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Abstract

This deliverable reports on the final version of our continuous-time semantics for the
dynamical systems modelling language, Modelica, in the context of Hoare and He’s Uni-
fying Theories of Programming (UTP). Modelica is a language for modelling a system’s
continuous behaviour using a combination of differential-algebraic equations and an event-
handling system. We have previously given a high-level semantics to the Modelica event
handling mechanism in terms of the hybrid relational calculus. In this deliverable, we
provide an improved semantic model for the calculus, based on the theory of reactive
processes that is typically used to give semantics to concurrent systems. We provide
a generalised trace model for reactive processes, and show how it can encompass both
discrete and continuous traces. We then reconstruct the hybrid relational calculus, which
has also been mechanised in Isabelle/UTP, along with a number of additional operators,
and new facilities for reasoning about differential equations. We also present a theory of
reactive design contracts, which is integrated with our hybrid relational calculus to give
a semantic model for concurrent and reactive hybrid systems. Finally, we bring all the
theory developed to construct a more detailed semantics for Modelica, with a particular
focus on the Modelica block language.
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1 Introduction

INTO-CPS multi-models are composed of models whose foundations lie in a variety of
modelling notations, each of which has its own unique syntax, semantics, and underlying
paradigmatic concepts, such as discrete or continuous time. The purpose of a multi-model
is assign behaviour to a Cyber-Physical System (CPS) by composing the behaviours of
the constituent models. Thus, in order to provide an integrated tool chain for trustwor-
thy CPS development, there is a necessity for unification of these underlying semantic
models to allow consistent integration of heterogeneous system components. This will
then allow us to substantiate statements made about the multi-model with respect to the
underlying mathematical core. Hoare and He’s Unifying Theories of Programming [29]
(UTP) has been designed as a framework in which the integration of languages, through
the common semantic domain of the alphabetised relational calculus, can be achieved.
In this deliverable we leverage the UTP to provide the foundations for continuous-time
modelling in the INTO-CPS tool chain.

Modelling of continuous dynamical systems in the INTO-CPS tool chain is provided
by the Modelica and 20-sim tools, both of which are based on differential equations.
We have previously shown how to give a high-level denotational semantics to Modelica
using a UTP theory of hybrid relations [10, 19]. Our hybrid relational calculus provides
operators for describing the behaviour of continuous variables in continuous and hybrid
systems.

In this deliverable we provide a substantial upgrade to the hybrid relational calculus,
and then use this foundation to construct a more detailed semantics of Modelica. This
upgrade involves, on the one hand, a more general semantic model that is better integrated
with other UTP theories of concurrency and reactivity. On the other hand, it is also
combined with a novel theory of reactive design contracts, which we also construct in
this deliverable. Whereas the hybrid relational calculus is insensitive to non-termination,
our theory of contracts allows the description of reactive hybrid systems. Moreover,
these contracts allow us to specify hybrid behaviour using an assertional reasoning style
notation, commonly found in formalisms like Hoare logic and refinement calculus. Thus,
our contract theory provides a way in to formal verification of hybrid systems.

Construction of the semantics of Modelica in UTP, thus, requires us to construct a number
of foundational layers, which we enumerate below. The dependencies between these
constituent UTP theories is also illustrated in Figure 1.

1. In Section 2 we review preliminary material necessary for the remainder of the
deliverable, specifically the various key theories of the UTP and proof environment
Isabelle/UTP [21].

2. In Section 3 we introduce our UTP theory of generalised reactive processes (GRP),
which enriches the semantic model of concurrent and reactive systems present in
the UTP to support continuous variables. This includes a language of relations and
conditions which are a precursor of our contract notation.

3. In Section 4 we describe our UTP theory of hybrid relations (HRC), which is a
substantial upgrade of the theory we delivered in D2.2c [10]. This is now founded
entirely on our theory of generalised reactive processes, and is fully mechanised in
Isabelle/HOL. The latter enables theorem proving support for hybrid systems.
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Figure 1: D2.3b Semantics Dependencies

4. In Section 5 we describe our theory of reactive design contracts (GRD), which
further extend the theory of generalised reactive processes to support contracting
with preconditions, postconditions, and also “pericondition” that describe the per-
missible intermediate behaviour of a process. This theory in particular provides
assertional reasoning foundations for hybrid systems.

5. In Section 6 we combine the results from Sections 4 and 5 to construct hybrid
reactive design contracts (HRD), including specialised operators for describing dif-
ferential equations and preemption, as in the hybrid relational calculus.

6. In Section 7 we bring together all the results described above to construct a deno-
tational semantics for the Modelica language, with a particular focus on Modelica
blocks.

The focus of this deliverable is principally on theory that underlies hybrid and cyber-
physical systems. However, the results from this deliverable are not only theoretical, but
also practical. Deliverables D2.3a [54] and D2.3d [11] present a verification technique for
FMI that utilises many results from this deliverable. This technique has been practically
applied in the context of WP1 and WP3 to verify both pilot studies and industrial case
studies, which demonstrates how these theoretical results add value to the INTO-CPS
methodology.

2 Preliminaries

In this section we briefly go over preliminaries of the UTP and core theories. These
provide the foundation upon which we will build the theory hierarchy that will be used
to give the denotational semantics to Modelica.

2.1 UTP

The UTP favours an approach to formal semantics that grasps at Platonic “universals”
of programming language paradigms. It seeks the fundamental abstract ideas that ex-
ist as foundations of programming language semantics and formalise them using UTP
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theories. For example, a collection of healthiness conditions can describe what it means
for a language to be concurrent [29, 9], real-time [47], or object-oriented [45]. The UTP
thus promotes reuse of theoretical building blocks that underlie programming language
semantics.

UTP is based on an alphabetised relational calculus with operators of higher-order pred-
icate calculus and relation algebra. Relations are simply predicates whose alphabet con-
sists of pairs of variables that denote initial values (x) and final values (x ′). The domain
of alphabetised relations forms a number of important algebraic structures including (1)
a complete lattice [29], where the order is refinement, false is top, and true is bottom; (2)
a relation algebra [49, 20]; (3) a cylindric algebra [26, 21]; and (4) a quantale [21], which
induces (5) a Kleene algebra [1]. Together these provide a rich set of base properties
supporting program verification [1, 21].

UTP theories are specified in terms of three parts:

1. an alphabet of typed observational variables, which are used to encode observable
semantic quantities important for the theory;

2. a healthiness condition (HC), specified as a function on predicates with the above
alphabet;

3. a signature: that is, a set of constructors and other functions for healthy elements
of the theory.

A theory’s alphabet is often open to extension, such that additional observational vari-
ables can be added, or the types of variables specialised, assuming an appropriate notion
of polymorphism. This also means that UTP theories can readily be combined by merging
the alphabets and composing the healthiness conditions.

The image of the healthiness condition gives rise to the UTP theory’s domain. For this
reason it is necessary that the functions are idempotent (HC ◦ HC = HC), and usually
also monotonic. Monotonicity ensures that that the UTP theory forms a complete lattice,
substantiated by the Knaster-Tarski theorem [48]. This gives rise to a theory top (>T),
bottom (⊥T), infimum, supremum, and fixed-point operators (such as the weakest fixed-
point operator µT). The top and bottom can be obtained by applying the healthiness
condition to false and true, respectively. However, the induced lattice does not in general
share the same operators as the alphabetised predicate lattice. Thus, for our purposes,
we are interested in the stronger property continuity, which give rise to additional
properties.

Definition 2.1 (Continuous Healthiness Conditions). A healthiness condition HC is said
to be continuous if it satisfies HC(

d
A) =

d
{HC(P) | P ∈ A} for A 6= ∅.

This notion of continuity is stronger than the related notion of Scott-continuity [46],
which requires that A also be directed. Every continuous healthiness condition is also
monotonic and thus induces a complete lattice. Continuity also means that the theory
infimum is the same operator as the alphabetised predicate infimum (

d
). This means

that a number of additional laws can be transplanted into the theory, some of which are
illustrated below.

9
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Theorem 2.1 (Continuous Theory Laws).

P u P = P (2.1.1)
P u Q = Q u P (2.1.2)

P u (Q u R) = (P u Q) u R (2.1.3)
⊥T = HC(true) (2.1.4)
>T = HC(false) (2.1.5)

⊥T u P = ⊥T providedHC(P) = P (2.1.6)
>T u P = P providedHC(P) = P (2.1.7)

µTX • F(X) = µX • F(HC(X)) (2.1.8)

Of particular interest here is Theorem 2.1.8 that shows how a theory’s weakest fixed-
point operator can be rewritten to the alphabetised predicate weakest fixed-point. The
requirement is that the continuous healthiness condition HC can be applied after each
unfolding of the fixed-point to ensure that the function F is only ever presented with
a healthy predicate. Healthiness conditions in the UTP are often built from several
component functions. That being the case, continuity and idempotence properties of the
overall healthiness condition can be obtained by composition.

2.2 Designs

The UTP theory of designs has two observational variables, ok, ok ′ : B, flags that denote
whether a program was started and whether it terminated, respectively. The signature,
P ` Q, states that if a program is started and the state satisfies precondition P, then it
will terminate and satisfy postcondition Q. This is denoted as follows.

Definition 2.2 (Designs).

P ` Q , (ok ∧ P)⇒ (ok ′ ∧ Q)

Here, P and Q are relations on variables excluding ok and ok ′. Effectively this encoding
allows a pair of predicates to be encoded as a single predicate.

Designs have a natural notion of refinement such that P1 ` P2 v Q1 ` Q2 if the precon-
dition is weakened (P1 ⇒ Q1) and the postcondition is strengthened within the window
of precondition P1 (Q2 ∧ P1 ⇒ P2). Designs form a complete lattice [29], where the
bottom ⊥D corresponds to an abort, arising for instance due to a violated precondition
such as false ` P, and top >D corresponds to a miraculous design. The infimum P u Q
corresponds to a nondeterministic choice between two designs, and refinement reduces
non-determinism: P uQ v P.

Designs are closed under sequential composition, disjunction, and conjunction [29, 8], the
latter of which give rise to similar properties present in contract theory [3]. The main
healthiness conditions of designs are H and N which are given below.
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Definition 2.3 (Design Healthiness Conditions).

H1(P) , (ok ⇒ P)

H2(P) , P ; J

H3(P) , P ; IID

J , (ok ⇒ ok ′) ∧ IIA\{ok}

IID , true ` II
H , H1 ◦ H2

N , H1 ◦ H3

H1 states that until a design has been given permission to execute via ok, no observations
are possible. H2 states that no design can require non-termination. A more intuitive
form that characterises fixed-points is P[false/ok ′]⇒ P[true/ok ′]: every non-terminating
behaviour for which ok ′ = false has an equivalent terminating behaviour for which ok ′ =
true. H3 designs additionally require that P is a condition: it does not refer to dashed
variables. The latter subclass is useful for “normal” specifications where the precondition
does not refer to the final state. H3 designs, with a few notable exceptions, are the
most common form of design, and are thus sometimes known as normal designs [22],
as indicated by healthiness condition N. Since every H3 predicate is also H2 healthy,
in defining N, we do not need to include H2 in the composition. H and N are both
idempotent and continuous, and thus both theories are complete lattices.

2.3 Reactive Processes

The theory of reactive processes [29, 9] unifies the semantics of different reactive lan-
guages. The two main goals of reactive processes are to (1) embed traces into the re-
lational calculus, which is achieved through R1 and R2, and (2) introduce intermediate
observations which is acheived through R3. In addition to ok and ok ′, the theory has
three pairs of observational variables wait,wait ′ : B that determine whether a process (or
its predecessor) is waiting for interaction with its environment or else has terminated;
tr , tr ′ : seq Event that describes the trace before and after the process’ execution; and
ref , ref ′ : PEvent that describe the events being refused during an intermediate state, as
required by the failures model of CSP [28].

Our version of reactive processes removes the ref and ref ′ variables to allow extension to
behavioural semantic models other than failures. Moreover, we add st, st ′ : Σ to explicitly
model state as suggested by [5], where Σ is a suitable record type. In our previous
work [18] we have shown how the UTP theory of reactive processes can be generalised
by characterising the trace model with an abstract algebra, called a “trace algebra”. A
trace algebra (T ,a, ε) is a form of cancellative monoid that axiomatises operators for
trace concatenation (x a y), trace prefix (x ≤ y), and trace difference (x − y). The trace
algebra will be discussed in more detail in Section 3.

From these algebraic foundations we have reconstructed the complete theory of reactive
processes, including its healthiness conditions and associated laws, in particular those
for sequential and parallel composition. We thus generalise the type of tr and tr ′ to
be an instance of a suitable trace algebra T , and recreate the three reactive healthiness
conditions, with some modifications.

11



D2.3b - Final Modelica Semantics (Public)

Definition 2.4 (Stateful Reactive Healthiness Conditions).

R1(P) , P ∧ tr ≤ tr ′

R2c(P) , P[〈〉, tt/tr , tr ′]2 tr ≤ tr ′3P

R3h(P) , IIR 2wait 3P

IIR , ((∃ st • II)2wait 3II)2 ok 3 R1(true)

tt , (tr ′ − tr)

Rs , R1 ◦ R2c ◦ R3h

R1 states that tr is monotonically increasing; processes are not permitted to undo past
events. R2c is a version of R2, created to overcome an issue with definedness of sequence
difference [18], but semantically equivalent in the window of R1. It states that a process
must be history independent: the only part of the trace it may constrain is tr ′− tr , that
is, the portion since the previous observation tr . Specifically, if the history is deleted,
by substituting ε for tr and tr ′ − tr for tr ′, then the behaviour of the process is un-
changed. Our formulation of R2c deletes the history only when tr ≤ tr ′, which ensures
that R2c does not depend on R1, and thus commutes with it. Intuitively, an R1-R2c
healthy predicate syntactically does not constrain the trace history (tr), but only the
trace contribution (tt), as the following theorem illustrates.

Theorem 2.2 (R1-R2c trace contribution).

R1(R2c(P)) = (∃ tt • P[ε, tt/tr , tr ′] ∧ tr ′ = tr a tt)

Finally, we have R3h, a version of R3 taken from [5] that introduces the concept of inter-
mediate observations, whilst ensuring that state variables are not included. R3h states
that if a process observes wait to be true, then its predecessor has not yet terminated
and thus the current process should behave like the reactive identity, IIR. For example,
in a composition like P ; Q, if P is intermediate then Q, if R3h healthy, will behave like
IIR.

The reactive identity simply maintains the present value of all variables, other than the
state st when the predecessor is in an intermediate state, or behaves like R1(true) if ok
is false. The latter scenario means that our predecessor has diverged and thus we can
guarantee nothing other than that the trace increases monotonically. Intuitively, a R3h
process conceals the state of any predecessor in an intermediate state. This allows that
several independent state valuations are concurrently possible, yet concealed from one
another, until an observation is made through an event interaction.

For comparison, we recall the definition of healthiness condition R3 which was previously
used in both CSP [29, 9] and Circus [40].

Definition 2.5 (R3 Healthiness Condition).

R3(P) , IIrea 2wait 3P

IIrea , II2 ok 3 R1(true)

12
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X

Figure 2: A typical lens

get (put s v) = v (PutGet)
put (put s v ′) v = put s v (PutPut)

put s (get s) = s (GetPut)

Figure 3: Lens laws

The only difference from R3h is that the identity IIrea is used in intermediate states. This
operator does not give special treatment to state variables: they are simply identified in
intermediate states like other observational variables.

We compose the three constituents to yield Rs, the overall healthiness condition of (state-
ful) reactive processes, which is idempotent and continuous.

Theorem 2.3 (Reactive Process Theory Properties). Rs is idempotent Rs(Rs(P)) =
Rs(P) and continuous Rs(

d
A) =

d
P ∈ A • Rs(P).

As for designs, a corollary of this theorem is that we obtain a complete lattice and the
continuous theory properties of Theorem 2.1. Thus we now have a UTP theory of stateful
reactive processes which will act a principle foundation for reactive design contracts.

2.4 Isabelle/UTP

Isabelle/UTP [21, 52, 20] is a mechanisation of the UTP semantic framework in the proof
assistant Isabelle/HOL [39]. It allows us to define UTP theories within the alphabetised
relational calculus, whilst taking advantages of Isabelle’s type checker, and then mechan-
ically prove associated theorems, such as algebraic laws. Such laws can then be applied
to program verification tasks in Isabelle.

An alphabetised relation is essentially a set of possible observations that can be made
of the model, such as the set of possible input and output mappings. Our model of
alphabetised predicates, therefore, is α upred , (α ⇒ bool), where α is a suitable type
for modelling the alphabet, that corresponds to the state space. This means that we can
easily implement the usual operators of boolean algebra and complete lattices by lifting
the corresponding HOL notions on sets. Similarly, relational operators like composition
P ; Q can also be obtained by lifting the corresponding HOL functions. A relation with
input alphabet α and output alphabet β has the type (α, β) rel in Isabelle/UTP, which
is syntactic sugar for a predicate of type (α× β) upred.

Variables in the state space α are modelled abstractly using lenses [17, 16], which are
perhaps best known in the functional programming world. A lens V =⇒ S, for view type
V and source type S, identifies V with a subregion of S. This is illustrated in Figure 2,
where the hatched region denotes the portion of S that V corresponds to. Lenses can be
used to abstract many types of data structure. For example, if S is a record type, then
V might be a particular field, or if S is a function type, then V might be an element of
the domain.

13
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A lens consists of two functions: get that extracts a view from a larger source, and put
that puts back an updated view. Moreover the behaviour of lenses is constrained by a
number of algebraic laws which are summarised in Figure 3. Since lenses are semantic
rather than syntactic entities, we cannot compare them just using (in)equality, and thus
we introduce further operators. Lens equivalence, X ≈ Y , states that lenses X and Y
view precisely the same region of the source, though these views may have different types.
Lens independence, X ./ Y , states that the two lens views are independent: manipulating
the source type using X has no effect on the region identified by Y and vice-versa. Such
operators can be used as the basis for comparison of variables.

We have mechanised a theory of lenses in Isabelle during this project, including an algebra
that allows us to variously compose lenses in the style of separation algebra [6]. For
example, the sum lens X ⊕ Y represents the lens that simultaneously views the regions
characterised by both lenses X and Y . For more details please see our recent paper [21].
In this particular deliverable, lenses are of vital importance to modelling continuous
variables.

We model variables as abstract views on program state spaces with a uniform semantic
interface. A variable x : τ =⇒ α is a lens that views a particular subregion of type τ in α,
which affords a very general state model. The main advantage lenses thus provide us with
is an abstract notion of variables and state space in UTP predicates, such that a wide
variety of different representations are possible. A commonly employed model for state
spaces is that of Isabelle/HOL records, with fields to model variables, as these afford a
large amount of built-in proof automation, which thus aids the program verification effort.
Our use of lenses enables a more abstract characterisation, and ensures that any lens-
based model for variables can be applied to proven laws of Isabelle/UTP, including for
example partial function maps to encode a deeper predicate model with variable names
as first-class citizens.

In order to support construction of program state space, each of which contains a number
of variables, we have created the alphabet command in Isabelle/UTP. It creates a new
record type, where each field corresponds to a variable in the state, and assigns a lens
to each of them. It automatically generates well-formedness theorems for each of the
lenses, and independence theorems for each pair. A template alphabet command is
shown below:

alphabet st-name =

var1 :: type1
var2 :: type2
· · ·
varn :: typen

This creates a state space type called st-name with n variables of a given type. Each
of the variables is assigned a lens which can be referred to by name in a UTP predicate
or relation. A program over this state space would have type (st-name, st-name) rel,
and would support relational constructions like var2 := v. The command automatically
generates all possible independence theorems of the form vari ./ varj , where i 6= j.

