add the fol-
lowing choices to InstantiationMode, InitializationMode, and slaveInitialized .

· · ·
@
fmi2GetFMUState.i ! θ State!fmi2OK −→ · · ·
@
fmi2SetFMUState.i?s?st −→ θ State := s ; · · ·

Via fmi2GetFMUState, it outputs the whole state record, that is, θ State,
and via fmi2SetFMUState, we can update it.

If the state, either via setting of parameters and input or via an update, may
become invalid, we can flag fmi2Fatal and deadlock.

3.4 Final Considerations

We have presented a Circus model of FMI with focus on the behavioural and
reactive aspects of master algorithms and FMUs. Our model enables us first
to verify that implementations of master algorithms are conformant with the
restrictions imposed by the FMI standard [1]. Secondly, it can be used to
construct a concrete model of a given co-simulation, based on the relational
(or, for deterministic FMUs functional) description of FMU behaviour. Such
a concrete model allows us to prove properties of the particular interactions
that can be observed, using the FMI API. Most interestingly, this may use
the fmi2Get function to probe outputs during co-simulation step.

As already mentioned, our FMI Circus model complements the relational
FMI model in INTO-CPS Deliverable D2.3a. Whereas the relational FMI
model is most useful for proving universal and safety properties of co-simu-
lations, the reactive model facilitates the design of master algorithms (which
are only implicit in the relational model). It thus subsumes the relational
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model, and, as explained in the previous section, we can construct specific
FMUs as Circus processes from their relational characterisations.

In the next section, we report on our mechanisation of the Circus FMI model
in the theorem prover Isabelle/UTP.

4 FMI Mechanisation

In this section, we present our mechanisation of the FMI Circus model. For
this, we first discuss our embedding of Circus into Isabelle/UTP in Sec-
tion 4.1. In Section 4.2, we explain how we formalise concrete FMI architec-
tures. Section 4.3 then reports on our encoding of the Circus processes ex-
plained in the previous section. In Section 4.4, we address reasoning support.
We conclude the section with some final considerations in Section 4.5.

4.1 Encoding of Circus

Semantically, Circus actions can be represented by stateful CSP processes,
which we have previously integrated into Isabelle/UTP [15]. We can directly
use our mechanised theory of CSP to encode Circus actions and processes.
We next give some details on how this is done.

Circus processes are a special kind of action where the state alphabet is
empty and thus corresponds to the degenerate type unit containing only a
single value. This reflects that process state is encapsulated and internal to
the process, so that it cannot be seen by an environment.

The key operator to define the semantics of a process is the following:

The function Process takes as its argument the main action of a process over
some arbitrary state ’σ, and yields an action over the unit state unit. The
state hiding is carried out by the state operator, which changes the alphabet
of a UTP action predicate to unit. This is achieved by first substituting the
state components by some default initial values, and afterwards existentially
quantifying over them. We note that the substitution step has no effect if
the process initialises its state, which typically is the case.
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Our Circus embedding also provides a treatment of local actions. Those
are encoded by a nesting of Isabelle/HOL let expressions. We hence make
use of the built-in Let function of HOL for our definition of the LocalAction
constructor, as it is shown below.

Generally, the signature of the Let function is ’a ⇒ (’a ⇒ ’b) ⇒ ’b for
arbitrary types ’a and ’b. The constant to be locally bound (of type ’a)
is supplied by the first argument. The second argument is a functional ab-
straction (λ x • A) in which A can refer to the local constant via the bound
variable x . The semantic definition of the Let function is hence applying its
second (function) argument to the value provided by the first.

For convenience, Isabelle/HOL provides a custom notation for terms of the
form Let c (λ x • t): they are parsed and displayed as let x = c in t , so that
the user does not see the application of the Let function. We use the same
technique to support the precise syntax of Circus for local actions.

A third issue that begs consideration is support for recursive actions. Here,
it proves sufficient for our models to support single-recursive actions only.
For this, we utilise the following semantic constructor function.

The function RecAction is parametrised by a function (λX • (A(X ),B(X )))
that maps an action X to a pair of actions (A(X ),B(X )). The first element
A(X ) of the pair determines the recursive shape of the action. The second
element B(X ) allows the recursive action to be locally bound in another
(successor) action. An example of this is the Timer process in Fig. 2 (p. 12),
where the recursive Step action is locally bound within the main action.

We note that the µC X • F (X ) operator is part of the CSP embedding of
Isabelle/UTP and constructs the weakest fix-point of a CSP predicate.

The three semantic constructors above enable us to define concrete Circus
processes in our embedding. To write such processes, we, however, do not
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want to use those constructors directly, as this would result in difficult to
read mechanised models. Instead we define custom Isabelle syntax and term
translations that mirror the process notation we use in hand-written Circus.
By way of an example, we consider the process below which can be written
directly as is for analysis by our tool. It introduces two local actions A and B,
with Act1 and Act2 being (globally) defined elsewhere. Action A is recursive,
while B invokes A. The main action Main refers to both, A and B.

The semantic representation of the process above is as follows:

Our parser and pretty-printer hides the latter completely from the user, and
this makes our embedding convenient to use by non-Isabelle experts.

A last point of interest is how we deal with process and action parameters.
Process parameters are supported easily by translating them into functional
abstractions: that is, we model parametrised processes by functions from the
argument type (or types, if there is more than one) to actions. We extended
our parser to support the Circus syntax for parametric processes, too.

Parametrised actions, where they occur, can be rewritten into plain (non-
parametric) actions. This is using local variables as a means to pass pa-
rameters as usual in refinement calculi. This solution works well even for
non-tail-recursive actions since our model of local variables in Isabelle/UTP
supports scoping: it restores the values of local variables upon exiting of their
scopes.

Below is an example of a Circus process that is parametrised. It also illus-
trates a further feature of your syntax — the explicit provision of the state
type of a process, via the optional state keyword:
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The parameter x here is of type nat, with action A referring to it. The process
state is defined as the (HOL) type my state, a record type whose definition
we omit. We recall that in Isabelle/UTP, state record types are introduced
using the alphabet rather than record command.

If a state type is not explicitly provided, Isabelle infers it through type check-
ing. We note that unlike in Circus, we cannot impose constraints on the
process state, namely by way of a State schema. Permissible states are hence
all possible values of the underlying HOL type.

We next discuss the encoding of Circus operators and channels.

Circus operators Most operators required for Circus are already available
through our mechanisation of the theory of CSP [17]. Hence, we can use them
out-of-the-box. Constructs that we had to additionally define are iterated se-
quence, iterated interleaving, and iterated parallel composition. They are all
operators that fold the underlying binary CSP operator over a list of actions.
We provide examples of using those operators in the next section.