Mechanisation of the predicate calculus requires that we can specify meta-logical provisos,
such as x /∈ fv(P), that is, that variable x is not free in P, and also variable substitution.

14
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(∃ x • P ∧ x = e) = P[e/x ] if x ∈ mwb-lens, x ] e
x := e ; P = P[e/x ]

x := e ; x := f = x := f if x ] f
x := e ; y := f = y := f ; x := e if x ./ y, x ] f , y ] e

Table 1: Isabelle/UTP laws

Alphabetised predicates are principally semantic rather than syntactic entities, and so
these notions cannot be specified using, for example, recursive functions that depend
on an abstract syntax tree. Instead, we leverage our theory of lenses to define weaker
semantic notions. For free variables, we introduce the concept of unrestriction, written
x ] P for some variable (lens) x . A predicate P is unrestricted by variable x if the
valuation of P does not depend on x . For example, the predicate y > 10 is unrestricted
by x , assuming x ./ y, since the value of x clearly has no bearing on the truth value of
the predicate.

Substitution is also introduced semantically using the notation σ †P, where σ : α → α
is a homogeneous substitution function on the state space. Application of a substitution
to a predicate updates all possible observations using the function. The most basic
substitution is the identity id, which maps all variables to their present value. We can also
write σ(x 7→s e), which updates a substitution such that x takes the value of expression e.
We also introduce the short-hand [x1 7→s e1, · · · , xn 7→s en] = id(x1 7→s e1, · · · , xn 7→s en).
A substitution P[e1, · · · , en/x1, · · · , xn] of n expressions to corresponding variables is then
expressed as [x1 7→s e1, · · · , xn 7→s en] †P. This model allows us to obtain the usual laws
of substitution, such as (P ∧ Q)[v/x ] = (P[v/x ] ∧ Q[v/x ]).

With a complete relational calculus and associated meta-logical operators defined we are
able to mechanise all the usual laws of predicate calculus, relation algebra, Kleene alge-
bra, and other typical laws of programming, such as those in Table 1. These show how
we specify meta-logical provisos in Isabelle/UTP. For example the last law, commuta-
tivity of assignments, requires that x and y be different variables, specified using lens
independence, that x is not free in f and that y is not free in e.

So far we have mechanised several hundred of such algebraic laws, which provide the
foundation for automated reasoning about programs and models. These can be seen by
viewing our Isabelle/UTP git repository1. Moreover, we have also created a number of
proof tactics for predicate calculus (pred-tac) and relational calculus (rel-tac), which also
greatly aid the proof effort. When these are combined with Isabelle’s built-in automated
proof facilities [4] like the auto deduction tactic, the sledgehammer automated theo-
rem prover integration, and the nitpick counterexample generator, Isabelle/UTP greatly
aids the effort of mechanising UTP theories and eventually applying them to verifica-
tion.

1Please see https://github.com/isabelle-utp/utp-main/
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3 Generalised Reactive Processes

In the section we construct a UTP theory which generalises the standard UTP theory of
reactive processes [29, 9] with an abstract model of trace. In the UTP model, the trace
can only be a discrete sequence of events, as used by process algebras like CSP. However,
for hybrid computation we of course require continuously evolving variables, rather than
simply discrete snapshots at given intervals. Therefore, we generalise the trace model
such that constructions like piecewise continuous functions can also be supported. This
thus provides an important first towards the hybrid relational calculus. Parts of this
section have been submitted as a paper to Information Processing Letters [18].

3.1 Trace Algebra

In this section, we describe the trace algebra that underpins our generalised theory of
reactive processes, the hybrid relational calculus, and ultimately the Modelica semantics.
We define traces as an abstract set T equipped with two operators: trace concatenation
a : T → T → T , and the empty trace ε : T , which obey the following axioms.

Definition 3.1 (Trace algebra). A trace algebra (T ,a, ε) is a cancellative monoid satis-
fying the following axioms:

x a (y a z) = (x a y) a z (TA1)
εa x = x a ε = x (TA2)

x a y = x a z ⇒ y = z (TA3)
x a z = y a z ⇒ x = y (TA4)

x a y = ε ⇒ x = ε (TA5)

As expected, a is associative and has left and right units. Axioms TA3 and TA4 show
that a is injective in both arguments. As an aside, TA3 holds only in models without
infinitely long traces, as such a trace x would usually annihilate y in x a y. Axiom TA5
states that there are no “negative traces”, and so if x and y concatenate to ε then x is ε.
We can also prove the reciprocal law: x a y = ε ⇒ y = ε. From this algebraic basis, we
derive a prefix relation and subtraction operator.

Definition 3.2 (Trace prefix and subtraction).

x ≤ y ⇔ ∃ z • y = x a z

y − x ,

{
ιz • y = x a z if y ≤ x
ε otherwise

Trace prefix, x ≤ y, requires that there exists z that extends x to yield y. Trace sub-
traction y − x obtains that trace z when x ≤ y, using the definite description operator
(Russell’s ι), and otherwise yields the empty trace. This is slightly different from the
standard UTP operator, which is defined only when x ≤ y. We can prove the following
laws about trace prefix.
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Theorem 3.1 (Trace prefix laws). For x , y, z : T :

(T ,≤) is a partial order (TP1)
ε ≤ x (TP2)
x ≤ x a y (TP3)

x a y ≤ x a z ⇔ y ≤ z (TP4)

TP2 tells us that ε is the smallest trace, TP3 that concatenation builds larger traces, and
TP4 that concatenation is monotonic in its right argument. We also have the following
trace subtraction laws.

Theorem 3.2 (Trace subtraction laws).

x − ε = x (TS1)
ε− x = ε (TS2)
x − x = ε (TS3)

(x a y)− x = y (TS4)
(x − y)− z = x − (y a z) (TS5)

(x a y)− (x a z) = y − z (TS6)
y ≤ x ∧ x − y = ε ⇔ x = y (TS7)

x ≤ y ⇒ x a (y − x) = y (TS8)

Laws TS1-TS3 relate trace subtraction and the empty trace. TS4 shows that subtraction
inverts concatenation. TS5 shows that subtracting two traces is equivalent to subtracting
their concatenation. TS6 shows that subtraction can be used to remove a common prefix.
TS7 shows that two traces are equal if, and only if, the first is a prefix of the second and
they subtract to ε. TS8 shows that a trace can be split into its prefix and suffix.

In the next section, we show that standard notions of traces are models. Afterwards, in
Section 3 we use the algebra to create the generalised theory of reactive processes.

3.2 Trace Models

In this section we describe three trace models: positive reals, sequences, and timed traces.
Other models are possible; for example, we can further extend timed traces to “super-
dense time” [35] to encompass multiple distinguished discrete state updates at a time
instant. We leave study of other models as future work.

Positive real numbers R≥0 form one of the simplest models of the trace algebra.

Theorem 3.3. (R≥0,+, 0) is a trace algebra.

Proof. + is clearly associative and has 0 as its left and right unit. Moreover, since + is
commutative and R≥0 contains no negative numbers then x + y = x + z implies y = z .
Finally, for the same reasons + has no additive inverse.

17



D2.3b - Final Modelica Semantics (Public)

x

time
0 lt

0
t
1

Figure 4: Piecewise continuous timed traces

Positive reals can be used to express timed programs with a clock variable time : R≥0 [25].
Sequences, unsuprisingly, also form a trace algebra, when we set a to the usual sequence
composition operator and ε to the empty sequence.

Theorem 3.4. (seq Event,a, 〈〉) is a trace algebra.

Though simple, we note that the sequence-based trace model has been shown to be suffi-
cient to characterise both untimed [40] and discrete time modelling languages [51].

A more complex model is that of piecewise continuous functions, for which we adopt
and refine a model called timed traces (TT) [24]. A timed trace is a partial function of
type R≥0 → Σ, for continuous state type Σ, which represents the system’s continuous
evolution with respect to time.

In our model we also require that timed traces be piecewise continuous, to allow both
continuous and discrete information. A timed trace is split into a finite sequence of
continuous segments, as shown in Figure 4. Each segment accounts for a particular
evolution of the state interspersed with discontinuous discrete events. This necessitates
that we can describe limits and continuity, and consequently we require that Σ be a
topological space, such as Rn, though it can also contain discrete topological information,
like events. Continuous variables are projections such as x : Σ→ R. We give the formal
model below.

Definition 3.3 (Timed Traces).

TT ,



f : R≥0 7→ Σ
| ∃ t • dom(f ) = [0, t)
∧ t > 0⇒ ∃ I : Roseq

•


ran(I ) ⊆ [0, t]
∧ {0, t} ⊆ ran(I )

∧

 ∀ n < #I − 1 •
f cont-on [In, In+1) ∧
lim

t→I−
n+1

f (t) exists






Roseq , {x : seqR | ∀ n < #x − 1 • xn < xn+1}

f cont-on [m, n) , ∀ t ∈ [m, n) • lim
x→t

f (x) = f (t)

A timed trace is a partial function f with domain [0, t), for end point t ≥ 0. When the

18



D2.3b - Final Modelica Semantics (Public)

trace is non-empty (t > 0), there exists an ordered sequence of instants I giving the
bounds of each segment. Roseq is the subset of finite real sequences such that for every
index n in the sequence less than its length #x , xn < xn+1. I must naturally contain at
least 0 and t, and only values between these two extremes. The timed trace f is required
to be continuous on each interval [In, In+1). The operator f cont-on A denotes that f is
continuous on the range given by A. We also require that each segment be convergent,
so that the limit as f approaches In+1 from the left exists.

We now introduce the core timed trace operators, which take inspiration from Höfner’s
algebraic trajectories [30].

Definition 3.4 (Timed Trace Operators).

f � n , λ x • f (x − n)

end(f ) , min(R≥0 \ dom(f ))

ε , ∅

f a g , f ∪ (g� end(f ))

Operator f � n shifts the indices of a partial function f : R≥0 7→ A to the right by n : R.
The operator end(f ) gives the end time of a trace f : TT by taking the infimum of the real
numbers excluding the domain of f . The empty trace ε is the empty function. Finally,
f a g shifts the domain of g when it goes beyond the end of f , and takes the union. We
establish laws governing these trace operators.

Theorem 3.5. Timed-trace laws

(f � m)� n = f � (m + n) (T1)
(f ∪ g)� n = (f � n) ∪ (g� n) (T2)

end(ε) = 0 (T3)
end(x a y) = end(x) + end(y) (T4)

T1 shows that shifting a function twice equates to a single shift on their summation. T2
shows that shift distributes through function union. T3 shows that the length of the
empty trace is 0, and T4 shows that the length of a trace is the sum of its parts. TT is
closed under trace concatenation.

Theorem 3.6 (Trace concatenation closure). tt1, tt2 ∈ TT if, and only if, tt1 a tt2 ∈ TT

This theorem tells us that decomposition of a timed trace always yields timed traces.
Finally, trace concatenation satisfies our trace algebra.

Theorem 3.7. (TT,a, ε) forms a trace algebra

Proof. For illustration, we show the derivation for associativity. The other proofs are
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simpler.

x a (y a z)

= x ∪ ((y ∪ (z � end(y))� end(x))

= x ∪ ((y� end(x)) ∪ (z � end(y)� end(x)))

= (x ∪ (y� end(x))) ∪ (z � (end(x) + end(y)))

= (x a y) ∪ (z � (end(x) + end(y)))

= (x a y) ∪ (z � (end(x a y)))

= (x a y) a z

This model provides the basis for hybrid computation. We introduce the theory in the
next section.

3.3 Theory of Reactive Processes

Here, we use our trace algebra to provide a generalised theory of reactive processes. We
prove the key laws of reactive processes, thus demonstrating the conservative nature of our
theory. Many of the properties here have been previously proved [9], but we restate and
prove many of them due to our weakening of the trace model and some small differences.
Another novelty is that all these theorems have been mechanised in our Isabelle/UTP
repository. Following [29, 9] we define the theory in terms of two pairs of observational
variables:

• wait,wait ′ : B – describe when the previous or current process, respectively, is in
an intermediate state;

• tr , tr ′ : T – the trace that occurred prior to and after execution of the current
process in terms of a trace algebra (T ,a, ε).

Our theory does not contain refusal variables ref , ref ′, as these are not always necessary
to describe reactive processes [51]. We describe three healthiness conditions namely R1,
R2c, and R3. R1 and R3 are already presented in [29]; for their R2 we have a different
formulation, which we call R2c.

Definition 3.5. Reactive healthiness conditions

R1(P) , P ∧ tr ≤ tr ′

R2c(P) , P[ε, tr ′ − tr/tr , tr ′]2 tr ≤ tr ′3P

R3(P) , II2wait 3P

R , R3 ◦ R2c ◦ R1

R1 states that tr is monotonically increasing; processes are not permitted to undo past
events. R2c states that a process must be history independent: the only part of the
trace it may constrain is tr ′ − tr , that it, the portion since the previous observation tr .
Specifically, if the history is deleted, by substituting ε for tr and tr ′ − tr for tr ′, then
the behaviour of the process is unchanged. Our formulation of R2c deletes the history
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only when tr ≤ tr ′, which ensures that R2c does not depend on R1, and thus commutes
with it. Finally, R3 states that if a prior process is intermediate (wait ′) then the current
process must identify all variables.

We compose the three to yield R, the overall healthiness condition of reactive processes.
An example R healthy predicate is R3(tr ′ = tr a 〈a〉 ∧ v ′ = v), which extends the
trace with a single event a and leaves program variable v unchanged. We show that R is
idempotent and monotonic.

Theorem 3.8 (R idempotence and monotonicity).

R = R ◦ R and P v Q ⇒ R(P) v R(Q)

A corollary of Theorem 3.8 is that reactive processes form a complete lattice.

Theorem 3.9. Reactive processes form a complete lattice with infimum
d

R A and supre-
mum

⊔
R A.

This, in particular, provides us with specification and reasoning facilities about recursive
reactive processes using the fixed-point operators.

Having stated the lattice theoretic properties of reactive processes, we move onto the
relational operators. Intuitively, R1 and R2c together ensure that the reactive behaviour
of a process contributes an extension t to the trace.

Theorem 3.10 (R1-R2c trace contribution).

R1(R2c(P)) = (∃ t • P[ε, t/tr , tr ′] ∧ tr ′ = tr a t)

This shows that for any R1-R2c process there exists a trace extension t recording its
behaviour, and that tr ′ is the prior history appended with this extension. Aside from
illustrating R1 and R2c, this allows us to restate a process containing tr and tr ′ to one
with only the extension logical variable t, which provides a more natural entry point for
reasoning about the trace contribution of a process. In particular, we can prove a related
law about sequential composition of reactive processes.

Theorem 3.11 (R1-R2c sequential). If P and Q are R1-R2c healthy, then

P ; Q = ∃ t1, t2 • ((P[ε, t1/tr , tr ′] ;
Q[ε, t2/tr , tr ′]) ∧
tr ′ = tr a t1 a t2)

Proof. By Theorem 3.10 and relational calculus.

This theorem shows that two sequentially composed processes have their own unique
contribution to the trace without sharing or interference. When applied in the context of
a timed trace, for example, it allows us to subdivide the trajectory into segments, which
we can reason about separately. This theorem allows us to demonstrate closure of R1-R2c
predicates under sequential composition.

Theorem 3.12 (R1-R2c sequential closure). If P and Q are both R1 and R2c healthy
then

R1(R2c(P ; Q)) = P ; Q
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Closure of R3 has previously been shown [9] and we have mechanised this proof. This
allows us to prove the following theorem.

Theorem 3.13 (R sequential closure). If P and Q are both R healthy then P ; Q is R
healthy.

We have now shown that reactive processes are closed under the lattice and relational
operators, and can use these results to demonstrate the algebraic nature of the theory,
by showing that reactive processes form a weak unital quantale.

Theorem 3.14. R predicates form a weak unital quantale; provided A 6= ∅ the following
laws hold:

P ; (
l

R A) = (
l

R Q ∈ A • P ; Q)

(
l

R A) ; Q = (
l

R P ∈ A • P ; Q)

P ; II = II ; P = P

Proof. Since
d

R A = R(
d

A) and sequential composition left and right distributes throughd
it suffices, to show that R is continuous.

Unital quantales are an important algebraic structure that give rise to Kleene algberas [1].
Significantly, they have a close connection with the point-free laws of sequential program-
ming.

Our final result is closure under parallel composition. The UTP provides an opera-
tor called parallel-by-merge [29], P ‖M Q, whereby the composition of processes P and
Q seperates their states, calculates their independent concurrent behaviours, and then
merges the results. The operator is parametric over merge predicate M that specifies
how synchronisation is performed. Different programming language semantics require
formation of a bespoke merge predicate depending on their concurrency scheme. We give
a slightly simplified version of the UTP definition, which is nevertheless equivalent.

Definition 3.6 (Parallel-by-merge).

P ‖M Q , (dPe0 ∧ dQe1 ∧ v ′ = v) ; M

Operator dPen augments the after variables of P with an index; for example:

dx ′ = 7 · ye0 = (0.x ′ = 7 · y)

The three conjuncts rename the after variables of P and Q to ensure no clashes, and
identify all before variables v. Thus M has access to the state of each variable before
execution (v), and from the respective composed processes (0.v and 1.v). M can thus
invoke tr ′ = f (0.tr , 1.tr) with a suitable trace merge function f , such as interleaving.

The healthiness conditions R1 and R3 can be directly applied to M , modulo some dif-
ferences in alphabet. R2c requires adaptation as it is possible to access the trace history
through the two indexed traces, 0.tr and 1.tr , in addition to tr . It is, therefore, necessary
to delete the history from the two in the revised healthiness condition R2m below.
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Definition 3.7 (R2c for merge predicates).

R2m(M ) , (P[ε, tr ′−tr , 0.tr−tr , 1.tr−tr

/tr , tr ′, 0.tr , 1.tr ])2 tr ≤ tr ′3P

R2m has the same form as R2c except that it deletes the history of three extant traces,
tr ′, 0.tr , and 1.tr . From M ’s perspective, 0.tr and 1.tr contain the trace the parallel
processes have executed. Thus we need to delete the history, through substitution, from
these as well so that they contain only the contributions of their respective processes.
This allows us to show that the overall composition is R2c. We define a condition for
merge predicates – Rm , R1 ◦ R2m ◦ R3 – and prove the following final theorem.

Theorem 3.15. P ‖M Q is R healthy provided that P,Q are R healthy, and M is Rm
healthy.

Thus our generalised theory of reactive processes is conservative and unifies the denota-
tional semantics of concurrent programming.

3.4 Reactive Relations and Conditions

In this section we introduce a form of reactive relation which we will use to describe
assumptions and guarantees in our reactive contracts. A reactive relation is an R1-R2c
healthy predicate that does not have ok, ok ′, wait, and wait ′ in its alphabet. Such a
relation is effectively an alphabetised relation with the non-relational trace variable tt
present.

We define the following healthiness condition for reactive relations:

Definition 3.8 (Reactive Relations).

RR(P) = (∃ ok, ok ′,wait,wait ′ • R1(R2c(P)))

Reactive relations are used in our contracts to represent the preconditions, pericondi-
tions, and postconditions, that is the constituent parts of the contract’s assumptions and
guarantees. Clearly, reactive relations form a complete lattice where the top remains
false and the bottom is R1(true), that is the most non-determinstic relation where the
trace is monotonically increasing.