Circus channels In general, channels are represented by a function from
the channel type ’a to the underlying event type ’ϕ. Hence, the type of a
channel is ’a ⇒ ’ϕ in HOL, and events corresponding to communications
over the channel are those in the range of that function.

When we consider multiple channels, it is important that the ranges of the
channel functions are disjoint and partition the event type. It is hence appro-
priate to introduce event types via datatype declarations whose constructors
correspond to the declared channels. A downside of this approach is that all
channels of a Circus model have to be declared at once, since datatypes are
not extendible in the same way that, for instance, record types are.

The above is not entirely satisfactory, namely since we like to separate parts of
our FMI Circus model into a fixed framework model that can be included as
is and does not need modification and recompilation when new channels are
introduced by the user. We next present our solution to this problem.
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In general, it turns out that we require an analogue mechanism of extensi-
ble record types for datatypes. So, rather than using datatypes for events
directly, we use sum types ’ϕ + ’ext where ’ϕ corresponds to the channels
introduced by a particular Circus process, and ’ext is a ‘hole’ (extension
slot) that can be filled later on when additional channels are introduced by
a subsequent process.

To give an example, we consider the channels of the Timer process in Fig. 2
(p. 12). The following Isabelle datatype introduces constructor functions for
those channels and a corresponding event type timer event.

We note that the datatype is parametric in the notion of time that we like
to adopt (type parameter ’τ), which gives added generality to our Circus
encoding of the timer. We return to this point in the next section.

Importantly, we do not use the timer event type directly in Circus processes
but wrap it into a sum type with an open slot for extension. This is achieved
by a prefixing operator whose Isabelle definition is presented below. It is a
function applied to the type constructors of the timer event datatype.

The resulting event type after applying the prefixing operator is the sum of
three event types: one for the FMI API (fmi event), one for the timer process
events (timer event), and an open extension type (’ext). The reason for
inclusion of fmi event is that the Timer process itself extends channels that
are introduced prior to its declaration, namely for the FMI API.

For application of the timer prefix operator, we introduce the syntax tm:· · ·.
This means, instead of writing setT, updateSS, and so on, we now write
tm:setT, tm:updateSS, and so on, which carries out the prefixing and wrap-
ping of the process event type into a suitable sum type.

Our approach provides an elegant solution for the incremental introduction
of channel sets in mechanised Circus models, and recovers some modularity
here. It also makes a case for a future version of Isabelle to incorporate
extensible datatypes into the proof system.
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Figure 9: Isabelle/HOL mechanisation of an FMI architecture.

This concludes the description our Circus embedding into Isabelle/UTP. Our
mechanised notation is almost identical to hand-written Circus, which sim-
plifies its use by Isabelle non-experts. For proof support, we have included
additional laws to reason about CSP processes that encapsulate their state
(state construct above). We also have introduced a simplification set to un-
fold all definitions of the Circus process semantics, which is useful in proofs.
The proof tactics for CSP are, in this way, directly applicable to Circus.

4.2 Model Configuration

Fig. 9 illustrates how we encode FMI configurations (as introduced in Sec-
tion 3.1) in Isabelle/HOL. We represent FMUs identifiers as elements of a
given type FMI2COMP, which we introduce abstractly by virtue of a HOL type
declaration. Concrete identifiers for FMUs are then declared using an Is-
abelle axiomatization, along with assumptions that they are distinct — an
example of this follows in Section 5.

The abstract constant FMUs in Fig. 9 yields a sequence of all FMUs of the
co-simulation that determines the order in which FMUs are processed by
master algorithms. Sequences in HOL are represented by objects of type
’a list, where ’a is the underlying element type. For well-formedness, the
FMUs sequence has to be injective and include all values of the FMI2COMP type,
so that our iterative operators process all FMUs. Proving this is the concern
of the technique presented in INTO-CPS Deliverable D2.3a.

Ports are represented by pairs of type FMI2COMP × VAR, where VAR encodes
variables as name/type pairs. We reuse the VAR (and VAL) types from the ax-
iomatic value model proposed in [30], as this renders our model inherently ex-
tensible to support arbitrary HOL types for ports. An Isabelle type synonym
port is declared. Thus, inputs and outputs are of type port list.
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Model parameters and initial values are recorded by the parameter and
initialValues lists, with the following caveats:

1. For fmu ::FMI2COMP and v ::VAR, there is at most one element (fmu, v , x )
in the range of the sequence parameters;

2. For each input port (fmu, v) in the range of inputs, there is precisely
one element (fmu, v , x ) in initialValues.

In addition, we require that the value x (of type VAL) agrees with the type of
the variable v . Like the earlier constraints, (1) and (2) above can be checked
automatically within the Isabelle proof system; INTO-CPS Deliverable D2.3a
explains how we automate those proofs with tactics.

We lastly look at the encoding of the constant pdg, which defines the control
diagram of the co-simulation architecture. As explained in Section 3.1, con-
nections between FMUs are encoded by the function pdg, which maps output
ports to their connected input ports. In Isabelle, we encode it as a function
from port to port list. We use a list rather than set in order to easily iter-
ate over the result of applying the function to some output, as required by the
TakeOuputs action of the Interaction process in Fig. 5 (p. 19); our list-based
encoding moreover ensures finiteness of the connected inputs.

We conclude by noting that the concrete values for the constants in Fig. 9
can be inferred from the INTO-SysML model of a co-simulation, that is, its
Architecture Structure Diagram (ASD) and Connection Diagram (CD). Fun-
damentally, this process can be automated. Assuming that we have shown
well-formedness of the mechanised FMI architecture, using the technique in
INTO-CPS Deliverable D2.3a, the next section examines the encoding of the
underlying Circus processes.

4.3 Circus Processes

A mechanised version of the Timer process (Fig. 2 on page 12) is provided
in Fig. 10. Its state is given by the HOL type time state and introduced by
the following alphabet declaration.

The alphabet command is part of Isabelle/UTP and an extension of Isabelle’s
record command for introducing record types. An additional behaviour of
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Figure 10: Mechanised Timer process in Isabelle/UTP.

alphabetis to define lenses for the state components, so that they can be ref-
erenced within Isabelle/UTP predicates and relations; details of this are tech-
nical and can be found in INTO-CPS Deliverable D2.3b, as well as [15].

Two state components are introduced: currentTime and stepSize. An added
feature of the mechanised model is that we represent time abstractly by virtue
of an arbitrary type ’τ that fulfils certain type-class membership constraints.
The constructs TIME( ) and NZTIME( ) above impose those constraints on ’τ .
They guarantee, for instance, that there exists a linear order on the elements
of the time domain. They also require the existence of various arithmetic
operators like +, −, ∗, and so on, with common algebraic properties. Natural,
rational and real numbers are valid time domains, for instance.

We observe that the Isabelle encoding of the Timer process is a nearly di-
rect image of the respective Circus process. There are only a few technical
artefacts that we have to remember.

Firstly, when referring state components in Circus operators, it is usually nec-
essary to decorate them, depending whether the underlying term is a plain
predicate or relation. For instance, the occurrence of currentTime within
output synchronisations requires an & prefix since the expression is over
unprimed variables only. The same applies to the right-hand side of an as-
signment. Secondly, where HOL values and terms are referenced, we require
the double-angular brackets « ». This emphasises the difference between
HOL terms and UTP terms, as the brackets here act as a coercion from the
former to the latter.

As can be seen, events are prefixed by ‘tm:’, which, as explained in the
previous section, is necessary to facilitate later extension of the action event
type when additional channels have to be declared. Circus constructs are
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Figure 11: Encoded InstantiationMode action of the Interaction process.

subscripted to delineate to what UTP theory they belong. For instance,
equality t1 =u t2 is subscripted with a ‘u’ since this operator is valid in all
theories. Fixed-point and assignment, on the other hand, are subscripted
with a ‘C’ as we use versions that are defined and valid only in the theory
of CSP and Circus. The subscripting avoids ambiguities between UTP and
HOL operators.

A more elaborate process is the Interaction process in Fig. 5 (p. 19), cap-
turing the interactions of a master algorithm. Fig. 11 recaptures the encod-
ing of the local action InstantiationMode of that process. We observe the
use of iterated sequence to set the parameters of FMUs (fmi2Set), set up
the co-simulation experiment (fmi2SetUpExperiment), and, lastly, enter ini-
tialization mode (fmi2EnterInitializationMode). In Fig. 11, startTime,
stopTimeDefined and stopTime are global deferred constants of the model
that can be given concrete values by particular co-simulation instances. The
use of iterated Circus operators is very common in our model and, as men-
tioned before, facilitated by the use of lists rather than sets.

The encoding of actions for reading and recording outputs of FMUs, and
distributing them between co-simulation steps is in Fig. 12. We make use of
the state components rinps of the process here, whose mechanised type is
a HOL partial function from port to VAL. Isabelle/UTP provides a generic
update operator that enables us to set and access the elements of various
map-like structures, including partial functions. Less the subscripted paren-
theses ( )a, which invoke the generic application and update operator of
Isabelle/UTP rather than HOL, this makes the encoding look almost exactly
like our mathematical formalisation.

We recall that pdg in Fig. 12 is a global constant that determines the port-
dependency relationships between the input and output ports of FMUs. The
encoding of the Interaction process is, however, independent of the particular
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Figure 12: TakeOutputs and DistributeInputs actions.

value of pdg, which is usually provided by a concrete model of a co-simulation,
including master algorithm and FMUs.

An issue that we faced in the encoding of the Interaction process was the
presence of mutual recursion in our earlier CSP model in INTO-CPS Deliv-
erable D2.2b. This was between the slaveInitialized and NextStep local
actions. We managed to break the recursion by rewriting of the model while
preserving its semantics. Such rewrites can be validated with Circus laws
and provide additional confidence that we are not changing the semantics.
A similar issue arose in the encoding of the ErrorMonitor action, where we
broke the recursion by encoding one of the local actions as a higher-order
HOL function.

To summarise, we use our embedding of Circus to encode the reactive FMI
semantic model in Section 3. While in some cases we rewrite the model
to fit our restrictions that only single recursion and parameterless actions
are supported, such can be subject to verification in Isabelle/HOL, too. A
key achievement is that our mechanised model is very close to the syntax
of the original Circus model and more general in supporting arbitrary time
domains, such as, discrete, continuous and super-dense time.

4.4 Reasoning Support

To reason about Circus models, three complementary strategies are avail-
able. The first one is via algebraic refinement laws. Such laws can be proved
within the Isabelle/UTP CSP semantics and enable us to transform mecha-
nised Circus models in a piecewise and stepwise manner. For proofs of the
laws, we have implemented automatic tactics that transform a conjecture
about processes and actions within Isabelle/UTP into a pure HOL predi-
cate, eliminating all artefacts of our UTP predicate models, such as lenses
and state spaces.
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Those tactics are called rel simp, rel auto and rel blast and are defined
in a separate theory of Isabelle/UTP. They use principles of transfer [21] and
interpretation [14]. Many refinement laws about CSP can be proved in this
manner, including basic laws for communication prefixes, external choice,
recursion and parallel composition.

Once a refinement law is proved, it can be used to rewrite part of a Circus
model. A refinement of the overall Circus specification in which the part
is embedded is obtained exploiting monotonicity of the language constructs.
We have proved various monotonicity laws. The approach described in [31]
can be used to automate their application, using a tactic language as well as
window inference techniques.

We note that refinement is also applicable to prove, for instance, that a trace
tr = 〈e1, e2, · · · , en〉 is exhibited by a Circus model. This is by turning the
trace into a process T =̂ e1 −→ e2 −→ · · · −→ en and then composing that
process in parallel with the Circus model, synchronising on all events in the
trace. The parallel composition has to be refined by T itself, which can be
checed using step laws for communication prefixes.

A second strategy is using a contractual view of reactive computations. As
explained in Section 2.3, CSP processes can be characterised by way of re-
active contracts, specifying a precondition, pericondition and postcondition.
As formalised by Theorem 5.6 in INTO-CPS Deliverable D2.3b, a refine-
ment S v T of reactive computations can be reduced to a proof of three
predicates involving pre( ), peri( ), post( ) of S and T :

S v T provided that


pre(S )⇒ pre(T ) ∧
pre(S ) ∧ peri(T )⇒ peri(S ) ∧
pre(S ) ∧ post(T )⇒ post(S )


Those predicates are easier to prove than the initial refinement conjecture on
the left-hand side, and we have proved several distribution laws that enable
us to evaluate pre( ), peri( ) and post( ) for arbitrary action terms, as well
as the process semantic constructors.

The contractual techniques allows us to specify, for instance, properties of the
permissible histories of interactions of a Circus process, and then show that a
concrete process exhibits those histories. It is a more powerful technique for
automation than the aforementioned rel [simp|auto|blast] tactics.

A third strategy is to translate the Circus model into CSP and use a model
checking technique, as described in the previous deliverable INTO-CPS De-
liverable D2.2d. This works well as long as state spaces are fairly compact.
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On the other hand, the proof-based approaches work irrespective of the size
of the state-space, which we abstract from in the refinement laws and reactive
contracts.

4.5 Final Considerations

In this section, we have discussed both our mechanisation of Circus in Is-
abelle/UTP and the encoding of the FMI Circus semantics. These are key
in developing reasoning techniques for FMI co-simulation models. Very im-
portantly, we have also related our work here to the modelling and proof
approach described in INTO-CPS Deliverable D2.3a. The Circus model can
be seen as an extension of the abstract model presented there, capturing faith-
fully the FMI API and restrictions on FMUs and master algorithms.