Since reactive relations are a kind of condition, it is useful to have an associated Boolean
algebra to support contract and specification construction. However, logical negation is
not closed under R1 and thus it is necessary to redefine negation, and also implication,
for similar reasons, for reactive relations.

Definition 3.9 (Reactive Relation Logical Operators).

truer , R1(true) ¬r P , R1(¬P) P ⇒r Q , (¬r P ∨ Q)

Reactive negation ¬r P negates and then applies R1. Effectively this yields a predicate
whose corresponding set of trace extensions do not satisfy P. Since RR is closed under
the other Boolean operator we can prove the following theorem.
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Theorem 3.16. (RR,∧,∨,¬r , truer , false) forms a Boolean algebra

Sequential composition is closed under RR and II, with an appropriate alphabet, is also
a reactive relation. We define an assignment operator, in the style of Back’s update
action [2], that applies a substitution function σ : Σ → Σ to the state-space variable st,
and leaves all other variables unchanged.

Definition 3.10 (Reactive Relational Assignment).

〈σ〉r , (tr ′ = tr ∧ st ′ = σ(st) ∧ r ′ = r)

Since the alphabet is open, we use the shorthand r to refer to all other variables excluding
ok, wait, tr , and st. We can write a singleton assignment using the derived syntax
x :=r v , 〈{x 7→ v}〉r . Assignment is RR, since we conjoin with tr ′ = tr . As usual,
we also introduce the degenerate form IIr , 〈id〉r which simply retains the values of all
variables. We also define a state condition operator [s ]r , R1(s), where s is a predicate
over undashed state variables only. The state condition is RR healthy: it is clearly R1,
and also it is R2c since s contains no reference to trace variables.

A useful subset of the reactive relations, is the reactive conditions, which we use to encode
contractual preconditions. A relational condition is a relation b that does not refer to
dashed variables; they can be characterised by the idempotent C(P) = P ; true. For
reactive relations, we cannot exclude all dashed variables as we do wish to express trace
constraints using tt , which includes tr and tr ′. Consequently, reactive conditions are
characterised by the following healthiness condition, RC.

Definition 3.11 (Reactive Conditions).

RC1(P) , ¬r ((¬r P) ; truer) RC , RC1 ◦ RR

We require that truer is a right unit of the predicate’s negated form, which means, firstly,
that a healthy P can refer only to undashed state and observational variables other than
tr . For example, any state condition [s ]r is RC1, as the following derivation shows.

RC1([s ]r) = ¬r ((¬r [s ]r) ; truer) [RC1 definition]
= ¬r ([¬ s ]r ; truer) [predicate calculus]
= ¬r ((tr ≤ tr ′ ∧ ¬ s) ; tr ≤ tr ′) [R1, truer , [−]r definitions]
= ¬r (tr ≤ tr ′ ; tr ≤ tr ′ ∧ (¬ s) ; tr ≤ tr ′) [relational calculus]
= ¬r (tr ≤ tr ′ ∧ (¬ s) ; tr ≤ tr ′) [transitivity of ≤]
= ¬r (tr ≤ tr ′ ∧ (∃ t0 • (¬ s) ∧ t0 ≤ tr ′)) [; definition, substitution]
= ¬r (tr ≤ tr ′ ∧ ¬ s) [predicate calculus]
= ¬r (¬r [s ]r) [¬r , R1 definitions]
= [s ]r [double negation]

Reactive conditions can also refer to tr ′, but only provided that the corresponding trace
extension tt refers only to a prefix of the trace. For example, ¬r (〈a〉 ≤ tt) is RC healthy,
because it only refers to a prefix of tt in its negated form, as the following derivation
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confirms.

RC1(¬r (〈a〉 ≤ tt)) = ¬r ((¬r ¬r (〈a〉 ≤ tt)) ; truer) [RC1 definition]
= ¬r ((〈a〉 ≤ tt) ; truer) [double negation]
= ¬r (tr a 〈a〉 ≤ tr ′ ; tr ≤ tr ′) [tt , truer definition]
= ¬r (tr a 〈a〉 ≤ tr ′) [composition of ≤]
= ¬r (〈a〉 ≤ tt) [tt definition]

Effectively, reactive conditions serve to restrict permissible initial behaviours in the trace;
the previous example states that the event a must not be performed initially.

RC1 is monotonic, and thus RC predicates form a complete lattice. In particular, we
retain the lattice top and bottom elements of false and truer , and also the connectives
∧ and ∨. However, RC predicates are not closed under reactive negation. This, however,
is not necessary for the purposes of this paper.

We also define a reactive weakest precondition operator [15].

Definition 3.12 (Reactive Weakest Precondition).

P wpr Q , ¬r (P ; ¬r Q)

This operator is similar to that given for relations in the UTP book and tutorials [29, 8].
We have simply replaced relational negation with reactive negation. Thus, we have proven
a number of standard wp laws [15] in this context, which we enumerate below.

Theorem 3.17 (Reactive Weakest Precondition Laws).

P wpr truer = truer (3.17.1)

P wpr (Q ∧ R) = (P wpr Q ∧ P wpr R) (3.17.2)

(P 2 b3r Q) wpr R = (P wpr R 2 b3r Q wpr R) (3.17.3)

(P ; Q) wpr R = P wpr (Q wpr R) (3.17.4)

IIr wpr R = R (3.17.5)

〈σ〉r wpr R = σ †R (3.17.6)

false wpr P = truer (3.17.7)

(P u Q) wpr R = (P wpr R) ∧ (Q wpr R) (3.17.8)(l
i ∈ A • P(i)

)
wpr R = (∀ i ∈ A • P(i) wpr R) (3.17.9)

The majority of these laws are identical to those given by Dijkstra [15]. Our assign-
ment law uses a substitution operator σ †R to apply substitution function σ to predicate
R.

Like UTP relations, reactive relations do not have the expressivity to account for non-
termination. These are accounted for by our contracts.
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4 Hybrid Relational Calculus

In this section we describe a substantial upgrade to our hybrid relational calculus, which
was previously described in Deliverable D2.2c [10, 19]. The underlying semantic model,
rather than a bespoke UTP theory, is now our theory of generalised reactive processes.
Moreover, the signature has substantially changed, with additional operators provided,
and supporting theorems.

4.1 Core Calculus

Hybrid relations are used to describe the assumptions and guarantees associated with
hybrid reactive designs by constraining the possible evolutions of continuous variables. A
hybrid relation is a form of reactive relation where the underlying trace model is (TT,a, ε).
Thus, the trace contribution (tt) refers to a particular evolution of the continuous state
space Σc, which is a topological (Hausdorff) space. We introduce the syntax ` , end(tt)
which refers to the length of the present evolution.

Variables in the timed trace model are projections of the continuous state space Σ, which
is a topological space. Technically, we uses lenses [16, 21] to model these projects, such
that each continuous variable x identifies a region of Σc, such that x : R =⇒ Σc. Actually,
the source type of each lens is not limited to R but can also be any topological space.
We introduce the syntax s:x to project the part of state space s described by lens x . A
continuous variable expression x(t) can then be defined as follows.

Definition 4.1 (Continuous Variable Expression).

x(t) , tt(t):x

A continuous variable x is a function that obtains the continuous state space at time t
and then projects the corresponding region.

For the sake of generality, we split the overall state space of a hybrid relation Σ, described
by observational variable st, into both a discrete state space (Σd) and a continuous state
space (Σc). We therefore introduce lenses d : Σd =⇒ Σ and c : Σc =⇒ Σ that refer
to these sub-regions of the state space, respectively. As in our previous work [19], we
unify continuous variable assignment and evolution such that c is tied to the evolution in
the trace (tt). Nevertheless to avoid confusion, it is important to distinguish continuous
state variables, that is the valuation of the continuous variables at the beginning or
end of a computation, from continuous trajectory variables, which are functions on
the timed trace. These quantities are linked, but are not identical.

We also note that the discrete variables within d are not precisely the same concept as
discrete variables in the Modelica sense. They are variables that are not represented
in the trajectory and exist only as imperative assignable variables. For the most part
such variables are useful to store temporary local variables used in imperative program
fragments. In contrast, for Modelica, discrete variables are really a subclass of continuous
variable that remain constant over a trajectory evolution, and we shall model them as
such.
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Next, we describe instant relations and the interval operator, which we have previously
given a semantics in a bespoke theory of hybrid relations [19].

Definition 4.2 (Instant Relations and Intervals).

P @ t , {c′ 7→ tt(t)} †P

dP(ti)e , R1 (∀ t ∈ [0, `) • P(t)@ t)

An instant predicate expression P @ t lifts primed continuous state variables, referred
to in P, to continuous trajectory variables. For example, the expression (x ′ > 7.5)@ t
is equivalent to x(t) > 7.5, assuming that x is a continuous state variable. This is a
slight departure from previous work, in that instant relations can now refer to the initial
values of continuous variables, which was not previously possible. This is why we use the
primed version of each state variable. Effectively P is a relation between initial values of
continuous variables, alternatively written as x0, and the valuation of the variables at t.
The definition of P @ t simply substitutes the valuation of the continuous state variable
c′ for tt(t): the trajectory state at t.

An interval specification dP(ti)e states that such a relation P holds over the entire evo-
lution of the trajectory. Here, P is also parametrised by the current time ti, which allows
continuous variables to also depend on time. Technically, ti : R≥0 is distinguished variable
that is often used in continuous time predicates. The definition of dP(ti)e states that P
holds at every instant ti between 0 and `, and additionally enforces R1 to ensure only
healthy timed traces are permitted. The construction is automatically R2c since it only
refers to tt and not tr or tr ′ explicitly. Thus, since neither ok nor wait are mentioned,
dP(ti)e is an RR healthy reactive relation.

The operators defined so far only permit specification of trajectory variables. In order to
link these to continuous state variables so that, for instance, we can assign continuous
variables, we define two coupling invariant operators.

Definition 4.3 (Continuous Coupling Invariants).

ll(x) , R1 (c:x = x(0))

rl(x) , R1
(

c:x ′ = lim
t→`−

x(t)
)

The first coupling invariant, ll(x), links together the initial value of continuous state vari-
able x with the corresponding trajectory variable at time 0. The second, rl(x), links the
final value of continuous state variable x (that is, x ′) with the limit of the corresponding
trajectory variable as it approaches the duration of the evolution ` from the left. By
definition of timed traces, we know that the latter limit must exist, since our trajectories
are always piecewise convergent.

The asymmetry of the two invariants is important. Whilst the trajectory explicitly defines
a value at time 0, as invoked by ll, it does not define one at ` since the domain is the right-
open interval [0, `). The final value exists, however, because the timed trace converges to
a limit. However, when sequential composing hybrid relations, and thus composing the
two trajectories, a discrete jump is permitted so that the value at t and the left limit at
t need not be the same. Both ll(x) and rlx are healthy reactive relations.
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Using these operators, we can now define operators for continuous function evolution.

Definition 4.4 (Function Evolution).

x ← f (ti) , (dx ′ = f (ti)e ∧ ` > 0)

x ←
≤t

f (ti) , (x ← f (ti) ∧ ` ≤ t)

x ←
[s,t]

f (ti) , (x ← f (ti) ∧ ` ∈ [s, t] ∧ d ′ = d ∧ rl(v))

The first operator, x ← f (ti), simply states that the trajectory variable x evolves accord-
ing to continuous function f . We require that such an evolution have non-zero duration,
as otherwise the function’s behaviour cannot be observed. Lens x can consist of several
continuous variables, and thus a function evolution can be used to encode a system of
simultaneous algebraic equations, as present in Modelica. It is also worth noting that
other continuous variables not mentioned such a statement are unconstrained and thus
behaved nondeterministically. This is an important feature of the model as it will allow
the use of nondeterminism to model concurrency of parallel hybrid processes.

The second operator, x ←≤t f (ti), is the same but adds the requirement that the duration
be at most t. The third and final operator, x ←[s,t] f (ti), states that the evolution
terminates non-deterministically in the interval s ≤ ti ≤ t. This operator explicitly
terminates the function’s evolution and thus additionally states that all discrete variables
should remain the same as they were at the start, and applies coupling invariant rl(v) to
set the final state of all continuous variables. All the function evolution operators form
healthy reactive relations.

In addition to these evolution operators, we also define a specialised version of evolution
that is analogous to an assignment in the imperative world.

Definition 4.5 (Evolution by Assignment).

{σ(ti)}h , (d〈σ(ti)〉e ∧ ` > 0)

This operator illustrates the usefulness of having relational predicates in intervals. It
takes a parametric variable assignment σ and requires that this assignment hold at every
instant. The assignment can be used to encode how variables evolve with respect to their
initial value and the current time. For example, we can have {[x 7→ x + 2 ∗ ti]}h which
means that x takes the value x0 + 2∗ ti at each instant ti. We next define the preemption
operator.

Definition 4.6 (Preemption).

P 4 〈b | c〉 , (P ∧ dbe ∧ ` > 0 ∧ rl(v) ∧ c ∧ d ′ = d)

The preemption operator (P 4 〈b | c〉) is a little different to the one described in our
previous hybrid relational calculus [19], and now takes three parameters rather than two.
It states that P evolves for some non-zero duration, while ever condition b holds. At
some undetermined point, c should become true finally, and at this point the operator
can terminate, yielding final values for all variables using the right limit, and identifying
all discrete variables.
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Intuitively, the first condition, b, is similar to the state invariants present in hybrid
automata [27]. Evolution of P can continue while b remains true, which is ensured by
conjunction with the interval specification dbe. On the other hand, evolution of P can
terminate whenever the final continuous state satisfies c. Since b and c can overlap there
is potential non-determinism as to when P terminates, which is necessary when handling
imprecision of measured continuous values. If b = (¬c) then there is at most one instant
at which P terminates, leading to a precise and purely deterministic preemption.

If c never becomes true then this operator evaluates to false, the miraculous reactive
relation. Clearly then, as is common with the standard UTP relational theory, we cannot
account for non-terminating hybrid relations in this domain. This will be allowed in
the theory of hybrid reactive designs in Section 6. Reactive relations are closed under
preemption. We now demonstrate an important theorem regarding the termination of a
function evolution.

Theorem 4.1 (Evolution Termination). We assume that f is a continuous function on
the domain [0, l], where l > k and k > 0, and the following conditions hold:

1. b is satisfied for all instants t ∈ [0, l): ∀ t ∈ [0, l) • b[f (t)/x ′].

2. b becomes false at l: ¬b[f (l)/x ′].

3. c is not satisfied for all instants t ∈ [0, k): ∀ t ∈ [0, k) • ¬c[f (t)/x ′].

4. c becomes true at k and stays true until l: ∀ t ∈ [k, l) • c[f (t)/x ′].

Then the following equality holds:

(x ← f (ti) 4 〈b | c〉) =

(
x ←

[k..l]
f (ti)

)

This theorem demonstrates the condition under which a function evolution under a given
invariant and preemption condition will terminate. The first two assumptions ensure that
the invariant b is true initially, and remains true until l. The remaining two assumptions
state that c was not true for some period, until k at which point it becomes true and
stays true until l. This being the case the preemption will occur non-deterministically
at some point between k and l. A special case is when k = l, in which case there is
precisely one instant when this occurs. This theorem is useful in languages like Modelica
where the evolution of a differential equation can be halted when a specific condition is
reached.

We next describe how we give a semantics to ODEs.

4.2 Derivatives and Ordinary Differential Equations

The ability to express properties of derivatives of continuous variables is of course central
to hybrid system modelling. In the hybrid relational calculus we introduce the notation
x has-der f (ti) which states that the derivative of continuous variable x is determined
by expression f , which is parametrised over the relative time ti. This is equivalent to
the usual calculus notation ẋ(t) = f (t, x). For example, we can write constraints like
x has-der 2 · x , which states that x is changing at the rate of 2 · x .
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A system of ODEs ẋ(t) = f (t, x(t)) specifies a family of continuous solution functions
x : R≥0 ⇒ Rn, that give the value for each of the n continuous variables at a given
instant. The ODE is defined by function f : R≥0 × Rn ⇒ Rn that gives the derivative of
each variable at time t, and depends on the present value of the variables, that is x(t).
A solution to an ODE is any function x that changes at the rate specified by f .

Naturally, when animating or theorem proving a system, a single solution is normally
desired, and for this it is necessary to construct an initial value problem (IVP) that
supplements the ODE with initial values for all continuous variables. Then the Picard-
Lindelöf theorem [12] can be applied to show that, provided f is Lipschitz continuous, then
a unique solution exists to the initial value problem [33]. Lipschitz continuity essentially
limits the rate at which a continuous function can change.

We can now describe our operator for ODEs in the hybrid relational calculus.

Definition 4.7 (Ordinary Differential Equation).

〈 x • f 〉 , (∃ g, l • ` > 0 ∧ ` = l ∧ ll(x) ∧ dg has-ode-deriv f at (t < l) ∧ x ′ = g(t)e)

The operator takes two parameters: x : Rn =⇒ Σc, which is a lens projecting a vec-
tor of reals from the continuous state; and f , the ODE specification function described
above. The semantics of this operator states that there exists a solution function g and
duration l such that the duration is both non-zero and equal to l, the initial values of
trajectory variables are taken from the state variables, and the ODE holds over the dura-
tion. The latter is specified in terms of the interval operator, and a quaternary operator
-has-ode-deriv - at (- < -), that formally states that the derivative of g is f at every
instant t ∈ [0, l). Finally, the value of lens x is linked at every instant to the solution
function g. Every operator of which the ODE operator is composed is R1 and R2c, and
thus it is a healthy reactive relation.

We provide a simple example below to illustrate the operator’s use.

Example 4.1 (Gravity ODE).

〈 h, v • (λ(h, v) • (v,−9.81)) 〉

Here, we are describing two continuous variables: height h and velocity v. The derivatives
are described by the function on the right, so that the derivative of h is v and the derivative
of v is −9.81, Earth’s gravitational acceleration. It should be noted we have been verbose
here, but h and v have different meanings on the left and right of the •. On the left
they are global continuous variables, whilst on the right they are local to the function
definition.

An ODE is equivalent to a derivative constraint, as the following theorem demonstrates.

Theorem 4.2 (ODE Derivative Constraint).

〈 x • f (ti) 〉 = (ll(x) ∧ x has-der (f (ti)(x)))

This theorem gives rise to alternative slightly simpler definition of the ODE operator.
The definition applies the initial value coupling invariant, and asserts that lens x has the
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derivative given by the characteristic ODE function f . Note that x is not necessarily a
single variable, but as above it can be a vector of variables.

Sometimes it is useful to state that variables not defined by an ODE should be held con-
stant during evolution. Ordinarily such variables will be permitted to behave arbitrarily
which may be undesirable. We therefore have the following derived operator for framed
ODEs.

Definition 4.8 (Framed ODE).

〈 x : f 〉 , (〈 x • f 〉 ∧ dx : [true]e)

We utilise the framing operator from the UTP relational calculus, x : [P] which states
that relation P makes changes to only variables within x ; all others remain unchanged.
The behaviour of dx : [true]e is then the set of evolutions in which x can change according
to the ODE, but every other variable is held constant over the evolution. This is useful
for modelling Modelica’s discrete variables which are held constant in this way.

In order to solve differential equations, as we said it is necessary to set up an initial value
problem. The following theorem shows how a solution may be used to transform an ODE
to symbolic solution function evolution.