Our reasoning concern, however, is different here from that in INTO-CPS
Deliverable D2.3a — it is not about showing properties of FMUs but refining
their abstract models into implementations from which we can, for instance,
generate code. This is achieved by the reasoning approaches we summarised;
similar techniques have already been used in other areas, involving, for in-
stance, implementations of control laws [6].

In the next section, we examine a case study and its encoding using the
mechanised model we described in this section.
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Figure 13: Railway interlocking layout of our case study.

5 Instantiation and Reasoning

In this section, we present our approach to using the FMI Circus model
and its mechanisation. We first describe a railways case study as a running
example in Section 5.1. Section 5.2 considers instantiation of the architec-
ture, and Section 5.3 examines models of FMUs. In Section 5.4, we discuss
Circus processes of the reactive model, and, lastly, in Section 5.5 report on
analysis and proof techniques. We conclude in Section 5.6 with a few final
considerations.

We note that the case study description (Section 5.1) is a summary of the
case study used in INTO-CPS Deliverable D2.3a. Also, the instantiation of
the FMI architecture (Section 5.2) is similar, although it is done for a comple-
mentary reason here, being an integral part of the Circus model. Whereas
INTO-CPS Deliverable D2.3a considers abstract models of FMUs as rela-
tional computations, we here consider their refinement into concrete models,
which is the contribution of Section 5.3. Lastly, Section 5.4 extends on our
previous work in INTO-CPS Deliverable D2.2d by illustrating a concrete
instantiation of a master algorithm and co-simulation, and our reasoning
strategies in Section 5.5 are novel contributions, too.

5.1 A Railways Case Study

Our case study here considers part of a tramway station whose railway layout
is presented in the diagram of Fig. 13. Trains enter the interlocking at the
points V1, Q2 and Q3, and then issue a telecommand to request a route
through the interlocking. Telecommand stations are denoted by the three
green dots, and the possible routes for trains are V1→Q1, V1→Q2, V1→
Q3, Q2→V2 and Q3→V2. We consider co-simulation scenarios where two
trains arrive at different entry points and request a route.
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Access to the interlocking is controlled by three signals S11, S28 and S48.
They are initially red, causing arriving trains to stop and wait on the tracks
CDV 11, CDV Q2 and CDV Q3. When a telecommand is issued by one of
the trains, the control logic of the interlocking allocates a free route, if avail-
able, sets railway switches accordingly, and then gives the respective train a
green light to go ahead. Two trains are allowed to proceed simultaneously
only if their routes do not intersect. This guarantees that no collision can
occur due to more than one train passing through the same track segment.
The correct setting of railway switches (SW1-5) additionally ensures that
trains move on their allotted paths and do not derail.

The interlocking software controller is in essence an automaton implemented
as a cyclic control loop in VDM-RT. The inputs of the interlocking controller
are boolean vectors for the CDV and telecommand. The CDV (chemin de
voie in French) is a bit vector of size 13 whose elements register the presence
of a train on a particular track segment. Telecommand requests are likewise
encoded by a bit vector TC (of size 4), in which each bit roughly corresponds
to a particular route request. Since the FMI 2.0 standard [1] does not support
vectors (of any type), we encode them as integer numbers when they are
transmitted as data between FMU components in our model.

Outputs (actuators) of the interlocking are signals and track point switches
that control the paths of trains as they move through the interlocking. We
note that the interlocking controller does not see the TC of each train indi-
vidually, but the combined signal from all three telecommand stations. The
same is true for the CDV, which is a combined signal of all tracks. Next, we
describe our FMI co-simulation model of this system.

5.1.1 System Overview

A high-level view of the system as a co-simulation is presented by the INTO-
SysML connection diagram (CD) in Fig. 14. Altogether, there are four FMUs.
Train1 and Train2 simulate the physical behaviour of both trains, which in-
cludes the action of the train driver controlling the speed of the trains. A
third FMU Interlocking encapsulates the physical plant and the software that
controls it. Lastly, we require an additional FMU CDV/TC Merger to gener-
ate the CDV signal from the trains’ locations and merge their telecommands
into a single vector. A supplementary function of CDV/TC Merger is to pro-
duce monitoring signals (testing probes) for collision and derailment.

The initial models for this case study, as described in detail by INTO-CPS De-
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Figure 14: FMI co-simulation architecture for the railways system.

liverable D1.2b, define the train physics and their control behaviour as bond
graphs in 20-sim. The VDM-RT model of the interlocking was automatically
generated from the RLL2 production code of the software controller.

For the train behaviour, we consider traction and braking actions but do not
model train mass and gravity, and neither smooth acceleration and braking
curves (jerk). This is justified because the influence of those factors does not
alter the fundamental system dynamics. The original 20-sim train model has
been encoded in Modelica, for which we have a formal semantics mechanised
in Isabelle/UTP [13]; for details of that semantics we refer to the INTO-CPS
Deliverable D2.3b.

We have extracted the core algorithm for setting relays, signals and switches
from the interlocking software controller. This discards aspects related to
driving relay actuators, since we encode relays in software rather than mod-
elling them as hardware devices.

5.1.2 Behavioural Models

We next describe the Modelica train model and the VDM-RT Interlocking
model; we omit the straightforward CDV/TC Merger model, but details of
its encoding can be found in INTO-CPS Deliverable D2.3a.

2Relay Ladder Logic, commonly used for describing hardware controller.
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Figure 15: Train control equations in Modelica.

Modelica Train Models Kinematics and speed control of both trains is
encoded by the Modelica equations in Fig. 15. The first equation block cap-
tures motion: acceleration is the derivative (operator der(_)) of the train’s
velocity, given by the current speed variable, and velocity the derivative of
its relative position on the track on which it is currently located, given by
the position on track variable.

The second equation block realises a control algorithm: acceleration is set
to either zero, normal_acceleration or normal_deceleration, depending
on whether the current speed is equal, below or above the set-point speed
of the train, set by the driver. The latter two are suitable constants of the
model. A special case is added by the when clause that simultaneously sets
the train speed to the set-point speed and acceleration to zero if we are close
to the set-point speed.

The behaviour of the train driver is captured by the following equation:

The computation is carried out by the function CalculateSpeed, which ex-
pects the current track segment (current track), signal values (signals),
and maximum permissible speed (max speed) as arguments. It then sets the
set-point speed (setpoint speed) to max speed if there is either a green
light or no signal on the track; otherwise, it sets it to zero. A Modelica
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model Topology records (static) constants that define the railway topology,
such as signal positions and track connections.

The encapsulation of algorithmic behaviours into Modelica functions such
as CalculateSpeed, where possible, is deliberate. Our formal encoding later
on profits from this as those functions can be naturally translated into HOL
functions within the Isabelle proof system. This kind of engineering facilitates
formal analysis and has a modularising ripple-on effect on proofs.

A last aspect of the train model we consider is the equations for the discon-
tinuous variable changes that occur when a train crosses one track and enters
the next. The Modelica equations for this are recaptured below.

The NextTrack() function calculates the next track segment when the train’s
relative position on the current track, given by the position_on_track vari-
able, reaches the track_length. The function requires the current track,
state of track points (switches), and travel direction as inputs, and its out-
put is equated with the newly entered track segment after the discontinuity.
Simultaneously, it also reinitialises position_on_track back to zero. The
use of pre( ) statements is to refer to the system state before the disconti-
nuity, as otherwise the equation would be self-contradictory.

VDM-RT Interlocking Model The VDM-RT interlocking controller is
in essence a finite automaton whose state is determined by the configuration
of five relays R1-R5, each corresponding to a particular route being enabled.

To capture the core algorithmic behaviour of the interlocking, we introduce
a variable Relay to record the state of relay switches as a boolean vector.
The interlocking software controller is then modelled by virtue of a cyclic ex-
ecutive that periodically performs the following four sequential tasks:

1. Activate (lock) routes requested by a telecommand.

2. Deactivate routes once a train has passed through them.

3. Set railways switches consistently with the enabled routes.

4. Set signals consistently with the enabled routes.
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Figure 16: Extract from the VDM-RT algorithm for locking routes.

The sequential program logic that performs the locking of routes (task 1) is
included in Fig. 16. We note that hwi is a VDM-RT object that provides the
hardware interface (inputs and outputs) of the controller.

For locking (1) to occur, a telecommand must have been issued that re-
quests the respective route; this is achieved by the condition on the bit vec-
tor TC that cumulatively records the telecommands recorded by all three
telecommand stations. The constraints on Relay ensure that locked routes
are non-intersecting, so that trains can pass without crossing each others’
paths. Lastly, we have additional constraints on the CDV signal that ensure
that the track segments of the route to be locked are not still occupied by a
previous train.

Once a train has traversed a route, the respective relay has to be reset to give
other trains the opportunity to pass (task 2). This is achieved by a similar
program that performs assignments Relay(i) := false under suitable con-
ditions, namely when relay i is activated and the last track of the respective
root becomes vacant.

Tasks (3) and (4) deal with the positioning of railway switches and the set-
ting of signals. Their VDM-RT implementation hence assigns the variables
Switch and Signals, which correspond to outputs of the FMU. We shall not
discuss the implementation of those tasks in detail but refer to Appendix A
that contains the complete VDM-RT program model.

While our software model retains the core logic of the hardware realisation,
it does not consider time delays incurred by the latency of relay and point
actuators. Although those delays can potentially impact on safety analysis,
refining our models to incorporate them would be a straightforward extension
and not crucial to illustrate our technique.

45



D2.3c - A Mechanised FMI Semantics (Public)

Figure 17: Instantiation of the railways FMI architecture in Isabelle/HOL.

5.2 Architecture Instantiation

Before we consider the relational and Circus model of FMUs, we instantiate
the FMI architecture by assigning concrete values to the abstract constants
in Fig. 9 (p. 33). As previously noted, this instantiation is also discussed in
INTO-CPS Deliverable D2.3a, where it is serves to establish well-formedness
of an architecture. In this deliverable, it is a key ingredient for defining the
concrete behaviour of a master algorithm. We hence summarise it, focusing
on aspects relevant to the work here.

To instantiate the abstract type FMI2COMP, we make use of an Isabelle/HOL
axiomatization that introduces concrete symbolic constants for each of the
FMUs. In this case, we call them train1, train2, merger and interlocking.
Fig. 17 includes the corresponding mechanisation fragment.

We note that Isabelle axiomatizations can potentially cause logical inconsis-
tencies in HOL theories. Here, however, the particular shape of the assump-
tions, being that of an enumerated type, guarantees consistency.

The INTO-SysML diagram (Fig. 14) is encoded by providing definitions for
the seven constants: FMUs, parameters, initialValues, inputs, outputs, pdg
and idd. We note that those definitions, unlike the previous one, are conser-
vative — no user-level axioms are hence required to formulate them.

As mentioned earlier on, FMUs is a sequence of all FMUs, hence we require
its range to include all the values of the FMI2COMP type. Below we recapture
its definition for the railways co-simulation system.
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Figure 18: Parameter definition of the railways instantiation.

We recall that simulation parameters are of type FMI2COMP× VAR× VAL. Con-
crete parameters of the railways co-simulation are the routes of the trains
and their maximum speed. Fig. 18 illustrates parameter instantiation in Is-
abelle. The function InjU is used to construct a value of type VAL from some
arbitrary HOL value; it is part of our universal value model [30] and allows
us to encode arbitrary HOL values as elements of a universal type VAL. Our
syntax for constructing variables is $name:{type}. The types fmi2Integer
and fmi2Real are synonyms for the HOL types int and real, encoding inte-
gers and real numbers, respectively. Indeed, we introduce such synonyms for
all permissible FMI port types as per the FMI standard 2.0 [1].

Next, we consider the input and output ports of the control diagram in Fig. 14
on page 42. We recall that ports are modelled by pairs of type FMI2COMP ×
VAR.

An extract of the definition of inputs is recaptured below.

For brevity, we only list the input ports of train1 and train2 and omit those
of merger and interlocking. The encoding of outputs is similar.

For each input port in the list inputs, an initial value has to be provided. We
extract such values from the Modelica train model and VDM-RT interlocking
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Figure 19: Extract of the definition of port dependency graph (pdg).

model, and encode them via initialValues, namely as a list of elements of
type port× VAL where port is synonymous for FMI2COMP× VAR. For instance,
the initial value for signals is [False, False, False], capturing that all signals
show initially red. Since the Isabelle definition follows the same schema as in
Fig. 18, we omit it here referring to Appendix B, which includes the complete
mechanised model of the architecture.

Lastly, we consider the encoding of FMU port connections and internal de-
pendencies, recorded by the constants pdg and idd. While their type in our
mechanised model is that of a HOL function that maps outputs to their
connected (or dependent) inputs (see Fig. 9), we represent these functions by
their finite graph: that is, as a relation of type (port×port) list. The reason
for this is that it simplifies (inductive) proofs of associated well-formedness
properties. We note that such a graph-based model can be easily converted
into a pure function, as described in INTO-CPS Deliverable D2.3a. While
functional representations are more useful in the behavioural model of mas-
ter algorithms (see INTO-CPS Deliverable D2.3a), from here on we assume
that pdg and idd are (finite) relations, encoded as lists of maplets.