Theorem 4.3 (ODE Solution). If, for any v : Rn and l > 0, g(v) is the unique solution
to f on the interval [0, l], and g(v, 0) = v then 〈 x • f 〉 = x ← g(x , t).

This theorem allows us to transform a differential equation into a solution function evolu-
tion. It has some subtleties that require further explanation. Function g : Rn × R⇒ Rn

is the solution function, but it depends on the initial value for variables which is why
it has two inputs. This allows us to abstract from IVPs when symbolically solving an
ODE. Thus, we require that for any given initial valuation of the continuous state v, g(v)
is the unique solution to f . Moreover, we require that the function’s value at time 0 be
the initial value we have supplied; a kind of sanity check for the function. If all these
conditions are satisfied then the ODE can be rewritten to x ← g(x , t). The x on the right
hand side of the arrow is the initial value of x , as usual for the relational calculus. Thus,
the solution function is fully decided when an initial value is supplied by a preceding
assignment.

In terms of showing that a function is a unique solution, it suffices to show that the func-
tion is a solution and then to exhibit an appropriate Lipschitz constant. In Isabelle/HOL
the former of these two can be accomplished through a tactic we have written called ode-
cert that certifies a solution to an ODE by applying derivative introduction rules.

4.3 Perturbation

Dynamical models in languages like Modelica, and also their realisation in the physical
world seldom follow the precise continuous mathematics that we have hitherto considered.
Rather, the observable state of the real system at a given point in time ought be be within
some error bound of the the idealised system, in order to account for necessary imprecision
in detecting events. For this reason, we introduce perturbation operators into the hybrid
relational calculus that allows us to weaken a predicate or hybrid relation according some
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error bound ε : R≥0. We first define an operator that weakens a predicate in continuous
variables.

Definition 4.9 (Nearly Operator).

nrly(p, x , ε) ,

{
(∃ v • p[v/x ] ∧ |x − v| < ε) if ε > 0

p otherwise

The nrly operator take a predicate on undashed variables p, a lens projecting a real vector
from the continuous state space x : Rn → Σc, and the pertubation ε : R≥0. It evaluates
to true when x comes within ε of the truth boundary defined by p. More precisely, it
expands the scope of p by an open ball of radius ε. For example, nrly(x ≥ 0, x , 1) is equal
to x > −1. It is a weakening operator, as the following theorem shows.

Theorem 4.4 (Nearly Weakens). p ⇒ nrly(p, x , ε)

We also have a second operator, defined below, which similarly acts on the trajectory of
a hybrid relation. It states that at every instant a given portion of the continuous state
lies within ε of the ideal continuous state.

Definition 4.10 (Perturbation Operator).

ptrb(P, x , ε) ,



∃ f : TT •

P[f /tt ] ∧ tr ≤ tr ′ ∧ ` = end(f ) ∧
∀ t ∈ [0, end(f )) • ∃ v : Rn •
|(f (t):x)− v| ≤ ε ∧
tt(t) = f (t)(x 7→ v)



 if ε > 0

P otherwise

Function ptrb(P, x , ε) takes an existing hybrid relation P, a lens projecting a real vector
from the continuous state space x : Rn → Σc, and the pertubation ε : R≥0. The definition
states that there exists a timed trace f which is equated (by substitution) with the ideal
timed trace of P. From f , a new perurbed trace is then constructed. This new trace must
be well formed (tr ≤ tr ′) and it must have the duration of the original trace (end(f )).
Moreover, for every instant t within this duration, there must exist a real vector v which
is the perturbed state observation. The distance between v and the original observation
f (t):x must be no more than ε. Then, the new perturbed trace is set to have the original
trace state at t with x updated to be v. This means that portions of state outside of x
will remain unchanged by the perturbation.

In order to illustrate the perturbation operator, consider the simple evolution P ,
dx = 0e for x : R =⇒ Σc, which states that continuous variables x is 0 at every in-
stant. If we perturb this hybrid relation with ptrb(P, x , 1), for instance, then the result
is d−1 ≤ x ∧ x ≤ 1e. In other words, the perturbation adds non-determinism to the pre-
viously deterministic evolution, and simply requires that the timed trace has x between
−1 and 1 at every instant.

We can prove a number of characteristic theorems of ptrb(P, x , ε). First of all, if P is a
hybrid relation then so is ptrb(P, x , ε). Secondly, application of a 0 perturbation yields
the same hybrid relation, as shown below.
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Theorem 4.5 (Zero Perturbation). ptrb(P, x , 0) = P

Secondly, we can show that pertubation is inherently a weaking operator, as shown below.

Theorem 4.6 (Perturbation Weakening). If P is a hybrid relation, and x is a very
well-behaved lens, then ptrb(P, x , ε) v P.

This shows that the greater the perturbation applied, the more non-deterministic the
hybrid relation will become. Thus, we can model a dynamical system using an idealised
hybrid relation, and then apply such perturbations to weaken the specification, taking
care of course to chose an appropriately small ε. Then a given implementation must
satisfy this weakened hybrid relation.

4.4 Example

In order to exemplify the use of the hybrid relational calculus, we describe below part of
the Modelica train model from the WP1 Railways case study as described in Deliverable
D1.2b [41]. This example has also previously been reported in a conference paper on this
case study [53].

We focus on the situation when the train is stopping due to an approaching red signal.
We formalise this situation using continuous variables for train acceleration acc, velocity
vel and position on the track pos. We note that normal-deceleration below is negative
and determines the rate at which the train reduces its speed as a result of braking forces
being applied.

Definition 4.11 (Braking Train in Hybrid Relational Calculus).

BrakingTrain ,



acc :=r normal-deceleration ;
vel :=r max-speed ;
pos :=r 0 ;〈 ˙acc

˙vel
˙pos

 =

 0
˙acc
˙vel

〉 4 〈vel > 0 | vel ≤ 0〉 ;

acc := 0


We first assign initial values to the continuous variables, and this effectively creates initial
conditions for the ODE. We then evolve the continuous variables, according to the ODE,
until the velocity reaches 0. In this instance, we do not allow non-determinism here, but
record the precise instant that the velocity is 0. Thus, the evolution invariant is vel > 0,
and the preemption condition is vel ≤ 0. After this, we set the acceleration to 0, so that
the train halts and does not start moving backwards.

We have also encoded this example in Isabelle/UTP and mechanised a proof (see Figure 5)
that the train stops before the track ends, that is,

(accl ′ = 0 ∧ dpos < 44e) v BrakingTrain

holds, where 44m is the track length. The specification to the left states that, for all
possible evolutions, the final value of the acceleration is 0 and pos is always less than
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Figure 5: The braking train scenario encoded in Isabelle/UTP.

44. This should then be refined by our hybrid relation, BrakingTrain. For the sake of
brevity, we elide details of the proof in Isabelle, other than the first four steps. The proof
proceeds as follows.

1. Solve the ODE symbolically to obtain a function evolution statement. This requires
us to show Lipschitz continuity of the ODE so that, via the Picard Lindelöf theorem,
there is precisely one such solution;

2. Use the assigned values to obtain the set of initial conditions;

3. Calculate the precise time at which the velocity reaches zero; here, that is approx-
imately after 2.97 seconds;

4. Finally, prove that the position at every earlier instant is less than 44 metres.

The final step requires that we solve a polynomial inequality:

(104/25) ∗ t − (7/10) ∗ t2 < 44

which includes the solution for the position derivative. In Isabelle, this can be done
using the lesser-known approximate tactic [31], which safely employs a floating-point
approximation to prove the conjecture with respect to the reals.

5 Reactive Design Contracts

In this section we give an overview of the signature of our theory of reactive design
contracts and proven algebraic laws, leaving the definition of the UTP theory’s healthiness
condition (NSRD) for the interested reader in Appendix A. All the laws we present are
mechanically proven theorems of our UTP theory, though we provide some intuition for
why the laws holds. We illustrate the use of our contract notation with a number of
Circus-based examples which give intuition, though stateful failure-divergences not the
only applicable semantic model. Reactive programs proceed through three phases:
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1. pre-execution – the program waits for its predecessor to terminate and does not
contribute any observable behaviour.

2. intermediate execution – the program begins the main body of its execution,
which includes communication with other concurrent processes and updates to its
state. During this time the state is hidden from its successor.

3. termination – the program ceases interaction with the environment, reveals its
final state to the successor, and signals permission for it to begin.

In our model, we largely assume that parallel programs do not directly share state but,
as is typical in process algebras, they must explicitly communicate using a suitable mech-
anism such as channels. All other activity, such as state updates, is internalised to the
sequential behaviour of the process, though it is possible to merge the state of several
terminated parallel processes [40]. Shared variables can, nevertheless, be modelled by
encoding them within the trace.

Reactive programs can also diverge, meaning they exhibit erroneous behaviour such as
engaging in an infinite sequence of internal activity without any communication. Diver-
gence in particular corresponds to violation of a contract’s assumptions.

A reactive design contract is a triple [7] of the form

[P(st, tt , r) -| Q(st, tt , r , r ′) | R(st, st ′, tt , r , r ′) ]

The three parts of such a contract are:

1. The precondition P, with assumptions the contract makes before it executes, vi-
olation of which corresponds to a programmer error such as divergence. It is a
reactive condition, and can therefore refer to the initial state st, the trace contri-
bution tt , and potentially other (unprimed) observational variables in the alphabet
(r), but crucially not observational variables ok or wait, or primed variables other
then tr ′. Access to tr ′ is usually indirect through tt .

2. The pericondition Q, with commitments the contract guarantees to fulfil during
its intermediate states. It is a reactive relation on the initial state only, tt , and any
other variables (r , r ′).

3. The postcondition R, with commitments that will be fulfilled should the program
terminate. It is a reactive relation that can additionally refer to the final state st ′,
unlike the pre and pericondition.

Such contracts can be used both as a specification mechanism, for encoding assumptions
and guarantees for a subsystem, or alternatively as a means to encode the semantics of
a reactive programming language. A reactive design contract has the following defini-
tion.

Definition 5.1 (Reactive Design Contract).

[P -| Q1 | Q2 ] , Rs(P ` Q1 � Q2)

This definition assumes that P, Q1, and Q2 are formed as specified above. This is a form
of UTP design which has been made reactive using Rs. In previous work [40], reactive
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designs would often be written in just two parts (Rs(P ` Q)), the assumption and guar-
antee, with the intermediate and final behaviours intertwined. Here, we adopt the triple
notation first developed in [7] as it allows us to consider these separately and simplifies
many laws. The diamond Q1 � Q2 is simply an abbreviation for Q1 2wait ′3Q2 that
distinguishes intermediate and final non-divergent observations.

We illustrate the use of contracts with the example of Circus event prefix as a reactive
design triple, for which we need to specialise the semantic model to failure-divergences
by adding the observational ref ′ : P Event, as usual [9].

Example 5.1 (Event Prefix Reactive Design).

a → Skip , [ truer -| a /∈ ref ′ ∧ tt = 〈〉 | st ′ = st ∧ tt = 〈a〉 ]

A terminated prefix has a true precondition since it can never diverge; every context is
a valid context. Its pericondition states that event a is not refused and the trace does
not change in intermediate states. The postcondition states that the state is unchanged
by the event, and the trace is extended with a. In Circus one can use this definition
to represent the more general prefix construct using sequential composition: a → P ,
(a → Skip) ; P.

Another example is the Skip action, which represents a termination, and the Stop action,
which represents a deadlock.

Example 5.2 (Terminated and Deadlocked Actions).

Skip , [ truer -| false | tt = 〈〉 ∧ st ′ = st ]

Stop , [ truer -| tt = 〈〉 | false ]

The terminated process Skip has a true precondition. It has no intermediate observations,
as it is essentially instantaneous. In the postcondition it makes no contribution to the
trace, and leaves the state variables unchanged. The deadlocked process likewise has a
true precondition. No state is a final state, indicated by the false postcondition, since
the process does not terminate. In the intermediate states it is simply required that the
trace is unchanged.

Example 5.3 (External Choice).

2 i ∈ A • [P1(i) -| P2(i) | P3(i) ] =[∧
i∈A

P1(i) -

∣∣∣∣∣
(∧

i∈A

P2(i)
)

2 tt = 〈〉3
(∨

i∈A

P2(i)
) ∣∣∣∣∣ ∨

i∈A

P3(i)
]

Our final example is external choice over a contract indexed by set A. This permits
internal activity in the choice branches, but the choice itself is not resolved until an
external event occurs. The precondition requires that all branches of the external choice
hold in the initial state. In the pericondition, while the trace has not changed and thus no
event has occurred – tt = 〈〉 – all periconditions of the choice hold simultaneously. Once
an event has occurred only one of the periconditions need hold. This is the reason why
the pericondition does not refer to final states, as these are concealed until termination
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or observation. Finally, in the postcondition, one of the choice branch postcondition
holds.

Though these previous three definitions look different to the standard presentation in Cir-
cus, they are largely equivalent. The exception is event prefix, which is slightly different
to the definition in [40] in that we conceal the state whilst waiting for the event.

Though language-specific operators like those presented above for Circus can be ex-
pressed, it turns out that many core contract operators can be introduced generically, as
shown below.

Theorem 5.1 (Reactive Design Core Operators).

IIR = [ truer -| false | IIr ]

〈σ〉R = [ truer -| false | 〈σ〉r ]

Miracle = [ truer -| false | false ]

Chaos = [ false -| false | false ]

Operator IIR is reactive skip. It has a true precondition, and a false pericondition indi-
cating that it has no intermediate states and so is essentially instantaneous. The post-
condition defines that it contributes nothing to the trace, and simply identifies the before
and after states. Since the alphabet at this point is open, we also add the conjunct
r ′ = r which is shorthand for saying all additional variables are identified. This distin-
guishes IIR from the Circus specific Skip operator from Example 5.2 which leaves ref ′
unconstrained.

〈σ〉R is a generalised assignment operator, again similar to Back’s update action [2], where
σ : Σ → Σ is a function on the state space. Its postcondition defines an update of the
state by applying σ to it using the reactive relational assignment. The more specific
assignment x :=R v can be expressed as 〈{x 7→ v}〉R.

Miracle is the miraculous reactive design. It has a true precondition, but has no inter-
mediate or final states, and thus is effectively impossible to execute. As we shall see it
corresponds to the top element of the refinement lattice, as it is the most deterministic
reactive contract in that no behaviour implements it.

Chaos, in contrast, is the contract with an unsatisfiable precondition and thus always
yields a program error. It corresponds to the bottom of the refinement lattice, and is
the least deterministic contract. It can be used to identify states that are erroneous, and
thus the context should avoid as illustrated by the following example.

Example 5.4 (Divergent Process).

a → Chaos 2 b → Skip =

[¬r (〈a〉 ≤ tt) -| tt = 〈〉 ∧ a /∈ ref ′ ∧ b /∈ ref ′ | tt = 〈b〉 ∧ st ′ = st ]

This Circus action allows either an a or b event, but if the environment chooses a then it
diverges. The precondition therefore defines the assumption that the environment does
not extend the trace by a, using a reactive condition. If it does, then the behaviour is
unpredictable. The pericondition states that the trace has not yet been extended, and
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the action does not refuse a or a b. However, though it is not refused, a can never lead
to a terminating state as defined in the postcondition, which specifies that the trace is
extended by b and leaves the state unchanged.

Contracts can also be constructed using the programming and specification operators of
the UTP’s relational calculus. This effectively means that relational laws of programming
can be directly imported for use in proofs about contracts. We have proved a number of
theorems that show the results of composing contracts.

Theorem 5.2 (Reactive Design Compositions).

[P1 -| P2 | P3 ] u [Q1 -| Q2 | Q3 ] = [P1 ∧ Q1 -| P2 ∨ Q2 | P3 ∨ Q3 ] (5.2.1)

l

i∈I

[P1(i) -| P2(i) | P3(i) ] =

[∧
i∈I

P1(i) -

∣∣∣∣∣ ∨
i∈I

P2(i)

∣∣∣∣∣ ∨
i∈I

P3(i)
]

(5.2.2)

[P1 -| P2 | P3 ] t [Q1 -| Q2 | Q3 ] =

[
P1

∨ Q1
-
∣∣∣∣ P1⇒r P2 ∧

Q1⇒r Q2

∣∣∣∣ P1⇒r P3 ∧
Q1⇒r Q3

]
(5.2.3)

[P1 -| P2 | P3 ]2 b3 [Q1 -| Q2 | Q3 ] =

 P1

2 b3
Q1

-

∣∣∣∣∣∣
P2

2 b3
Q2

∣∣∣∣∣∣
P3

2 b3
Q3

 (5.2.4)

[P1 -| P2 | P3 ] ; [Q1 -| Q2 | Q3 ] =

[
P1 ∧

P3 wpr Q1
-
∣∣∣∣ P2 ∨

P3 ; Q2

∣∣∣∣ P3 ; Q3

]
(5.2.5)

[P -| Q | R ]n+1 =

[∧
i≤n

(
Ri wpr P

)
-

∣∣∣∣∣ ∨
i≤n

Ri ; Q

∣∣∣∣∣ Rn+1

]
(5.2.6)

The internal choice of two contracts, (P u Q), yields a contract that assumes both
preconditions hold, and yields the combined intermediate and final states by disjunction.
The preconditions are conjoined since the choice is nondetereministic, and thus there must
be no possibility of divergence in all possible branches. Internal choice can, alternatively,
be viewed as a disjunction operator for contracts similar to that in [3]. Similarly, an
internal choice over a set of basic actions indexed by a set I conjoins all the preconditions,
and disjoins the peri and postconditions. Dual to disjunction, the conjunction of two
contracts (P tQ) requires that one of the preconditions holds, and takes the conjunction
of the corresponding intermediate and final states. The conditional P 2 b3Q, where b
is a predicate on st alone, can be distributed through the pre, peri, and postconditions
of the respective reactive designs.

Sequential composition P ; Q, where P = [P1 -| P2 | P3 ] and Q =u [Q1 -| Q2 | Q3 ], is a
little more involved. The combined precondition conjoins the precondition of P with a
predicate requiring that the postcondition of P does not violate the precondition of Q.
The latter is specified using the reactive weakest precondition operator, P wpr Q. The
pericondition states that either P is in an intermediate state, and thus P2 holds, or else
Q is in intermediate state, P having terminated, and thus P3 ; Q2 holds. Finally the
postcondition states that both P and Q have terminated, that is, P3 ; Q3.
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We additionally show the law for finite iteration of a reactive design, Pn+1, assuming
at least one execution, that is for [P -| Q | R ] ; [P -| Q | R ] ; · · · ; [P -| Q | R ]. This
law can be later applied to calculate the contract for a recursive reactive program. The
precondition requires that after i ≤ n iterations of the postcondition R, the precondition
P is not violated. The pericondition states that postcondition R has been established a
number of times i ≤ n, following by the pericondition Q holding. In other words, one
of the iterations is still in an intermediate state. Finally, the overall postcondition states
that R has been established n + 1 times.

The final law can be used to compute the contract of a tail recursive program of the form
µR X • P ; X , where µR is the weakest fixed-point operator, which allows us to tackle
iterative contract. This is subject to P being a productive [13] contract, that is, one that
extends the trace when it terminates. For example, a → Skip is productive because it
always produces an a event upon termination. On the other hand, 〈σ〉R is not productive
because it contributes no events to the trace. Productivity is related, but not the same as
the common notion of “guardedness” [29], as we shall see in Section A.4. If a contract’s
postcondition is productive, then we have the following theorem.

Theorem 5.3 (Recursive Reactive Design). If R is productive, that is, R ∧ ε < tt = R,
then

µR X • [P -| Q | R ] ; X =

[∧
i∈N

(
Ri wpr P

)
-

∣∣∣∣∣ ∨
i∈N

Ri ; Q

∣∣∣∣∣ false

]

Such a recursive contract has a false postcondition, since it does not terminate. The
precondition requires that, no matter how many times postcondition R is established,
it does not violate the contract’s precondition P. The pericondition is where the main
behaviour of the contract is specified. It states that the postcondition is executed some
number of times, and then the pericondition holds. In other words, the contract has
executed its body and terminated into a final state of the body several times, but then
finally the contract always lands in an intermediate state, since it does not terminate
itself.

We now prove some of the algebraic laws of reactive design contracts.

Theorem 5.4 (Reactive Design Laws).

Miracle u [P1 -| P2 | P3 ] = [P1 -| P2 | P3 ] (RD1)
Chaos u [P1 -| P2 | P3 ] = Chaos (RD2)

IIR ; [P1 -| P2 | P3 ] = [P1 -| P2 | P3 ] (RD3)
[P1 -| P2 | P3 ] ; IIR = [P1 -| P2 | P3 ] (RD4)

[P1 -| P2 | false ] ; [Q1 -| Q2 | Q3 ] = [P1 -| P2 | false ] (RD5)
Miracle ; [P1 -| P2 | P3 ] = Miracle (RD6)
Chaos ; [P1 -| P2 | P3 ] = Chaos (RD7)

[P1 -| P2 | P3 ] ; Miracle = [P1 -| P2 | false ] (RD8)
[P1 -| P2 | P3 ] ; Chaos = [P1 ∧ (P3 wpr false) -| P2 | false ] (RD9)

All of these laws can be proved by calculation using the definitions in Theorem 5.1 and
laws in Theorem 5.2. RD1 establishes that a choice between a Miracle and P yields P,
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since the least deterministic behaviour is chosen. For the same reason, RD2 establishes
that a choice between Chaos and P yields Chaos. The reactive skip is a left and right
identity for any contract P, as stated by RD3 and RD4. Law RD5 states that any
non-terminating contract — that is where the postcondition is false — is a left zero for
sequential composition, as clearly then Q is unreachable. Thus, in particular Miracle and
Chaos are both left zeros for sequential composition, as shown by RD6 and RD7.

Law RD8 is a property first observed in [50]: placing a Miracle after a reactive design
eliminates final states, and thus yields a non-terminating process. This is because it is im-
possible to reach a miraculous state, and thus inserting one effectively prunes transitions
that lead to it.

Finally, RD9 is a similar law for Chaos, which likewise removes final states. Crucially,
however, the behaviour of Chaos is not impossible, but simply undesirable or unpre-
dictable. Thus the composition additionally inserts an assumption P3 wpr false, which
effectively states that postcondition P3 should not be established, because otherwise chaos
will ensue. This explains Example 5.4: the left branch of the choice, a → Chaos is equiv-
alent to (a → Skip) ; Chaos. The postcondition of a → Skip is st ′ = st ∧ tt = 〈a〉.
The occurrence of Chaos mandates that this postcondition should not be established,
which means that trace extension is negated and added to the assumption, yielding the
reactive condition ¬r (〈a〉 ≤ tt). This important distinction illustrates the difference be-
tween Miracle and Chaos – usually the latter is used to encode behaviour that should
be prevented by the environment.

The next theorem gives the laws of reactive assignment.

Theorem 5.5 (Reactive Assignment Laws).

〈id〉R = IIR (RA1)
〈σ〉R ; [P1 -| P2 | P3 ] = [σ †P1 -| σ †P2 | σ †P3 ] (RA2)

〈σ〉R ; 〈ρ〉R = 〈ρ ◦ σ〉R (RA3)
〈σ〉R ; Miracle = Miracle (RA4)
〈σ〉R ; Chaos = Chaos (RA5)

Law RA1 establishes that an assignment using the identity function id yields the reactive
skip. RA2 captures the effect of precomposing a reactive contract with an assignment; the
assignment function is applied as a substitution in the pre, peri, and postconditions. RA3
states that composition of two assignments yields a single assignment built by composition
of the individual assignment functions. Laws RA4 and RA5 establish that Miracle and
Chaos are both right zeros for assignment. This is because they both remove final
states, but, since assignments have no intermediate states, this eliminates all observable
behaviours.

The final law of this section shows how we can demonstrate a refinement between two
reactive designs. It requires that we weaken the precondition, and strengthen both the
pericondition and postcondition.

Theorem 5.6 (Reactive Design Refinement). [P1 -| P2 | P3 ] v [Q1 -| Q2 | Q3 ] provided
P1 ⇒ Q1, Q2 ∧ P1 ⇒ P2, and Q3 ∧ P1 ⇒ P3.
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Along with the laws for calculating reactive contracts previously covered, this law provides
a way of proving properties of contracts using refinement and predicate and relational
calculus.

6 Hybrid Reactive Designs

In this section we bring together all the results we have established as foundations in
Sections 3–5 to construct our theory of hybrid reactive designs, which is the basis of the
Modelica semantics. A hybrid reactive design is a reactive design contract whose pre,
peri, and postconditions are specified using hybrid relations. Thus, a hybrid reactive
contract specifies the assumptions and guarantees of a system in terms of constraints on
the continuous variables. Moreover, unlike hybrid relations, the theory of hybrid reactive
designs distinguishes intermediate and final observations, meaning that non-terminating
hybrid processes can be described.

We will now proceed to define the operators for hybrid reactive designs. The first operator
lifts a hybrid relation to a non-terminating reactive design.

Definition 6.1 (Hybrid Predicate).

[P]H , [ truer -| P | false ]

The hybrid predicate simply states that the continuous variables evolve according to P
in all intermediate states and there is no termination. It is useful to lift constraints
on continuous variables to non-terminating hybrid processes that satisfy the constraints.
For example, the reactive design [x has-der y]H is a partially specified hybrid process
that constrains x to have derivative y, where the continuous variable y is otherwise
unspecified. We can use this operator to encode differential constraints the sum of which
forms a system of DAEs. Since this has a false postcondition and does not terminate, it
follows, by Theorem RD5, that [P]H ; Q = [P]H , for any hybrid relation P and reactive
design Q.

We can use this operator to lift function evolution from hybrid relational calculus to
reactive designs.

Definition 6.2 (Function Evolution).

x ⇐ f (ti) , [x ← f (ti)]H

x ⇐
[s,t]

f (ti) ,

[
truer -

∣∣∣∣ x ←
≤t

f (ti)
∣∣∣∣ x ←[s,t] f (t)

]
The first operator, x ⇐ f (t) describes a function evolution that doesn’t terminate. In
intermediate observations, any duration of evolution is possible, and there are no final
observations. The second operator, x ⇐

[s,t]
f (t), describes an evolution that terminates

at some point in the interval [s, t]. In intermediate observations an evolution of any
time up to t is possible, and in the final observation an evolution in the interval [s, t] is
observed. Moreover, the final state also populates the final values for state variables as
per Definition 4.4.
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ODE evolution is obtained by lifting of the corresponding hybrid relation operator.

Definition 6.3 (Ordinary Differential Equations).

〈 x • f 〉H , [ truer -| 〈 x • f 〉 | false ]

Like [P]H , this is a non-terminating operator and therefore is a left zero for any hybrid
reactive design. The preemption operator is obtained similarly by lifting, but is slightly
more complex.

Definition 6.4 (Preemption).

[P1 -| P2 | P3 ] N 〈b | c〉 , [P1 -| P2 ∧ dbe | P3 ∨ P2 4 〈b | c〉 ]

The precondition is simply the precondition of the preempted hybrid process. In the
pericondition we require that P2 holds and that the preemption invariant b must always
hold as well. Usually, P2 is an ODE or or a set of continuous constraints and thus the
effect of this is to allow any permissible continuous evolution satisfying the invariant. The
operator will terminate if P3 is established — the hybrid process terminates (unusual) —
or else P2 exhibits a behaviour in which b holds and finally c holds, as provided by the
hybrid relational preemption operator.

With these operator definitions, it is possible to lift Theorem 4.1 for hybrid relations to
hybrid reactive designs.

Theorem 6.1 (Evolution Termination). We assume that f is a continuous function on
the domain [0, l], where l > k and k > 0, and the following conditions hold:

1. b is satisfied for all instants t ∈ [0, l): ∀ t ∈ [0, l) • b[f (t)/x ′].

2. b becomes false at l: ¬b[f (l)/x ′].

3. c is not satisfied for all instants t ∈ [0, k): ∀ t ∈ [0, k) • ¬c[f (t)/x ′].

4. c becomes true at k and stays true until l: ∀ t ∈ [k, l) • c[f (t)/x ′].

Then the following equality holds:

(x ⇐ f (ti) N 〈b | c〉) =

(
x ⇐

[k..l]
f (ti)

)

Similarly, we have the following theorem for hybrid reactive design ODEs.

Theorem 6.2 (ODE Solution). If, for any v : Rn and l > 0, g(v) is the unique solution
to f on the interval [0, l], and g(v, 0) = v then 〈 x • f 〉H = x ⇐ g(x , t).

7 Modelica Semantics

In this section we will use our theory of hybrid reactive designs to give a denotational
semantics to Modelica. For this deliverable our focus is on the block-based control law
notation of the language, though we also revise our semantics for the core language,
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adding more detail. In particular, our semantics of event handling is substantially more
precise than our previous work [19]. In creating our formal semantics, we have drawn on
the following principle sources:

• The Modelica Language Specification, version 3.4 [38], that provides a number of
key details of the semantics in a mixture of natural language and formal mathe-
matics.

• A paper from 2008 on the Modelica event handling mechanism [36], which gives
a reasonably detailed semantics. The main contributions of this paper are also
contained in the standard [38], but with less detail.

• The online Modelica reference guide2.

• The online e-book “Modelica by Example” by Michael M. Tiller3.

Additionally, we have used the OpenModelica tool4 to conduct a number of experiments
in order to gain an adequate intuition of language features. Thus, OpenModelica, rather
than one of the other tools like Dymola5 or Wolfram SystemModeler6, serves as the
benchmark for our semantics.

7.1 Semantics Overview

Our approach to the semantics of Modelica is to denote the core constructs of the language
in the theory of hybrid reactive designs. Since we are interested in proof facilities for
Modelica, our semantics is also mechanised in Isabelle/UTP. In terms of presentation,
we give a mainly mathematical semantics and leave details of the mechanisation to later
sections.

Fundamentally, a Modelica program is denoted by the set of possible evolutions of its
variables; that is, a set of trajectories. This set of trajectories is characterised by the
operators of hybrid reactive designs. This includes both a model’s differential and alge-
braic equations, and its instantaneous events. The latter are catered for by the fact that
timed traces are piecewise continuous. Thus, the trace of a Modelica model consists of an
alternating sequence of continuous evolutions of the variables, followed by discrete jumps
when events occur.

Structurally, Modelica allows the description of collections of models that collectively
specify the possible behaviours of discrete and continuous variables. A “model”, to use
Modelica terminology, consists of the following principle concepts.

Parameters. These are static inputs to a model that are supplied at the point of
instantiation, and can be used to encode constants.

Variables. Continuous and discrete variables for which the model can specify the be-
haviour. They can optionally have initial values associated. In the Modelica block lan-
guage, these are used to encode inputs to and outputs from a given block. Every Modelica

2http://doc.modelica.org/
3http://book.xogeny.com/
4https://www.openmodelica.org/
5https://www.3ds.com/products-services/catia/products/dymola/
6http://www.wolfram.com/system-modeler/
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model has a special built-in continuous variable called time whose derivative is always
1.

Equations. The core behavioural construct of a model. They describe how different
quantities relate to one another. In a valid Modelica model, every variable must have
its behaviour described by an equation to ensure determinism. Every equation can be
conditional in nature, meaning it is only activated when its Boolean guard evaluates to
true. Variables come in three varieties: differential, algebraic, and discrete equations,
which are described below.

• Differential equations describe the behaviour of a continuous variable using a deriva-
tive, for example der(x)= 5.

• Algebraic equations link continuous variables using equality and various arithmetic
operators, for example x = y / z.

• Discrete equations describe the valuation of discrete variables that are held constant
during evolution, and can change only when events are triggered.

There are also initial equations that hold at time = 0, and can be any of the above
kinds.

Events. Modelica is a hybrid systems modelling language, and thus also allows dis-
continuous updates to variables when “events” are triggered. There are two kinds of
events in Modelica: state events and time events [36]. State events are triggered at the
instant when a conditional predicate becomes satisfied by a model’s evolving continuous
variables, by moving its valuation from false to true, or true to false. State event condi-
tions are modelled using zero crossing functions. Specifically, when particular monitored
functions of the model cross zero, an event is raised. Time events occur at specific time
instants, and are thus more predictable than state events, but can otherwise be handled
similarly to state events. When an event is triggered two actions are performed.

Firstly, all discrete equations are reevaluated in context of the current value of the con-
tinuous variables. Since they are conditional, discrete equations can cascade, meaning
evaluation of one leads to the condition of another becoming true, and thus needing to be
evaluated. Thus discrete equations are applied iteratively until no more changes occur:
in Modelica this process is called “event iteration” [38].

Secondly, the system of differential equations is reinitialised, using conditional “reset
equations” (our term) that assign new values to continuous variables and thus form a
new initial value problem. These are specified using the special reinit() operator.
Reset equations are not mentioned in the standard, but the idea of special assignments
following normal event iteration is implied by the Modelica reference manual. When
describing the reinit() operator, the following comment is made:

“The reinit operator does not break the single assignment rule, because reinit(x,expr) in
equations evaluates expr to a value (value), then at the end of the current event iteration
step it assigns this value to x (this copying from values to reinitialized state(s) is done
after all other evaluations of the model and before copying x to pre(x)).”7

7https://build.openmodelica.org/Documentation/ModelicaReference.Operators.%27reinit()%27.
html
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Thus, reset equations are applied following event iteration, once application of the discrete
equations has reached a fixed point.

Discrete and reset equations are specified in the body of a when clause. A typical when
clause has the form when P then Q;. Here, P is a condition on the continuous vari-
ables. When the condition becomes true at some instant (having been false previously),
the discrete equations in Q are instantaneously activated.

Consider, for example, the following bouncing ball example.

Example 7.1 (Bouncing Ball).
model BouncingBall

parameter g = 9.81;
Real h; Real v;

initial equation
v = 0;
h = 2.0;

equation
der(h) = v;
der(v) = -g;
when h <= 0 and v < 0 then
reinit(v, -0.8*pre(v));

end when;
end BouncingBall;

There is a single parameter g which is fixed gravitational constant. Actually, if we desired
a more general model we could allow this to be given as a parameter at instantiation
which would allow the simulation of bouncing balls on bodies other than Earth. There
are two continuous variables: height h, and velocity v, both of type real. These are given
initial values of 0 and 2.0, respectively. There are two differential equations which set the
derivative of h to v, and the derivative of v to −g. There are no algebraic equations in
this example.

The single when clause states that when the height becomes zero, and the velocity is
negative, the following reset equation is instantaneously executed. This discrete equation,
reinit(v, -0.8*pre(v)), sets up a new initial condition for v which is the previous
value’s inverse with a damping factor applied. This only holds at that very instant; it
can alternatively be seen as an imperative assignment.

7.2 Core Language Semantics

Modelica models can be described using a 10-tuple (D,A,Q, I ,D,A,Q,R,Z ,T ), whose
components are as follows:

• D is a lens denoting the set of dynamic variables, that is variables which are de-
scribed by differential equations.

• A is a lens denoting the set of algebraic variables, that is variables that do not
appear differentiated.
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• Q is a lens denoting the set of discrete variables.

• I is the initialisation predicate, that is the set of initial equations defined in the
block.

• D is a hybrid relation denoting the set of (conditional) differential equations.

• A is a predicate denoting the set of (conditional) algebraic equations.

• Q is a predicate denoting the set of (conditional) discrete equations.

• R is a set of relations, each denoting a (conditional) reset equation.

• Z is a set of expressions, each denoting a zero-crossing function that can trigger a
state event.

• T is a predicate denoting when time events can occur.

Lenses D, A, and Q partition the continuous state c and thus specify all variables that
are characterised by the model’s trajectory.

For the bouncing ball example, we have D = {h, v}, A = ∅, and Q = ∅, since there are
only dynamic variables in that model. Then we have I = (v = 0 ∧ h = 2.0) for the
initialisation, and D = (h has-der v ∧ v has-der (−9.81)) for the differential equations.
There are no algebraic or discrete equations, and so A = Q = true – that is, there are
no constraints imposed. There is a single conditional reset equation which updates the
ball’s velocity upon impact, and so we have:

R = (v := −0.8 ∗ pre(v))2(h ≤ 0 ∧ v < 0)3(v := pre(v))

This states that the reset is performed only provided the condition is satisfied, as stated
in the when equation of Example 7.1. Otherwise, the variable v is simply left unchanged.
Of course, in this model there is only one reset equation and one event, so v will always
be changed in reality.

There are two potential zero crossings to be detected, for h and v, and thus we have
Z = {h, v}. An event is thus triggered whenever a crossing is detected on one of these
variables. Finally, there are no time events, only state events, and thus T = false.

Modelica models are simulator dependent: the precise semantics depends on the preci-
sion of a given numerical solver. For this reason, Modelica has a special fixed global
real number constant called eps, a strictly positive number that denotes the smallest
possible value a simulator can distinguish. This is necessary, for instance, because event
preemption does not occur precisely at the point that a function crosses zero but slightly
after it, as measured by eps. Thus, in our semantics we also encode eps as a fixed
mathematical constant called ε.

At the level of hybrid reactive designs, the semantics of a Modelica model can then be
denoted as follows.
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Definition 7.1. Modelica Hybrid Reactive Design Semantics

solve(I ′ ∧ Q′ ∧ A′) ; cpre :=R c ;
µX • ([D ∧ dA′e ∧ q ← q]H N 〈(¬T ) ∧ inv(Z ) |T ∨ exit(Z )〉 ;

until (c = cpre) do

cpre :=R c ;
solve(d ′ = d ∧ A′ ∧ Q′)

od ;
interleave(R) ; cpre :=R c ; X)

where

inv(Z ) ,
∧
z∈Z

((z ′ > −ε) 2 z ≥ 03 (z ′ < ε))

exit(Z ) ,
∨
z∈Z

((z ′ < 0) 2 z ≥ 03 (z ′ > 0))

interleave(A) ,
[

truer -
∣∣∣ false

∣∣∣ l
dom(S) = A • (# P : S • P)

]
solve(P) , [ truer -| false | P ]

The first step is to find an initial condition for the differential equations. This is obtained
by the hybrid contract with postcondition I ′ ∧ Q′ ∧ A′, which we abbreviate using the
solve function. This states that the initial value for variables must satisfy the initial
equations, I , the discrete equations Q′, and the algebraic equations A′. Usually, this
collection of constraints such yield a deterministic assignment for the initial values.

Following initialisation, we populate the variable cpre with a copy of the whole continuous
state c. The former is used to populate expressions that contain the Modelica function
pre and also at event iteration. Then, the main behavioural loop begins, denoted by the
fixed-point operator µ. The first evolution of the continuous variables is first performed.
This evolution is characterised by three conjuncts in the hybrid predicate: [D ∧ dA′e ∧
q ← q]H . The differential equations and algebraic equations are required to hold over
the whole interval. Discrete variables are held constant, as denoted by third conjunct
using the evolution operator.