An extract of the definition of the constant pdg for the railways architecture
is presented in Fig. 19. The pairs included in the list on the right-hand side
account for the connection of the Train1 and Train2 FMUs with the CVD/TC
Merger FMU. Other connections are omitted for brevity. The construction
of pdg can be automated from the Connection Diagram of the INTO-SysML
model and hence does not require expertise in formal modelling.

Since the definition of idd is not relevant for the Circus model, we refer
to INTO-CPS Deliverable D2.3a for it. That deliverable also discusses how
well-formedness constraints on the instantiated constants are mechanically
discharged, using automatic tactics and reasoning tools.
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5.3 FMU Models

In this section, we discuss the relational behavioural model of FMUs. They
correspond to the data operation CalculateStep in the sketch of a model for a
specific FMU (Fig. 8 on page 26). Once we have defined the relational FMU
models, we use the sketch process to turn them into reactive FMU models.
Based on the information about FMUs including parameters, inputs, outputs,
and state, this lifting can be done in a uniform manner and does not require
human guidance and expertise in formal modelling. Though currently the
lifting and construction of the sketch process is done manually, we outline
opportunities for its automation near the end of the section.

We recall that the models we consider here are concrete relational descrip-
tions of FMUs used in implementations, and hence not the same as those
in INTO-CPS Deliverable D2.3a, which deal with abstract descriptions of
FMUs. Our technique requires showing that the former refine the latter.

5.3.1 Modelica Train FMUs

The Modelica train model is formalised in the Hybrid Relational Calculus
(HRC) [18], which we have semantically embedded into Isabelle/UTP. Details
of that embedding can be found in INTO-CPS Deliverable D2.3b. Below, we
present the model that focusses on the situation when the train is stopping
due to an approaching red signal. The full train behaviour can be encoded
in a similar way. We formalise this situation using shorter variable names
acc, vel and pos for acceleration, current-speed and position-on-track in
Fig. 15. We note that normal-deceleration below is negative and determines
the rate at which the train reduces its speed as a result of braking forces
being applied.

BrakingTrain =̂



acc := normal-deceleration ;
vel := max-speed ;
pos := 0 ;〈

˙acc
˙vel
˙pos

 =


0

acc
vel


〉

untilh (vel ≤ 0) ;

acc := 0


We first assign initial values to the continuous variables, and this effectively
creates initial conditions for the ODE that describes the train motion. We
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then evolve the continuous variables, according to the ODE, until the velocity
reaches 0. This is achieved by the 〈 ẋ = f (t , x ) 〉 operator of the HRC (a
definition if this operator can be found in INTO-CPS Deliverable D2.2c). The
P untilh b construct is a pre-emption operator that interrupts the continuous
evolution P once the condition b is met. After this, we set the acceleration
to 0, so that the train halts and does not start moving backwards.

The above hybrid relation encodes the kinetic and control equations in the
diagram of Fig. 15, albeit only considering deceleration. For the complete
train model, we require an additional variable for the set-point speed and
equations for calculating it from the signal vector.

Below, we show how the braking-train model is formalised in Isabelle/UTP:

The variable c constitutes the state space of the model, being a product of
three continuous variables of type real. They are likewise introduced using
the alphabet command discussed earlier. The differential equation of the
train is captured by the constant train ode, which we define separately.

The encoding above enables us to verify that trains are able to halt in time
when approaching a track that is protected by a red signal. A sketch of
that mechanised proof is in Fig. 20. The proof is formulated as a refinement
conjecture whose left-hand side specifies that the acceleration (accel′) even-
tually becomes 0 while the position of the train travelled (pos′) is bound by
the length of the track, here 44 meters.

Proofs like the above are important building blocks for showing that our
concrete (continuous) train model refines the abstract (discrete) train model
in INTO-CPS Deliverable D2.3a.

A last step is that we have to lift the continuous train model into a relational
computation. The general approach for this is described in INTO-CPS De-
liverable D2.3d on linking theories and based on extracting a before-after
state predicate for a given simulation start and end time.

We conclude by noting that our encoding utilises the Multivariate Analysis
package [22] of Isabelle, which provides a precise encoding of real numbers
as Cauchy sequences and several operators from the integral and differential
calculus, as well as proof support. We use that package to encode ordinary
differential equations (ODEs) in the hybrid relational calculus.
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Figure 20: The braking train scenario encoded in Isabelle/UTP.

5.3.2 VDM-RT Interlocking FMU

For the encoding of the interlocking FMU, we first declare an alphabet that
introduces the variables for the FMU inputs, outputs, state and time.

We make use of the vector type to represent fixed vectors of booleans and
switch configurations. The type switch is introduced to represent the possi-
ble orientations of a railway switch. Railways switches can either be set to
STRAIGHT or DIVERGING. Lastly, the variable time records simulation time; we
use it to impose restrictions on admissible simulation step sizes.

We note that the above is in direct correspondence with the VDM-RT model
of the software controller of the FMU. The complete VDM-RT model of the
controller is included in Appendix A.

The four major sequential tasks discussed in Section 5.1.2 can now be directly
translated into a sequential program within Isabelle/UTP that corresponds to
the periodic behaviour of the controller in each execution cycle. For instance,
Fig. 21 includes the encoding of the relay activation operations in Fig. 16 on
page 45. Conditional if statements are encoded here using the infix syntax
P /b.Q of the UTP [20]. Here, b is the condition, and P and Q correspond to
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Figure 21: Encoding of the VDM-RT code fragment for setting relays.

the then and else branch. We also note that CDV[i] and TC[i] are a custom
syntax to access the elements of the vectors cdv and tc of the state.

The other sequential fragments clear relays, set switches and set relays
are encoded in a similar fashion. We point to the Isabelle technical report [29]
for their definition.

We, lastly, have a statement that determines the admissible increase of sim-
ulation time, via the time variable. Here, this is modelled as an assignment
that (deterministically) increases time by the period of the periodic thread of
the cyclic executive for the interlocking program. This gives us the following
complete relational FMU model of the interlocking:

Above, δ is introduced as a constant for the thread period. This means
that the simulation step size of the entire co-simulation is determined by the
interlocking FMU, and corresponding to the execution period of the hardware
controller of the interlocking. The process lifting discussed in the next section
ensures that we respect admissible simulation step sizes, raising fmi2Discard
signals when necessary.

The CDV/TC Merger FMU is encoded in a similar manner. Its key func-
tionality is to set the elements of the cdv and tc vectors according to the
current track[1/2] and telecommand[1/2] signals produced by the train FMUs.

We summarise by observing that the FMU models in this section are ex-
pressed as pure data operations in a relational setting. They are moreover
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refinements of the abstract FMU models discussed in INTO-CPS Deliverable
D2.3a. The key difference is that we are dealing with continuous and imple-
mentation models here, and that the state of FMUs is localised, meaning that
each FMU has its own state. In comparison, state in the abstract models
in INTO-CPS Deliverable D2.3a is both discretised and centralised. We use
data refinement techniques [23] to discharge the refinement proofs.

To conclude our modelling example, we finally look at the underlying Circus
processes of the co-simulation.

5.4 Circus Processes

The process model lifts the relational FMU programs into reactive ones
that can interact with a master algorithm and the environment. In the
following, we discuss the reactive models of the FMU processes, master algo-
rithm, and the composite FMI model that integrates all of them. The com-
plete mechanised model can be found in the report https://github.com/
isabelle-utp/utp-main/blob/master/fmi/railways_model.pdf.

5.4.1 FMU Processes

For the FMU processes, we use precisely the lifting approach described in
Section 3.3. Hence, for each FMU we create a sketch process like the one
in Fig. 8 (p. 26). For this, the state components cparams , cinputs , coutputs
and cstate of the sketch process are instantiated to the respective concrete
parameters, inputs, outputs and state components of the relational FMU
model that it encapsulates.

The definition of the data operation(s) for the FMU are then directly added
to the sketch process. We recall that Circus provides a rich language to model
data operations on its state, including programming constructs and specifica-
tion statements. The data operation that characterises the FMU behaviour
is used to replace CalculateStep in the sketch process, whereby defining its
reactive behaviour according to the lifted (relational) FMU model.

For languages that involve constructs that are not supported in Circus, we
follow the approach described in INTO-CPS Deliverable 2.3d on linking theo-
ries. That approach explains how we extract a relational model, for instance,
from a continuous description in the hybrid relational calculus.
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5.4.2 Master Algorithm

For our railways example, we encode a fixed-step-size master algorithm with
no roll-back. Our concrete MAmodel aggregates the abstract model of a mas-
ter algorithm described in Section 3.1, albeit imposing additional constraints
on the possible interactions. For instance, we introduce a FixedStepTimer
process that composes the Timer process in Fig. 2 in parallel with another
process that restricts time increments to match a given fixed step size (here,
this is the δ of the interlocking FMU model).

The fixed-step MA also integrates directly the Interaction process (Fig. 5,
p. 19) that describes the general interaction patterns of a master algorithm,
albeit forcing termination upon fmi2DoStep returning fmi2Discard, which
indicates that the simulation step size is too large for some FMU.

5.4.3 Composite FMI Model

The complete model is the composition of the sketch processes of the lifted
(concrete) relational FMU models in interleaving, in parallel with the fixed-
step master algorithm. It is a process of the following shape:

RailwaysCosim =̂ FixedStepMA J FMI API K


Train1 FMU
9Train2 FMU
9Merger FMU
9 Interlocking FMU


Communication between the master algorithm and FMUs is via the channels
of the FMI API, for which we introduce the above channel set FMI API .

This concludes our FMI co-simulation model of the railways case study. We
next consider analysis and proof within its mechanisation.

5.5 Analysis and Proofs

Our first concern for analysis is to validate properties of the master algorithm
implementation. We note that functional properties of co-simulations are
addressed in INTO-CPS Deliverable D2.3a.

Secondly, we can prove that our model is divergence free. Reactive contracts
allow us to directly express this property, via the pre-condition of a reactive
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design that corresponds to the master algorithm. More precisely, we write
this as a conjecture pre(P) for some Circus process P ; the distribution laws
for pre(P), described in INTO-CPS Deliverable D2.3b allows us then to
evaluate and prove this conjecture in Isabelle/UTP.

Thirdly, concrete master algorithms must be a refinement of our abstract MA
model in Section 3.1. To show this, we use refinement laws of Circus that
we have mechanised in Isabelle/UTP. The proof is facilitated here by the
fact that our concrete model aggregates the abstract model while imposing
additional constraints, but in general our technique is not constrained to a
particular shape of a master algorithm: the developer is free to propose and
validate his own implementations.

Discharging the abovementioned refinement proof establishes that the con-
crete MA is conformant with our abstract model, and hence the FMI speci-
fication and standard.

A fourth property we address is that the abstract model of a co-simulation,
described in INTO-CPS Deliverable D2.3a, is refined by the concrete (re-
active) model presented in this deliverable. This is done via a refinement
strategy that transforms the abstract model in such a way that the master
algorithm emerges from the refinement. High-level objectives of this refine-
ment strategy are enumerated as follows:

1. Localise the (central) state of the abstract co-simulation into FMUs;

2. Introduce communications that carry out parameter setting and local
initialisations; and

3. Introduce channels for FMUs to exchange data; these are later on to
become the channels of the FMI API.

The master algorithm emerges through refinement from applying specialised
and high-level Circus laws that realise the above steps (2) and (3).

5.6 Final Considerations

We have illustrated how our Circus model of FMI co-simulations can be
instantiated with an industrial case study from ClearSy (France), one of our
project partners. This allows for proof-based analysis of the co-simulation
model. The focus of such analysis here complements the approach proposed
in INTO-CPS Deliverable D2.3a that targets functional properties of co-
simulations, and provides additional guarantees of correctness. Our approach
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facilitates refinement all the way down to code, which can then be translated
into executable languages such as C/C++ and Java.

Our experiments show that Isabelle’s code generation comes in useful here, as
it enables us to verify tools that efficiently perform symbolic manipulations
and refinements of, for instance, Circus models.

Our technique brings together many aspects of our foundational work on
FMI co-simulations, relying on the semantic embedding of languages for de-
scribing co-simulation models, encoding of CPS and Circus, and the linking
of theories. Isabelle/UTP has proved to be an invaluable tool to mechanise
and reason about this ensemble of languages.
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6 Related Work and Conclusion

In this deliverable, we have presented our mechanised semantics for FMI,
using the state-rich process algebra Circus. We thereby have introduced
a reactive model of FMI co-simulations that refines the abstract relational
model in INTO-CPS Deliverable D2.3a. Both models together allow for a
refinement-based development technique from abstract specifications of co-
simulations to executable co-simulation models that can be simulated by
tools.

Our approach described here can verify that a concrete co-simulation is faith-
ful to its abstract model and retains all properties that have been proved of
the former. For the railways example, we show, for instance, in INTO-CPS
Deliverable D2.3a that trains cannot derail or collide. That property holds
for a discrete abstraction of the co-simulation state and model, and here
we establish that it carries over to the concrete reactive model, too, that
considers continuous behaviours and FMU implementation models.

The Isabelle theories of our mechanisation can be found in the Isabelle/UTP
repository on Github: https://github.com/isabelle-utp/utp-main/fmi.
A report of the FMI mechanisation is available from https://github.com/
isabelle-utp/utp-main/blob/master/fmi/fmi_report.pdf. The Isabelle
theory sources of the FMI model and railways case study together amount
to approximately 4,300 lines of definitions and proof scripts.