The evolution of the system of equations is interrupted when either a time event or a state
event is triggered. The bounds of the evolution is determined by both the invariant of the
preemption operator (N) and also the preemption condition. The precise moment of state
event triggering is non-deterministic within the interval (−ε, ε). It is worth emphasising
that both the evolution invariant and preemption condition are relations. The undashed
variables refer to the instant when the present evolution began, and the dashed variables
to every following instant. This allows us to compare the present continuous state to its
initial value at every instant.

The evolution invariant states that evolution can continue so long as (1) no time event has
occurred (¬T ), and (2) no zero crossing has occurred in the present evolution, described
by inv(Z ). The inv(Z ) predicate states that, for all zero crossing functions, if the function
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was positive initially then evolution can continue until it reaches−ε, or if negative initially,
then ε. This then gives the maximal bounds on when evolution can continue.

The evolution preemption condition states evolution can terminate either when (1) a time
event has occurred (T ), or (2) a zero crossing occurred, as described by exit(Z ). The
exit(Z ) predicate states that, for any zero crossing function, if z was positive initially and
it is now negative, or negative initially and now positive, then evolution can terminate.
Thus evolution terminates between 0 and −ε for a decreasing function, and 0 and ε for an
increasing function. Thus in our semantics an event is triggered whenever a zero crossing
is detected for an increasing or decreasing function. This is important to ensure that an
event is triggered both when a condition becomes true, having been false, and also vice-
versa, so that events are enabled and disabled appropriately. The use of strict equality
for 0 is also important to ensure that the function has gone beyond this and not stopped
at 0.

If an event triggered, then event iteration commences. As in the initialisation phase, this
involves assigning values to the different model variables. The set of constraints to be
satisfied is, however, slightly different to those at initialisation. The set of constraints is
calculated in two steps. Firstly, the until loop is used to iterate the system of algebraic
and discrete equations to find a fixed-point. The iterated equation system holds all
dynamic variables constant, indicated by d ′ = d, and conjoins all discrete and algebraic
equations using solve. Iteration will continue until no more changes are being made to
the continuous state by the discrete equations and thus c = cpre. This algorithm closely
mirrors the one given in the Modelica standard [38, page 273].

Following a terminated event iteration, it is necessary to apply reset equations which will
assign new values to the dynamic variables for reinitialisation. The order of execution
of the reset equations should not matter as all reset equations should have cpre on the
right-hand side instead of c. Thus, we simply pick an arbitrary execution order for them
using the function interleave. Finally, following all the resets, we copy c to cpre for the
final time and then iterate to commence continuous evolution again.

We will illustrate the semantics with the bouncing ball example. The initialisation for
the bouncing ball is solve(v ′ = 0 ∧ h′ = 2.0), since there are not algebraic or discrete
equations in this model. Since this fully describes the continuous state, this can be
rewritten to an assignment h, v :=R 2.0, 0.

The evolution behaviour has the form:

[h has-der v ∧ v has-der (−9.81)]H N 〈inv(Z ) | exit(Z )〉

There are only differential equations in this model and so the expression q ⇐ q, to hold
discrete variables, is vacuous. The evolution invariant, inv(Z ), is

((h′ > −ε) 2 h > 03 (h′ < ε)) ∧ ((v ′ > −ε) 2 v > 03 (v ′ < ε))

and the preemption condition exit(Z ) is

((h′ < 0) 2 h ≥ 03 (h′ > 0)) ∧ ((v ′ < 0) 2 v ≥ 03 (v ′ > 0))

Thus an event is triggered when either of h or v crosses zero in either direction. Again,
this is non-deterministic and in reality the only relevant zero crossings for the model are
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those for h. Nevertheless, both directions of zero crossing for h are necessary so that
the bounce event can be both detected and re-enabled following execution. Thus we
have

inv(Z ) = ((h′ > −ε) 2 h > 03 (h′ < ε)) and exit(Z ) = ((h′ < 0) 2 h ≥ 03 (h′ > 0))

With respect to event iteration, there are no discrete equations. Thus the body of the
event iteration loop has the equation solve(d ′ = d), which is equivalent to solve(h′ =
h ∧ v ′ = v). Event iteration will thus terminate immediately with no state updates and
can thus be simplified away. All that remains is handling of the single reset equation.
Interleaving of the singleton set

interleave({(v := −0.8 ∗ pre(v))2(h ≤ 0 ∧ v < 0)3(v := pre(v))})

is equivalent to

(c:v :=R −0.8 ∗ cpre:v)2(c:h ≤ 0 ∧ c:v < 0)3(c:v :=R cpre:v)

Note that pre(v) is rewritten to cpre:v – the value of v as it was in the previous valuation
of the continuous state. Thus the overall semantics of the bouncing ball is as follows.

Example 7.2 (Bouncing Ball Semantics).

c:h, c:v :=R 2.0, 0 ; cpre :=R c ;

µX •


[h has-der v ∧ v has-der (−9.81)]H N

〈
(h′ > −ε)2 h > 03(h′ < ε)
(h′ < 0)2 h ≥ 03(h′ > 0)

〉
;

cpre :=R c ;
(c:v :=R −0.8 ∗ cpre:v)2(c:h ≤ 0 ∧ c:v < 0)3(c:v :=R cpre:v) ; X


To aid readability, we separate the invariant and condition of the preemption with a
horizontal rather than vertical bar. In the first iteration of this model, v and h are
assigned initial values, and then the continuous evolution begins. At some point when
h ∈ (0, ε), the first event is triggered. Since at this point h is below 0, and v is negative,
the assignment of −0.8 ∗ cpre:v to c:v will occur, and then the second evolution will
commence from that point.

The second event occurs, not on the second bounce, but when h crosses 0 again in the
opposite direction. The reason for this is that the event condition switches from true to
false. In order to register it moving from false to true again, for the second bounce, it is
necessary to account for the condition changing every time. At this point the condition
is not true, and thus v is simply equated with its previous value. The third event will
then be the second bounce, and the model continues in this manner.

Having given a semantics for the core language, we will next turn our attention to Mod-
elica blocks.

49



D2.3b - Final Modelica Semantics (Public)

7.3 Modelica Blocks

Though Modelica is, at its core, a textual language for describing dynamical systems, it
also has a sophisticated diagrammatic frontend for traditional block-based control law
diagrams. Modelica control blocks are a specialisation of models that divide the contin-
uous variables into inputs, outputs, and internal variables. A Modelica block diagram
describes the behaviour of all continuous variables by a collection of blocks with connec-
tions from inputs to outputs. These connections effectively become additional algebraic
equations of the model that tie together pairs of variables in different blocks.

Modelica has a large library of blocks in the Modelica.Blocks namespace includ-
ing:

• Continuous blocks, like Integrator and Derivative

• Discrete blocks, that sample at a fixed time period

• Logical blocks, that implement logic gate style blocks

• Math blocks, that include arithmetic, trigonometry, and other related functions

• Sources blocks, that include various signal generators

An example block diagram is shown in Figure 6, which represents a similar bouncing ball
model as that described in Example 7.1. We use a number of blocks from Modelica’s stan-
dard library including an Integrator from the Modelica.Blocks.Continuous
namespace (Height), and a Gain block from Modelica.Blocks.Math (Restitution).
Modelica also allows straightforward definition of customised blocks, and we therefore
also define two of our own blocks. For convenience, we add textual labels to each of the
connections in the diagram in dark red.

The core dynamical behaviour of this diagram is provided by two integrator blocks,
called respectively Velocity and Height. The Velocity block corresponds to the differential
equation v̇ = −9.81, and the Height block to the differential equation ḣ = v. The
gravitional constant is supplied to the former integrator by a constant block called Gravity
which provides a constant signal output, and the input of Height is connected to the
output of Velocity. The Height block is an instance of the Modelica Integrator block,
which takes a single input signal, and provides the integrated signal output. The Velocity
block is an adapted block called ResetIntegrator. The latter takes two inputs, in
addition to the middle one that takes the signal to integrate. The top input is an initial
value, which is used to construct the initial value problem. Initially, this value is supplied
by the constant block InitVel that supplies a constant 0. The bottom input is a Boolean
signal that can be used to reset the integration; that is to halt integration and form a
new initial value problem. This is an example of event iteration.

The remainder of the diagram handles the associated hybrid aspects of the system. The
logic of when a bounce occurs is encoded by three blocks at the bottom right. We use
the And logic block to conjoin two conditions. If the present velocity is less than 0, as
characterised by top inequality block, and the height is less than or equal to zero, as
characterised by the bottom inequality, then the bounce is signalled by the output from
the block and1. This is fed into both the Velocity integrator to trigger a reset, and also
into a block called IvpSwitch. IvpSwitch is used to decide the input initial value to the
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Figure 6: Bouncing Ball in Modelica blocks

Velocity integrator. Initially this value is taken from the InitVel block. However, once the
Boolean input is received on the central connector then the output is calculated using a
gain block called Restitution as a multiple of the present output from Velocity and -0.8:
the coefficient of restitution. Thus a new initial condition is supplied to the Velocity
block, and integration continues.

The simulation of this example in the OpenModelica tool is shown in Figure 7 over a
5 second interval. We capture data from two continuous variables. The red line is the
height of the ball, which follows the expected decreasing bounces. The blue line is the
output of the <= block: it shows the instants at which the height hits zero and thus the
resets are triggered.

Having introduced the control law notation, we now illustrate the internals of these block
definitions with the two custom block types: ResetIntegrator and Toggle.

Example 7.3 (ResetIntegrator Block).
block ResetIntegrator

import Modelica.Blocks.Types.Init;
import Modelica.Blocks.Interfaces.*;
parameter Real k(unit = "1") = 1;
extends Modelica.Blocks.Interfaces.SISO(y);
RealInput y_start;
BooleanInput reset;

initial equation
y = y_start;

equation
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Figure 7: Simulation of block-based bouncing ball

der(y) = k * u;
when reset then

reinit(y, y_start);
end when;

end ResetIntegrator;

Such a definition would normally include annotation information for documentation and
illustration of the block in the tool. We elide these details here. The ResetIntegrator
definition imports several type for interfaces and initialisation from the Modelica standard
library. It has a single parameter, k, which is a coefficient that can be used to scale the
input signal and by default takes the value 1. The block extends the interface SISO,
which is the class of single input / single output blocks. This superclass provides a
template where there is a single input called u and a single output called y, both of
which are real number inputs. In addition we add two further inputs: y_start, a real
number input which gives the initial value for the output, and reset a Boolean input
that determines when the block should reset.

The remainder of the block definition follows a typical Modelica model structure. The
single initial equation states that the initial output has the same value as y_start. The
first regular equation states that the derivative of the output y is the product of the input
u and the coefficient k. The second equation is a when-clause: it states that when the
reset variable becomes true, y is instantaneously identified with y_start again. This
sets up the new initial value problem, following event iteration.
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Example 7.4 (Toggle Block).

block Toggle
imports Modelica.Blocks.Interfaces.*;
extends Modelica.Blocks.Icons.PartialBooleanBlock;
BooleanInput u2;
RealInput u3;
RealOutput y;
RealInput u1;

initial equation
y = u1;

equation
when u2 then
y = u3;

elsewhen not u2 then
y = u1;

end when;
end Toggle;

The Toggle block is similar to Modelica block Switch, but is explicitly event-driven.
The block switches between two real inputs u1 and u3 based on the valuation of Boolean
input u2. Initially, the output y is identified with u1, and is held at this value. When
u2 changes value, the behaviour is changed so that y is held at u3’s value at that instant
over the subsequent evolution. If u2 changes in the other direction, y is switched back
to u1 at that instant.

Every Modelica block has a definition similar to the two given above. The entire diagram
illustrate in Figure 6 is described by the following model.

Example 7.5 (Bouncing Ball Block Composition).
model BallBlocks

imports Modelica.Blocks.Continuous.*;
imports Modelica.Blocks.Interfaces.*;
imports Modelica.Blocks.Logical.*;
imports Modelica.Blocks.Math.*;
imports Modelica.Blocks.Sources.*;

ResetIntegrator Velocity;
Constant Gravity(k = -9.81);
Toggle IvpSwitch;
Constant InitVel(k = 0);
Gain Restitution(k = -0.8);
Integrator Height(y_start = 2);
RealOutput Output;
LessEqualThreshold Compare;
LessThreshold lessthreshold1;
And and1;
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equation
connect(Restitution.y, IvpSwitch.u3);
connect(Height.y, Output);
connect(Gravity.y, Velocity.u);
connect(Height.y, Compare.u);
connect(Velocity.y, Height.u);
connect(and1.y, IvpSwitch.u2);
connect(lessthreshold1.y, and1.u1);
connect(and1.y, Velocity.reset);
connect(Compare.y, and1.u2);
connect(Velocity.y, lessthreshold1.u);
connect(Velocity.y, Restitution.u);
connect(InitVel.y, IvpSwitch.u1);
connect(IvpSwitch.y, Velocity.y_start);

end BallBlocks;

The diagram model first imports the parts of the Modelica block library it depends
on. Then it instantiates each of the blocks using the appropriate classes, with static
parameters supplied where necessary. Finally, the connections between each of the classes
is given, each of which corresponds to an algebraic equality.

This completes our overview of the Modelica block language. In the next section we will
show how such behaviours can be given a denotational semantics in our UTP theory of
hybrid reactive designs.

7.4 Block Semantics

In this section we show how Modelica blocks are formally modelled as hybrid reactive
designs. In Section 7.2 we described the denotational semantics for Modelica models.
Behaviourally, blocks simply specialise this semantics and so the semantics of block di-
agrams will show how to construct such models by composition. Effectively, we give a
formal semantics to the Modelica flattening procedure, in that the input is a collection
of blocks and connections, and the output is a flat Modelica model.

Every block diagram is denoted by two parts: (1) the alphabet of continuous variables
that will be used to represent connections between blocks and internal variables, and
(2) the collection of composed instantiated blocks. Each block is generated by a function
whose arguments consist of the static parameters associated with the block class, and any
input and output connections, and the output is a model 7-tuple (I ,D,A,Q,R,Z ,T ).
Our semantics is variable-centric in that blocks do not export named continuous vari-
ables which must be then wired up, but these connections are defined independently as
part of the continuous state and then passed to the block constructors. This has the
advantage that the set of equations is minimised, and thus reduces the number of sparse
equations.
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We begin with semantics for some of the arithmetic blocks from Modelica.Blocks.Math8.

Definition 7.2 (Mathematical Blocks).

MathBlk(e, y) , (true, truer , y = e, true, ∅, ∅, false)

Gain(k, u, y) , MathBlk(k ∗ u, y)

Add(k1, k2, u1, u2, y) , MathBlk(k1 ∗ u1 + k2 ∗ u2, y)

Product(u1, u2, y) , MathBlk(u1 ∗ u2, y)

Division(u1, u2, y) , MathBlk(u1/u2, y)

Arithmetic blocks usually take a collection of inputs, and produce a single output y that
is the result of applying the operator. All such blocks are described in terms of meta-
block definition MathBlk that takes an expression e defining the blocks behaviour, and a
variable y which is the output. The majority of the behaviour of such a block is trivial: is
has no initialisation equations, differential equations, discrete equations, reset equations,
state events, or time events. The only affirmative behaviour is the algebraic equation
that associates the output with the inputs.

The Gain block takes a single static parameter k, the gain coefficient, the input variable
u and the output variable y. Its behaviour is given by MathBlk , where the defining
expression equates y to k ∗ u. The other math blocks can be defined similarly. Compare
our definition of the gain block with the following Modelica fragment.

Example 7.6.
block Gain "Output the product of a gain value with the input

signal"
parameter Real k(start=1) "Gain value multiplied with input

signal";
RealInput u "Input signal connector";
RealOutput y "Output signal connector";

equation
y = k*u;

end Gain;

As we can see, for this kind of block, the semantic mapping is almost direct. By con-
vention, in our mathematical definitions we will usually abbreviate variable names longer
than two or three characters to aid readability. We can similarly give a semantics to
source blocks.

8A description of all the blocks we here consider can be found at https://build.openmodelica.org/
Documentation/Modelica.Blocks.html
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Definition 7.3 (Source Blocks).

SrcBlk(e, y,T ) , (true, truer , y = e, true, ∅, ∅,T )

Clock(o, sT , y) , SrcBlk(o + (02 time < sT 3 time − sT ), y, time = sT )

Constant(k, y) , SrcBlk(k, y, false)

Step(h, o, sT , y) , SrcBlk(o + (02 time < sT 3 h), y, time = sT )

Ramp(h, d, o, sT , y) , SrcBlk

 o +

(
02 time < sT 3(time − sT ) ∗ h/d
2 time < sT + d 3 h

)
, y, time ∈ {sT , sT + d}


Sine(a, f , p, o, sT , y) , SrcBlk(o + (02 time < sT 3 a · sin(2 · π · f · (time − sT ) + p)), y)

Our meta-block definition SrcBlk is similar to MathBlk , but source blocks often have time
events associated, and we add the parameter T to characterise these. The Clock block
produces a signal that mimics the time variable, but with an offset and start time. It
thus has two parameters, offset o and start time sT . The behaviour sets y to o when
time < sT , and otherwise to time−sT . Since the derivative of y thus changes at time sT ,
we raise a time event at this point indicated by the expression time = sT . The Constant
and Step blocks have similar definitions. The Ramp block is a little more complicated as
it describes three phases of the signal: it is 0 initially, when time = sT the signal begins
to increase toward h, and finally when time = sT + d it settles to h. Thus, there are two
time events associated with this block to intersperse these two phases. The Sine block
generates a sine wave signal on y with given amplitude, frequency, phase, offset and start
time.

We can similarly give semantics to some of the logic blocks.

Definition 7.4 (Logic Blocks).

LogBlk(e, y,Z ) , (true, truer , true, y = e, ∅,Z , false)

And(u1, u2, y) , LogBlk(u1 ∧ u2, y, ∅)

Or(u1, u2, y) , LogBlk(u1 ∧ u2, y, ∅)

Not(u, y) , LogBlk(¬u, y, ∅)

Xor(u1, u2, y) , LogBlk((u1 ∧ u2) ∨ (¬u1 ∧ ¬u2), y, ∅)

Nor(u1, u2, y) , LogBlk(¬(u1 ∨ u2), y, ∅)

GreaterThreshold(thr , u, y) , LogBlk(u > thr , y, {|u − thr |})

GreaterEqualThreshold(thr , u, y) , LogBlk(u ≥ thr , y, {|u − thr |})

LessThreshold(thr , u, y) , LogBlk(u < thr , y, {|u − thr |})

LessEqualThreshold(thr , u, y) , LogBlk(u ≤ thr , y, {|u − thr |})

LogBlk is similar to MathBlk , but it exports a discrete equation rather than an algebraic
equation. Moreover it has a parameter for zero crossings events, which are necessary for

56



D2.3b - Final Modelica Semantics (Public)

blocks that can change state depending on a real-valued input. The operators of Boolean
logic are denoted using LogBlk by lifting the corresponding logic operators. They blocks
therefore calculate an initial value for their Boolean output y, and then hold this constant
until an event is triggered.

The threshold blocks are similar, but they export zero crossing events as well. Specifically,
an event is triggered when one of these blocks detects that the absolute difference between
its input and the given threshold parameter, thr , crosses zero. At this point all discrete
equations are re-evaluated, and thus the threshold block, plus any other logic blocks in
the diagram, can change output at this point.