The approach of applying refinement techniques to hybrid systems has been
explored in other contexts, such as the B Method for formal verification. An
extension of it, called Hybrid Event B is proposed by Banach et al. in [3].
Similarities exist to the Hybrid Relational Calculus in that restrictions are
made in Hybrid Event B that enforce continuous evolutions and discrete
state changes to strictly alternate. Both approaches use piecewise continuous
functions as a mathematical foundation. (Hybrid) Event B is, however, more
restrictive in its modelling patterns than Circus, imposing a static execution
model based on action systems [2]. Whether the FMI paradigm can be
expressed within it is open to investigation.

Here, we have also shown how our FMI semantics can be used to very master
algorithms. Broman has a similar objective in [5]. For this, he defines a se-
mantics that is based on functions rather than relations. Our relational FMU
model can encode this semantics, but additionally can represent nondeter-
minism in FMUs. The issue of proposing new master algorithms is prevalent
in many other works [4, 25, 12, 9], which emphasises the need and value of
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verification techniques like the one we developed.

Tripakis and Broman in [26] further explore the idea of mapping other for-
malisms into their model to facilitate descriptions of FMUs in various lan-
guages, including finite state machines, and discrete-event as well as syn-
chronous data flow actor models. Our work benefits form the UTP as a
lingua franca to formalise and integrate semantic theories of various hetero-
geneous languages, making such an integration easier to carry out.

Future Outlook

Future work will elicit refinement laws and strategies that are tailored and
relevant for particular applications. We are also planning to encode a wider
repository of master algorithms that, for instance, support variable step size
and roll-back. Tool support for automatic generation of the Circus model will
aid engineers without expert knowledge in formal modelling or proof to apply
our technique, and future work on refinement strategies and tactics shall
further reduce the need for such domain-specific knowledge, fully realising
the potential for automation that we pointed out in Section 5.6.

We see the core future potential of our approach in paving the way for tools
that automatically generate code for co-simulations and master algorithms
from formal models that have been constructed, analysed and rigorously
validated using our technique. This provides crucial certification evidence,
namely that co-simulations used to examine and test CPSs are correct.

The synergy of (a) properties proved of particular co-simulations, as ex-
plained in INTO-CPS Deliverable D2.3a, and (b) the assurance that co-
simulations, when they constitute part of certifications evidence, are based
on correct implementations (the topic of this deliverable), is what we believe
will strengthen the case for certifying safety-critical CPS in challenging areas
of deployment in the future, such as autonomous vehicles and UAVs.
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class Interlocking

types

SWITCH_POSITION = <STRAIGHT> | <DIVERGING>

instance variables

private hwi : HardwareInterface;

private Relay : seq of bool;

private Switch : seq of SWITCH_POSITION;

operations

-- Constructor for Interlocking
public Interlocking: HardwareInterface ==> Interlocking
Interlocking(hardware) ==
(
  hwi := hardware;
  Relay := [false,false,false,false,false];
  Switch := 
[<DIVERGING>,<DIVERGING>,<DIVERGING>,<DIVERGING>,<DIVERGING>]
);

-- Control loop
public Step: () ==> ()
Step() ==
(
    -- Relay Setting
    if hwi.TC(4) and not hwi.TC(3) and not Relay(2) and not Relay
(3) and hwi.CDV(4) and hwi.CDV(5)
       then Relay(1) := true;
    if hwi.TC(3) and not hwi.TC(4) and not Relay(1) and not Relay
(3) and not Relay(4) and not Relay(5) and hwi.CDV(4) and hwi.CDV
(8) and hwi.CDV(9) and hwi.CDV(10) and hwi.CDV(1)
       then Relay(2) := true;
    if hwi.TC(3) and not hwi.TC(4) and not Relay(1) and not Relay
(2) and not Relay(3) and not Relay(5) and hwi.CDV(4) and hwi.CDV
(8) and hwi.CDV(9) and hwi.CDV(11) and hwi.CDV(2)
       then Relay(4) := true;
    if hwi.TC(1) and not Relay(2) and not Relay(4) and not Relay
(5) and hwi.CDV(10) and hwi.CDV(9) and hwi.CDV(8) and hwi.CDV(7) 
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and hwi.CDV(6)
       then Relay(3) := true;
    if hwi.TC(2) and not Relay(2) and not Relay(3) and not Relay
(4) and hwi.CDV(11) and hwi.CDV(9) and hwi.CDV(8) and hwi.CDV(7) 
and hwi.CDV(6)
       then Relay(5) := true;

    /* Relay Clearing */
    if Relay(1) and not hwi.CDV(5) then Relay(1) := false;
    if Relay(2) and not hwi.CDV(1) then Relay(2) := false;
    if Relay(3) and not hwi.CDV(6) then Relay(3) := false;

if Relay(4) and not hwi.CDV(2) then Relay(4) := false;
    if Relay(5) and not hwi.CDV(6) then Relay(5) := false;

    /* Switch Positioning */
    Switch(1) := <STRAIGHT>;
    if Relay(1)
      then Switch(3) := <STRAIGHT>
      else Switch(3) := <DIVERGING>;
    if Relay(3) or Relay(5)
      then Switch(2) := <STRAIGHT>
      else Switch(2) := <DIVERGING>;
    Switch(4) := <STRAIGHT>;
    if Relay(2) or Relay(3)
      then Switch(5) := <STRAIGHT>
      else Switch(5) := <DIVERGING>;

    /* Signal Settings */
    hwi.signals(1) := Relay(3) and Switch(5) = <STRAIGHT> and 
Switch(2) = <STRAIGHT> and Switch(4) = <STRAIGHT>;
    hwi.signals(2) := Relay(5) and Switch(5) = <DIVERGING> and 
Switch(2) = <STRAIGHT> and Switch(4) = <STRAIGHT>;
    hwi.signals(3) := (Relay(1) and Switch(1) = <STRAIGHT> and 
Switch(3) = <STRAIGHT>)
     or (Relay(2) and Switch(1) = <STRAIGHT> and Switch(3) =
<DIVERGING> and Switch(2) = <DIVERGING> and Switch(5) =
<STRAIGHT>)
     or (Relay(4) and Switch(1) = <STRAIGHT> and Switch(3) =
<DIVERGING> and Switch(2) = <DIVERGING> and Switch(5) =
<DIVERGING>);

    /* Switches Actuators */
    hwi.switches(1) := if Switch(1) = <STRAIGHT> then true else 
false;
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    hwi.switches(2) := if Switch(2) = <STRAIGHT> then true else 
false;
    hwi.switches(3) := if Switch(3) = <STRAIGHT> then true else 
false;
    hwi.switches(4) := if Switch(4) = <STRAIGHT> then true else 
false;
    hwi.switches(5) := if Switch(5) = <STRAIGHT> then true else 
false;
);

-- 10Hz control loop
thread periodic(1E8, 0, 0, 0)(Step);

end Interlocking
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