We give a semantics to the Integrator from Modelica.Blocks.Continuous.

Definition 7.5 (Integrator).

Integrator(iT , k, y0, u, y) ,

 (iT ∈ {InitialState, InitialOutput} ⇒ y = y0) ∧
(iT = SteadyState⇒ k ∗ u = 0),
y has-der k ∗ u, true, true, ∅, ∅, false


The Integrator block takes three parameters: initialisation type iT , an integration coef-
ficient k, and initial output value y0. It has a single input u, and output y. The dynamic
behaviour is defined by a simple continuous equation, which states that the derivative
of y is k ∗ u, and there are no algebraic equations, discrete equations, or events. The
initialisation predicate is more complex though as there are four possibilities for iT . If
iT = NoInit, then no particular initialisation is given, and thus the initialisation predi-
cate will be true. If it is InitialState or InitialOutput then y is initially identified with the
parameter y0. Finally, if it is SteadyState then k ∗u must take the value 0 initially.

Our more complex ResetIntegrator block also adds events.

Definition 7.6 (Integrator with Reset).

ResetIntegrator(k, u, y, y0, r) ,

(
y = y0, y has-der u, true, true,
(y := pre(y0))2 r 3II, ∅, false

)
It has a single parameter k, the integration gain. The four connections are input u,
output y, initial value input y0, and reset flag input r . The equations are similar to those
for the Integrator, but we have simplified the initial equation. The major difference is
the addition of the reset equation that, upon an event, will reassign y depending on the
value of r . If true, y will be initialised to the value of y0 at that instant. Otherwise,
no changes will be made. Interestingly, this block has no actual events associated with
it. This is because the origin of the event is not this block itself, but another block, like
GreaterThreshold, that does detect zero crossings.

Next, we exemplify discrete blocks with the Sampler block.

Definition 7.7 (Sampler Block).

DisBlk(e, y,T ) , (true, truer , true, y = e, ∅, ∅,T )

sample(t, p) , (∃ k • time = t + k · p)

Sampler(sP, sT , u, y) , DisBlk
(

y = u2 time = 0 ∨ sample(sT , sP)3 u = pre(u),

y, sample(sT , sP)

)
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The Sampler block sets its output y to have the same value as input y at regular sample
intervals, defined by a sample period (sP) and start time (sT ). It is defined in terms
of the function sample that determines whether the current value of time is one of the
sample instants. The sample block raises a time event whenever this is the case, and at
these points the discrete equation y = u is applied to sample the input.

The final block we describe is our custom toggle block from Definition 7.4.

Definition 7.8 (Toggle Block).

Toggle(u1, u2, u3, y) , (y = u1, truer , true, y = u32 u23 u1, ∅, ∅, false)

The toggle block simply switches the output y between u3 and u1, depending on the
value of Boolean input u2.

7.5 Model Composition

Having give block semantics for a portion of the Modelica library, we now show how
to give semantics to a Modelica block diagram. Naturally, block constructors are only
partial and the semantics of several blocks must be composed to produce an overall
control law diagram. We therefore define the following operator for composing model
fragments.

Definition 7.9 (Model Composition).

(I1,D1,A1,Q1,R1,Z1,T1) ⊕m (I2,D2,A2,Q2,R2,Z2,T2) ,

(I1 ∧ I2,D1 ∧ D2,A1 ∧ A2,Q1 ∧ Q2,R1 ∪ R2,Z1 ∪ Z2,T1 ∨ T2)

Composition of a model from parts involves conjunction of the equations, including initial,
differential, algebraic, and discrete equations. We also take the union of the sets of reset
equations and zero crossing functions, and the disjunction of all time event conditions.
Using this operator, and the block constructors defined above, we can construct composite
Modelica models. However, it is also necessary to define the behaviour of the built-in
continuous variable time, which is described by the model fragment below.

Definition 7.10 (Core Time).

CoreTime , (time = 0, time has-der 1, true, true, ∅, ∅, false)

CoreTime ensures that the time variable is 0 initially, and the differential equation causes
it to advance in line with the global clock.

With these definitions we can now give a semantics to the Bouncing Ball example from
Figure 6. We first define the alphabet of this diagram, which is

{a : R, g1 : B, g2 : B, h : R, i1 : R, i2 : R, r : B, v0 : R, v : R}

each variable of which corresponds to a connection in the diagram. Moreover, these
variables can be split into the three sub-classes:
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1. dynamic variable D , {v, h};

2. algebraic variables A , {a, i1, i2};

3. discrete variables Q , {g1, g2, r , v0}.

With the continuous state-space defined, the model itself is defined as follows.

Example 7.7 (Bouncing Ball Block Semantics).

BouncingBall , Constant(0, i1) ⊕m

Gain(−0.8, v, i2) ⊕m

Toggle(i1, r , i2, v0) ⊕m

Constant(−9.81, a) ⊕m

ResetIntegrator(1, a, v, v0, r) ⊕m

Integrator(v, h) ⊕m

LessThreshold(0, v, g1)

LessEqualThreshold(0, h, g2)

And(g1, g2, r)

This then gives the overall behaviour of the model as a hybrid reactive design.

8 Mechanisation in Isabelle/UTP

We have mechanised the majority of the work described in this deliverable in our proof
assistant Isabelle/UTP9, including our theories of generalised reactive processes, hybrid
relations, reactive contracts, hybrid reactive designs, and finally the semantics of Modelica
blocks. This includes all the definitions we’ve given and mechanical proof of all of the
theorems. On the whole the syntax of Isabelle/UTP closely mirrors the mathematical
syntax presented in our deliverables, though there are some notable changes. Details of
these can be found online in our syntax document10. Our UTP development can be found
in our online git repository11.

A major advantage that the use of Isabelle/HOL has provided is its substantial mecha-
nisation of real number theory, topological spaces, and calculus, all in the scope of the
Multivariate Analysis package [23]. This has been invaluable for allowing us to reason
about continuous and hybrid systems. Moreover, we have also utilised the HOL-ODE
package [33, 32] which provides support of ODEs, initial value problems, and their solu-
tions.

The foundation of all our mechanisation work is the theory of timed traces that acts as
the underlying trace model for the hybrid relational calculus. This work can be found
under dynamics/Timed Traces.thy. It includes the definition of types for contigu-
ous functions and then piecewise continuous and convergent functions along with all the

9Isabelle/UTP website: https://www-users.cs.york.ac.uk/~simonf/utp-isabelle/
10https://github.com/isabelle-utp/utp-main/raw/master/doc/syntax/utp-syntax.pdf
11https://github.com/isabelle-utp/utp-main
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Figure 8: Isabelle/UTP Hoare Logic tactic

operators defined in Section 3 of the deliverable for shifting timed traces and concate-
nating traces. We have also proved all the theorems in that Isabelle file. Altogether, this
amount to approximately 1500 lines of Isabelle definitions and proof.

The Isabelle/UTP core itself, located under the core/ directory, has grown substantially
to support the development of the theories defined in the deliverable. In particular, our
theory of lenses, that allows us to account for both discrete and continuous state, has now
spun off to its own development which can be found on the Isabelle Archive of Formal
Proofs 12. The Isabelle/UTP core now amounts to approximately 10,000 lines of Isabelle
definitions and proof. This includes the laws of predicate and relational calculus, meta-
logical operators like substitution, Hoare logic, weakest precondition calculus, operational
semantics, and an array of proof tactics for various kinds of program verification.

The Hoare logic tactic, called hoare auto, in particular are being employed in WP2
sister deliverables D2.3a [54] and D2.3d [11] to provide a verification technique for FMI
multi-models. An example of the use of this tactic can be seen in Figure 8. The tactic
applies Hoare logic introduction laws to break a goal into a series of verification con-
ditions which can then be discharged using Isabelle’s array of automated proof tactics.
These tactics, in particular, are also being employed in WP1 deliverables D1.3b [42] and
D1.3d [14] to verify the railway and buildings case studies, respectively. All of this shows
the added value of having mechanised semantics: it brings formal verification facilities
to the real world problems. It is worth stressing that all of this development ensures
that, ultimately, all the semantics given in this deliverable boils down to the axioms of
set theory, and thus ensures that are foundations are sound mathematics.

Founded on the core, we have also mechanised the theories of generalised reactive pro-
cesses, designs, and reactive designs, including a large number of generally applicable
laws, as exhibited in Section 5, and also more specialised laws for Circus which are also
being applied in the context of the FMI semantics deliverable D2.3c [55]. Again, all of
these laws have been proved utilising the tactics from Isabelle/UTP core. This develop-

12https://www.isa-afp.org/entries/Optics.html
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Figure 9: Solutions to ODEs in Isabelle/UTP

Figure 10: Reset Integrator in Isabelle/UTP

ment of pre-hybrid UTP theories amount to approximately 10,000 lines of Isabelle. These
key UTP theories can be found in the repository under theories/.

On top of the theory development outlined, we have also constructed the UTP theory
of hybrid relations, including all the operators described in Section 4 and their laws. As
an example, we demonstrate the proven theorem for ODE solution in Figure 9 which
corresponds to Theorem 4.3. This theorem in particular builds on the HOL-ODE pack-
age [33, 32]. The theorem has as parameters a lens x that captures the n continuous
variables of the ODE, F ′ : R → Rn → realn which is the characteristic function of the
ODE, F : Rn → R → Rn which is the solution function. The three assumption of the
theorem are that (1) x must be a very well-behaved lens; (2) F must be the unique
solution to ODE F at every time instant l > 0; and (3) F must return the initial value
at time 0. The usolves-ode primitive, from HOL-ODE describes a unique solution to an
ODE. Provided those three assumptions are met, this theorem can invoked to rewrite an
ODE to an evolution using the solution.

The hybrid relations development is then combined with reactive designs to provide the
theory of hybrid reactive designs. This then allows to merge all the theorems that have
come from both of these theories and thus illustrates the UTP’s approach to semantics
by theory integration. Hybrid relations and reactive designs together represent approxi-
mately 2500 lines of Isabelle.

Finally, the theory of hybrid reactive designs is applied to give mechanised semantics to
Modelica blocks. In Isabelle a block is a record with seven fields that correspond to the
latter seven elements of 10-tuple described in Section 7. An example is shown in Figure 10,
which gives the mechanised definition of the ResetIntegrator from Definition 7.6. All the
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blocks in the library we have encoded follow this typical form.

The definition is a function that constructs an instance of the block, from the given
arguments that correspond to block parameters and connectors. The first parameter of
type real is the single parameter k which is the gain constant. The next three arguments
have type (real,′ l,′ c) mcon, and the correspond to connectors of type R for the input,
output, and initial value, respectively. The two type parameters ′l and ′c represent the
local and global state-space for the diagram. The final argument is a boolean connector
that is used to reset the block. We then use these arguments to construct a record which
describes the initial equation, differential equation, and reset equations for this particular
block.

In addition to block definitions, we have also encode the block composition function ⊕m,
and the semantic function that produces a hybrid reactive design. These developments
can be found in the repository under modelica/noncomp/.

9 Conclusion

In this final deliverable for Task 2.3, we have made two main contributions.

Firstly, we have constructed a novel semantic domain in UTP for the representation of hy-
brid computation, using a collection of UTP theories. These theories include generalised
reactive processes, hybrid relations, and reactive designs, we form a layered semantic
meta-model. These theories have all been mechanised in Isabelle/UTP, and can be used
to perform assisted verifications of hybrid programs.

Secondly, we have used this domain to give a semantics to Modelica. We showed how the
core Modelica language can be mapped to a hybrid reactive design, and gave a precise
semantics to the event iteration cycle. We also showed how to describe Modelica blocks,
and gave a semantics to the flattening process.

Together these contributions provide the necessary foundations for a future theorem
prover for Modelica. This will require an automated translation from Modelica to our
representation in Isabelle/UTP, and also completion of definitions for each class in the
Modelica standard library, both of which we leave as future work. The translation will
need to map Modelica arithmetic expressions to Isabelle/HOL expressions, which should
be straightforward. It will also need to map Modelica block classes to the 10-tuple
representation we have given which requires an underlying knowledge of the equations
contributed by each Modelica construct. However, if only block classes from the stan-
dard library are needed, then the translation merely needs to instantiate their analogue
definitions in Isabelle/UTP.

The generality of our UTP theories also means they can also be applied to other related
languages, such as 20-sim and Simulink, which opens the door to integration with these
different languages. Simulink, for example, could be supported by giving similar defini-
tions to its block library using our reactive contracts, and composition operators for com-
posing blocks in control diagrams. This would permit formal semantics for multi-models
whose constituents are described in a variety of different continuous time notations, and
potentially also verification facilities.
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Our contract notation also supports verification by refinement, and future work could
also consider the development of a contract based specification language for control law
diagrams. This language would allow one to abstractly characterise a subsystem as
relation between its input and outputs ports, and then use proof tactics to substantiate
that a particular diagram fulfils the specification. This would require the development
of a bespoke requirement language in order to characterise the desirable behaviour of
the continuous variables over time, perhaps drawing on temporal logic. Moreover, this
work should also draw formal links with existing frameworks for contract-based design [3,
44].

Finally, our results have been practically applied in the context of WP1 for the buildings
and railways case study, which shows how our theoretical foundations add value to the
INTO-CPS methodology. More work is needed to turn our work into a realistic theorem
prover, such as the development of additional tactics for solving differential equations
in Isabelle. This could possibly be supported through integration with computational
algebra systems, like Matlab, that include such facilities.
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Appendices

A UTP Theory of Generalised Reactive Designs

In this appendix we examine our UTP theory of generalised reactive design contract in
more detail. We describe the healthiness conditions, core signature definitions, important
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properties of the theories, and additional algebraic laws. We also show how our theory
unifies a variety of existing reactive languages, and also imperative specifications. We
consider the formalisation of recursion, and show how Kleene’s fixed-point [34] theorem
can be applied to calculate tail recursive reactive designs. Finally, we detail preliminary
results for the formalisation of parallel composition in our UTP theory.

A.1 Healthiness Conditions

It is often incovenient to rely on a specific syntactic form to reason about contracts, and
thus as usual in the UTP methodology we will also define healthiness conditions that
characterise well-formed contract predicates. This will allow us to obtain a large number
of algebraic laws from lattice theory and related domains, and also allow us to reason
about contracts without the need for the syntactic form.

We first define functions that allow us to extract the three parts from a reactive de-
sign.

Definition A.1 (Pre-, Peri-, and Postcondition Functions).

preR(P) , ¬r P[true, false, false/ok, ok ′,wait]
periR(P) , P[true, true, false, true/ok, ok ′,wait,wait ′]
postR(P) , P[true, true, false, false/ok, ok ′,wait,wait ′]

These three functions variously substitute the observational variables to obtain the respec-
tive predicates. The precondition is false when a reactive design was started (ok ∧ ¬wait)
but it diverged (¬ok ′). Thus, to extract the precondition we set ok, ok ′, and wait to true,
false, and false, respectively, and negate the result using reactive negation. The peri-
condition is true when the reactive design was started, did not diverge (ok ′), but has
not yet reached its final state (¬wait ′), and thus we substitute the variables appropri-
ately. The postcondition is similarly obtained, but wait ′ becomes false, of course. With
these definitions we can prove theorems that allow us to extract the constituent reactive
relations.

Definition A.2 (Extracting Pre-, Peri-, and Postconditions).

preR([P -| Q1 | Q2 ]) = P
periR([P -| Q1 | Q2 ]) = P⇒r Q1

postR([P -| Q1 | Q2 ]) = P⇒r Q2

Provided P, Q1, and Q2 are all RR healthy.

The pericondition and postcondition are viewed through the prism of the precondition
being satisfied, which is why the implication is present. This is an important assumption
of reactive designs. Although it is possible to define behaviour in the peri and postcon-
dition that violates the precondition, once the contract is constructed these behaviours
will be pruned, such that the behaviour of a contract which violates is precondition is
always the maximally non-deterministic truer . Next we define the healthiness conditions
for our theory.
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Definition A.3 (Reactive Designs Healthiness Conditions).

RD1(P) , ok⇒r P
RD2(P) , P ; J

RD3(P) , P ; IIR

SRD(P) , RD1 ◦ RD2 ◦ Rs

NSRD(P) , RD1 ◦ RD3 ◦ Rs

RD1 – RD3 are analogous to H1 – H3 from the theory of designs. Moreover, our RD1
and RD2 correspond to CSP1 and CSP2 from the theories of CSP [29, 9] and Circus [40].
We rename them, firstly because our theory has a different alphabet founded by the trace
algebra, and secondly because we will not here specify the corresponding CSP3 and CSP4
which constrain ref and are thus specific to CSP and Circus.

RD1 states, like H1, that observations are possible only after initiation indicated by ok.
However, unlike H1 if ok is false the resulting predicate is not true, but truer , that is the
trace must monotonically increase, but the behaviour is otherwise unpredictable. RD2
is identical to H2 and thus also CSP2. RD3 is analogous to H3: it requires that skip is
a right unit which ensures (1) that the precondition is a reactive condition; and (2) the
pericondition does not depend on st ′.

Our overall healthiness condition for stateful reactive designs is then called SRD, which
includes RD1, RD2, and Rs. The class of SRD predicates admits a number of useful
identities that we outline below.

Theorem A.1 (SRD Laws). If P is SRD healthy then

IIR ; P = P (A.1.1)
Chaos ; P = Chaos (A.1.2)

Miracle ; P = Miracle (A.1.3)

More important for our theory of contracts, we identify the class of normal stateful
reactive designs, NSRD, which is the theory domain of our reactive contracts. NSRD
does not explicitly invoke RD2 as it is subsumed by RD3, as the following theorem
demonstrates.

Theorem A.2 (RD3 subsumes RD2).

RD2(RD3(P)) = RD3(RD2(P)) = RD3(P)

Proof. This follows since J ; IIR = IIR ; J = IIR. See also mechanisation.

Consequently, it is easy to show that every NSRD healthy predicate is also SRD healthy.
We can next prove that these healthiness conditions admit certain syntactic formulations
of reactive design triples as shown in the following theorem.

Theorem A.3 (Reactive Design Formulations).

SRD(P) = [ preR(P) -| periR(P) | postR(P) ] (A.3.1)
NSRD(P) = [ RC1(preR(P)) -| (∃ st • periR(P)) | postR(P) ] (A.3.2)
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If a predicate is SRD healthy then it takes the typical form of a stateful reactive de-
sign with a pre, peri, and postcondition. Theorem A.3.1 thus allows us to take an SRD
predicate and deconstruct it into its three parts which can then be manipulated as sepa-
rate entities. Consequently, a well-formed reactive design triple yields a healthy reactive
design.

Theorem A.4 (Reactive Contracts are SRD healthy). If P1, P2, and P3 are all RR
healthy then [P1 -| P2 | P3 ] is SRD healthy.

NSRD predicates take a similar, albeit more restrictive form to those of SRD. Firstly, st ′
must not be mentioned in the pericondition, as illustrated by the existential quantifier.
This follows as a direct consequence of R3h [5], which requires that st must not be
restricted in an intermediate state. Thus, composition of P with IIR to the right in RD3
has the same effect on st ′ in P since IIR ignores any intermediate states (wait ′ = true)
rather than passing them on to any successor.

Having st ′ effectively invisible in intermediate observations has a number of advantages.
It ensures that operators like external choice which conjoin intermediate observations will
not yield miraculous behaviour caused by inconsistent intermediate state updates [5]. It
also means that state updates can be deferred into the future as far as possible, with
them ultimately only being observable by a direct sequential successor, or when an event
reveals them. This, for instance, allows the following algebraic law for Circus.

Theorem A.5 (Assignment and Events).

(x :=C e ; c → P) = (c[e/x ]→ (x :=C e ; P))

Theorem A.5 allows us to push assignment through event prefix, whilst making an appro-
priate substitution. It can be found in reactive languages like Occam [43]. This law does
not hold in previous Circus semantics [40] as st ′ (there called v ′) is revealed in interme-
diate states, and thus whilst the left hand side of this equation admits an intermediate
observation where x is updated to e, the right hand side does not.

A side effect of RD3 is to prevent encoding of McEwan’s interruption operator [37] that
retains the state following interruption [5], as no intermediate state variables can be
observed. If such an operator is required then the loss of Theorem A.5 must be accepted,
and R3 used as the base of reactive designs instead. This is a design choice depending
on the kind of reasoning and expressivity needed. The latter healthiness condition is
supported in Isabelle/UTP if its use is desired.

The second restriction of NSRD is that the precondition must take a specific form of a
reactive condition (RC): truer must be a right unit of the negated precondition. Indeed,
it is this identity which motivated our definition of the reactive condition healthiness
condition. Unlike H3 designs, the precondition need not only refer to undashed vari-
ables, as it can refer to tr ′ in certain circumstances. However, all other primed variables
such as ok ′ and wait ′, for example, cannot be present in the precondition of an NSRD
predicate.

The precondition restriction follows as a direct consequence of RD1. Consider P ; IIR:
if P diverges and ok ′ takes the value false, and the behaviour of P is ¬r preR(P) since
the precondition must have been violated. If ok ′ is false in P then the behaviour of its
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successor IIR is simply truer , due to RD1. Thus RD3 yields the identity (¬preR(P)) ;
truer = (¬preR(P)) for divergent behaviours, which if the motivation for RC1.

The relaxation of this restriction allows us to express preconditions which constrain the
possible behaviour of the environment that the process is willing to accept. Having
a reactive condition as the precondition means that the negated precondition cannot
constrain the whole future of the trace, only an initial segment. The trace part of the
precondition therefore characterises behaviours that the environment must not engage
in.

This form of precondition used by Example 5.4 in Section 5, where the environment should
not perform an a to ensure correct behaviour. Here the trace requirement is to the left of
an implication which means it is effectively negated. All of these forms are RC healthy.
We can finally state the following introduction theorem as a corollary of Theorem A.3.2,
which give the conditions under which a predicate is NSRD healthy.

Theorem A.6 (NSRD Introduction). Predicate P is NSRD healthy provided that the
following conditions hold:

1. P is SRD healthy;

2. preR(P) is RC healthy;

3. periR(P) does not mention st ′.

SRD and NSRD are both idempotent and continuous, and therefore both form a complete
lattice, as stated in the following theorem.

Theorem A.7 (Reactive Design Lattices). SRD and NSRD healthy predicates form com-
plete lattices with >R , SRD(false) = Miracle and ⊥R , SRD(true) = Chaos.

Proof. Standard proofs of idempotency for CSP1 and CSP2 [29, 9] apply also to SRD1
and SRD2, respectively. SRD3 is idempotent since IIR ; IIR = IIR. SRD1 is continuous
since it is disjunctive. SRD2 and SRD3 are both continuous since sequential composition
distributes through infima to the left and right.

We note that both Miracle and Chaos, following the form given in Theorem A.6, are
both also NSRD healthy. We thus obtain weakest fixed-point operators µR and µN for the
two theories, which we will further explore in Section A.4. Since SRD and NSRD are also
continuous, by Theorem 2.1 we can rewrite the weakest fixed-points to µX • F(SRD(X))
and µX • F(NSRD(X)), respectively. Thus, we can reason about recursive reactive
designs using the relational calculus lattice rather than the theory specific ones. We can
also show that reactive designs are closed under the standard relational calculus operators,
as the following theorems demonstrate.

Theorem A.8 (Reactive design composition). If P and Q are NSRD-healthy then

P ; Q = Rs( preR(P) ∧ (postR(P) wpr preR(Q))

` periR(P) ∨ (postR(P) ; periR(Q))

� postR(P) ; postR(Q)
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Theorem A.8 is essentially the same as Theorem 5.2.5, but relies on healthiness of P and
Q, rather than their syntactic form. As similar law holds for SRD healthy predicates,
though with a more complex precondition. We finally prove closure of the theory under
the main programming operators.

Theorem A.9 (Reactive Designs Closure). SRD and NSRD healthy predicates are closed
under u, t, 2 b3, ; , IIR, 〈σ〉R, Miracle, and Chaos

This closure theorem also means that we can import the algebraic laws for the relational
calculus operators from core UTP. Finally, we note that our theory admits the following
familiar laws from relational calculus for assignment.

Theorem A.10 (Reactive Design Assignment Compositions). If P is NSRD healthy, x
is a state variable, and v is an expression containing only state variables, then:

(x :=R v) ; P = P[v/x ]

〈σ〉R ; P = σ †P

The more usual former law is simply an instance of the latter when σ = {x 7→ v}, crucially
provided that x is a state variable and not an arbitrary UTP variable. Theorem A.10
depends directly on R3h and would not hold if P were constructed from R3 instead.
Indeed, if R3 is used then P[v/x ] is not even a healthy reactive design.

The reason for this is that in R3h if wait = true then st is abstracted. Consequently, a
substitution for any state variable when P is waiting for its successor is ineffectual: the
result will always be (∃ st • II). But this is not the case for R3 which instead would yield
II[v/x ], and thus reveals the state variable in the intermediate state. Since R3 expects
that the behaviour when wait = true is simply II, which is of course different to II[v/x ],
then state substitution yields an unhealthy predicate in its presence.

Hence, with R3h we obtain a more abstract way of dealing with state variables in sequen-
tial processes. In particular, a state substitution σ † [P1 -| P2 | P3 ] yields the healthy
reactive design [σ †P1 -| σ †P2 | σ †P3 ] as expected, and thus substantiates Law RA2 of
Theorem 5.5.

A.2 Unifying Reactive Languages

NSRD healthy predicates encompass a number of existing languages, notably Circus and
CML, and thus acts as a unifying layer for stateful reactive contracts. We will show that
these UTP theories are all subsets of NSRD, and thus all the laws we have proved so far
are applicable. This section thus serves to demonstrate the breadth of application of our
UTP theory.

We first consider CSP and Circus. In addition to the reactive design healthiness condi-
tions, CSP1 and CSP2, the UTP CSP semantics adds CSP3 and CSP4.

Definition A.4 (CSP Healthiness Conditions).

CSP3(P) , SKIP ; P CSP4(P) , P ; SKIP
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The operator SKIP is equivalent to the Skip operator, but without state variables as
CSP does not have these. CSP can be obtained by simply setting the state-space type
Σ to a singleton set, which effectively removes state. In this case, R3h degenerates to
R3, and thus Rs degenerates to R. Cavalcanti and Woodcock [9] proved that SKIP is
equivalent to the reactive design R(true ` tr ′ = tr ∧ wait ′), which in turn is equivalent
to [ truer -| false | tt = 〈〉 ]. We can then prove the following theorem.

Theorem A.11 (CSP processes are NSRD healthy). If P is R and CSP1-CSP4 healthy,
then P is NSRD healthy

Proof. Since SRD is equivalent to R − CSP1 − CSP2 is suffices to show that P is RD3
healthy. From CSP4 we know that P = P ; SKIP. Moreover, we know that SKIP is
RD3 since it satisfies the form given in Theorem A.3.2: the precondition is clearly RC1,
and the pericondition does not mention st ′. Consequently, SKIP ; IIR = SKIP, and thus
by associativity of ; it follows that P is NSRD.

Circus actions are similar to CSP processes, but have slightly different healthiness condi-
tions that do account for state variables. Effectively, they require that the Circus action
Skip is a left and right unit. Then, following a similar proof to Theorem A.11, we can
show that Circus actions are indeed NSRD healthy. Circus additionally has the healthi-
ness condition C3 [40] that mandates that the precondition of a reactive design can only
contain undashed variables. Though true for Circus processes, this is over-restrictive and
prevents assumptions with trace behaviour in reactive contracts. Thus our model is both
unifying and more general, in that we only mandate the the precondition is RC1.

We next show that our model also encompasses CML, a formal discrete time modelling
language for systems of systems. Sequential CML actions are characterised by six health-
iness conditions that we enumerate below.

Definition A.5 (CML Healthiness Conditions).

RT1(P) , rt ≤ rt ′ ∧ P[rt ′ − rt, 〈〉/rt ′, rt]

RT2(P) , RT1(true)2¬ok 3P

RT3(P) , (∃ v ′ • II)2wait ∧ ok 3P

RT4(P) , P ; J

RT5(P) , SKIP ; P

RT6(P) , P ; SKIP

SKIP , RT2 ◦ RT3(¬wait ′ ∧ rt ′ = rt ∧ v ′ = v ∧ ok ′)

Observational variables rt, rt ′ : seq (E + P(E)) represent the timed trace before and after
execution. They correspond to tr and tr ′ from the theory of CSP, but in addition to
events E , a timed trace can contain “tock” events that denote the passage of time. Thus
a trace is divided into a sequence of time instants, each of which is characterised by a
sequence of effectively instantaneous events. A tock event is represented by the set of
events that were refused at the end of a particular instant. Thus, CML does not have
require the observational variable ref , as refusals are encoded in the trace itself. Since
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our notion of trace is polymorphic, we will replace rt by tr with an appropriate event
type.

The CML SKIP is different, again, to the CSP SKIP. However, it is in fact equivalent
to the reactive skip operator IIR, precondition true, a pericondition false (since wait ′ =
false), and the postcondition simply equates each undashed variable with its dashed
version, including the state st. Thus, we can prove the following theorem.

Theorem A.12 (CML processes are NSRD healthy). If P is RT1-RT6 healthy, then P
is NSRD healthy

Proof. RT1-RT2 is equivalent to Rs. RT3 and RT4 are equivalent to RD1 and RD2,
respectively. Since SKIP = Skip, RT6 is a theorem for SRD predicates. Finally, RT7 is
equivalent to SRD3 so we are done.

Thus, our theory unifies and subsumes both untimed Circus and timed CML, which
demonstrates its applicability. All the laws we have proved for NSRD predicates can
be used for reasoning about both languages, along with other members of the Circus
language family with similarly formulated healthiness conditions.

Finally, our theory can also be used to unify languages with hybrid computation. As we
have previously shown [18], our trace algebra allows us to account for continuous timed
traces [25], which can in turn be applied to model continuous variables and differential
equations [19]. The inclusion of continuous variables thus allows us to consider hybrid
reactive design contracts, where the assumptions and guarantees constrain the possible
behaviours of the continuous variables. Such a foundation has previously been applied to
give a UTP semantics to Simulink [56], and our contracts can be applied similarly.

A.3 Linking with Imperative Specifications

Aside from unifying reactive languages, our contracts also allow us to link with imperative
specification languages like VDM and Z. In such notations, systems are specified in terms
of operations that are formulated as relations on state variables. The theory of designs can
be applied to unifying such specification formalisms. Thus, in this section we formulate
a link between the theory of designs and reactive designs, which enables embedding
imperative programs and specifications into reactive contracts.

We specify functions for converting designs to reactive designs, and vice-versa.

Definition A.6 (Lifting Functions).

RD(P) , Rs(preD(P) ` false � (tt = 〈〉 ∧ postD(P))

DR(Q) , (preR(Q))[tr ′/tr ] ` (postR(Q))[tr ′/tr ]

Here, P is a normal UTP design on state variables alone: its alphabet consists of ok,
ok ′, st, and st ′ and it is N healthy. Q is any reactive design predicate. The function RD
embeds a state variable design into a reactive design by copying the precondition, setting
the pericondition to false, since there are no intermediate observations, and conjoining
the postcondition with tt = 〈〉 so that no events occur. If P is a normal design, then it
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follows that RD(P) is a normal stateful reactive design, in particular since the precondition
will consider only unprimed state variables and not the trace.

We also introduce the function DR as its inverse: it constructs a normal design which
ignores the pericondition and permits no trace behaviour by substituting tr for tr ′. We
can show that, for any normal design p ` Q, DR is the inverse of RD.

Theorem A.13 (Lifting Theorems).

DR(RD(p ` Q)) = p ` Q (A.13.1)
P v Q ⇒ RD(P) v RD(Q) (A.13.2)

A corollary of this theorem is that RD is an injective function: every normal design has a
corresponding unique reactive design. The RD is also monotonic, meaning refinement of
a lifted imperative design can be determined by refinement of the design itself. Finally,
we demonstrate some homomorphism laws of RD.

Theorem A.14 (Lifting Homomorphisms).

RD(>D) = Miracle

RD(⊥D) = Chaos

RD(IID) = IIR

RD(P u Q) = RD(P) u RD(Q)

RD(P 2 b3Q) = RD(P)2 b3 RD(Q)

RD(P ; Q) = RD(P) ; RD(Q)

RD(〈σ〉D) = 〈σ〉R

Lifting the design top and bottom yields the reactive design top and bottom, as expected,
and lifting the design identity yields the reactive identity. Moreover, RD as expected
distributes through internal choice, conditional, and sequential composition. Finally,
lifting the design assignment yields the reactive assignment.

A.4 Recursion

In this section we will show how to calculate reactive contracts for a restricted class of
recursive models, with the particular aim of substantiating Theorem 5.3 in Section 5. In
Section A.1 we showed that generalised reactive designs form a complete lattice. Thus for
any monotonic process construction F we can be sure there exists fixed-points µF and
νF . However, in order to reason about reactive contract generally, we need to calculate
the pre, peri, and postconditions of such constructions.

In general, we are most interested in the weakest fixed-point for reactive designs, µF ,
as the strongest fixed-point yields miraculous behaviour for erroneous processes [8]. For
example, (νX • X) = Miracle, whereas in reality an infinite loop is a programmer error
that should yield Chaos, which µX • X does. In order to calculate the reactive design
of a weakest fixed-point we employ two results: (1) Hoare and He’s proof that guarded
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processes yield unique fixed-points [29, theorem 8.1.13, page 206], and (2) Kleene’s fixed-
point theorem [34]. The latter allows us to convert from a recursive construction with
a strongest fixed-point to an iterative construction, using a replicated internal choice of
power constructions. Since we can calculate the reactive design of replicated processes,
we can therefore tackle recursion.

Hoare and He’s theorem states, informally, that guarded reactive processes yield a unique
fixed-point. That is, if for any X , F(X) is guarded then µF = νF . Guardedness is defined
as follows.

Definition A.7 (Guarded Reactive Designs). A fixed-point function on reactive designs
F : JSRDK→ JSRDK is guarded provided that, for any P ∈ JSRDK and n ∈ N,

(F(P) ∧ gv(n + 1)) = (F(P ∧ gv(n)) ∧ gv(n + 1))

where gv(n) , (tr ≤ tr ′ ∧ #tt < n) and #tt : N is a suitable discrete trace measure.

Given a reactive design µX • F(X), if F is guarded then intuitively before recursion
variable X can be reached, F must have produced a non-empty portion of the trace. For
example, in CSP we may have a process µX • a → X which is guarded since it must
perform an a before recursing. This is ensured by requring that the trace contribution
of the function applied to a reactive design F(P) yields a trace strictly longer than that
produced by P. This is the purpose of gv: if we observe F(P) in a context where the
trace is longer than n + 1 (enforced by gv(n + 1)) then we can conclude that the trace
contributed by P must be no longer than n, and thus we can conjoin it with gv(n). We
can then use this to prove Hoare and He’s theorem.

Theorem A.15 (Unique Fixed-Points). If F is guarded then µF = νF.

Technically, the µ and ν operators here specified are the operators of the relational
calculus lattice, and not an arbitrary UTP theory. Thus, in order to employ this theorem
in the context of reactive designs we first have to employ Theorems A.7 and 2.1 to
convert the reactive design fixed-point operator. Continuity of SRD is thus an important
property. Thus, for any guarded process, we can convert a recursive construction using
the weakest fixed-point to one using the strongest fixed-point.

In order to make use of Theorem A.15 it is necessary to prove guardedness theorems for
the operators of the target language. In general, this can be quite complicated and so for
the purposes of this paper we shortcut guardness and instead focus on tail recursive fixed-
point constructions of the form µR X • P ; X , where X is not mentioned in P, as employed
by Theorem 5.3. This pattern, though restrictive, covers a large number of specifiable
Circus processes, for instance. In this case, guardedness can be shown simply by showing
that P always produces events before it terminates. Of course P may not terminate at
all, but in this case the recursion variable X is unreachable and thus µR X • P ; X would
reduce to P. Whether or not P terminates, we define productivity as the criterion we
need for well-defined recursion.

Definition A.8 (Productivity). A reactive design [P -| Q | R ] is said to be productive
if R is a fixed-point of λX • X ∧ tr < tr ′. That is, if we establish termination then it is
necessary that the trace strictly increases.

We can then prove the following theorem.
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Theorem A.16. If P is productive then λX • P ; X is guarded.

Then, by Theorem A.15 we know it is safe to map the weakest fixed-point to the strongest
fixed-point. This then brings us to Kleene’s fixed-point theorem, which allows us to
calculate an iterative construction for a strongest fixed-point of F , provided that F is
continuous.

Theorem A.17 (Adapted Kleene’s fixed-point theorem). If F is a continuous function
then the strongest fixed-point can be calculated by iteration:

νF =
l

i∈N

F i(false)

Kleene’s fixed-point theorem actually often employs Scott-continuity as its antecedent,
which is a weaker notion than our continuity on complete lattices. The theorem allows
us to calculate the fixed-point by iterating F , starting from false, the lattice >. Now, for
our simplified pattern νX • P ; X we automatically have continuity since relational com-
position is continuous. Combining this with Theorem 5.2.6, that includes the calculation
for a power construction, we are now in the position to substantiate Theorem 5.3.

Proof.

µR X • [P -| Q | R ] ; X

= µX • [P -| Q | R ] ; SRD(X) [Theorem 2.1.8]

= νX • [P -| Q | R ] ; SRD(X) [Theorems A.15 and A.16]

=
l

i∈N

(λX • [P -| Q | R ] ; SRD(X))i(false) [Theorem A.17]

=
l

i∈N

(λX • [P -| Q | R ] ; SRD(X))i+1(false) [Unfold: f 0(false) = false)]

=
l

i∈N

([P -| Q | R ]i+1 ; SRD(false)) [Induction on i]

=
l

i∈N

([P -| Q | R ]i+1 ; Miracle) [Theorem 2.1.5]

=
l

i∈N

[∧
i≤n

(
Ri wpr P

)
-

∣∣∣∣∣ ∨
i≤n

Ri ; Q

∣∣∣∣∣ Rn+1

]
; Miracle [Theorem 5.2.6]

=
l

i∈N

[∧
i≤n

(
Ri wpr P

)
-

∣∣∣∣∣ ∨
i≤n

Ri ; Q

∣∣∣∣∣ false

]
[Theorem RD8]

=

[∧
i∈N

(
Ri wpr P

)
-

∣∣∣∣∣ ∨
i∈N

Ri ; Q

∣∣∣∣∣ false

] [
Theorem 5.2.2 and
relational calculus

]
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This proof demonstrates the necessity of all the body of theorems we have proved from
the UTP theories and reactive designs in order to reason about recursion. We therefore
now have a complete constructive approach for calculating the reactive contract for a
variety of recursive specifications.
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