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Abstract

In our third and final instalment of the INTO-CPS deliverable on SysML
Foundations, we complement the earlier work with general techniques that
can be used to reason about co-simulation models specified using the INTO-
SysML profile and implemented via the Functional Mock-up Interface (FMI).
We explain our techniques by applying them to industrial case studies from
the railways domain and smart buildings control. Both are part of the four
major case studies of the INTO-CPS project. In doing so, we illustrate how
mechanical theorem proving can add value to the analysis of co-simulation
models, establishing both well-formedness of the architecture and behavioural
properties of the co-simulation system. Our major result is to lay the founda-
tions of a compositional verification approach for FMI based on Hoare logic
and refinement techniques.
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1 Introduction

This report constitutes the final deliverable on SysML Foundations of the
INTO-CPS project. It complements the earlier deliverables on this topic by
proposing a general technique for proof-based analysis of co-simulations that
considers both architectural and behavioural properties of an FMI model.
The technique is illustrated by way of two case studies, one from from rail-
ways and another one from the area of smart buildings control.

1.1 Background and Motivation

Co-simulation techniques are popular in the design of cyber-physical sys-
tems (CPS) [18]. Such systems are typically engineered using a variety
of languages and tools that adopt complementary paradigms; examples are
physics-related models, control laws, and sequential, concurrent and real-time
programs. This diversity makes CPS generally difficult to analyse and study.
The Functional Mock-up Interface (FMI) Standard [11] has been proposed
to alleviate that problem and has since been successfully used in industry. It
addresses the challenge of interoperability, coupling different simulators and
their high-level control components via a bespoke FMI API1.

While (co)simulation is currently the predominant approach to analyse CPS,
this report describes a proof-based complementary technique that uses math-
ematical reasoning and logic. Simulation is useful in helping engineers to un-
derstand modelling implications and spot design issues, but cannot provide
universal guarantees of correctness and safety. It is usually impossible to run
an exhaustive number of simulations as a way of testing the system. For
these reasons, it is often not clear how the evidence provided by simulations
is to be qualified, since simulations depend on parameters and algorithms,
and are software systems (with possible faults) in their own right.

Proof-based techniques, on the other hand, hold the promise of making uni-
versal claims about systems. They can potentially abstract from particular
simulation scenarios, parametrisations of models, and interaction patterns
used for testing. In traditional software engineering, they have been success-
fully used to validate the correctness of implementations against abstract
requirements models [5]. Yet, their application to CPS is fraught with diffi-
culties: the heterogeneous combination of languages used in typical descrip-
tions of CPS raises issues of semantic integration and complexity in reasoning

1Abstract Programming Interface
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about those models. The aspiring ideal of any verification technique is a com-
positional approach, and such approaches are still rare for CPS [30].

1.2 Contribution

This deliverable reports on a novel technique for proof-based analysis of co-
simulation models of CPS, describe by SysML UML models such as the one
in Fig. 3 on page 24. We discuss proofs of various relevant properties of a co-
simulation model, such as architectural well-formedness and safety properties
of the abstract FMI system model. We illustrate our technique firstly through
an industrial case study from railways that is based on a real system and pro-
vided by ClearSy, a consultancy company for the application of formal meth-
ods to safety-critical systems (http://www.clearsy.com/). The case study is
described in detail in INTO-CPS Deliverable D1.3 in general terms. Here, we
focus on mechanically encoding it in our proof tool Isabelle/UTP [16], tai-
lored for refinement-based reasoning about multi-paradigm languages. We
moreover examine a second example from buildings environmental control,
which is described in detail in INTO-CPS Deliverable D1.1d.

The added contributions of this deliverable in comparison to the preceding
INTO-CPS Deliverable D2.2a are summarised as follows.

1. We show how well-definedness proofs of FMI co-simulation models can
be formulated and automated in a proof assistant.

2. We describe a general compositional approach for proof-based analysis
of CPS via a refinement technique.

3. We illustrate our approach by way of two industrial case studies.

4. We present proofs of invariant and safety properties of our model of
the FMI co-simulation for the railways system.

5. We evaluate industrial use and potential automation for our technique.

The remainder of the report is structured as follows. In Section 2, we review
preliminary material. Section 3 gives a general account and overview of our
technique, and in Section 4 we introduce the railways case study, including
detailed descriptions of relevant models. In Section 5, we report on its formal
encoding and proof-based analysis. Section 6 is then dedicated to our second
example on smart buildings control, and Section 7 examines ramifications of
our approach, its industrial application, and related work. Lastly, in Section 8
we conclude the report and outline future work.
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2 Preliminaries

We begin by discussing relevant preliminary material: Section 2.1 introduces
the INTO-SysML Profile, Section 2.2 explains the FMI Standard, and in
Section 2.3 we give a brief overview of Isabelle/UTP, our proof system.

2.1 The INTO-SysML Profile

The Systems Modelling Language (SysML) [33] is a graphical notation for
systems engineering, defined as both a specialisation and extension of the
Unified Modelling Language (UML) [32]. It is realised by using UML’s profile
mechanism, which provides a generic technique for customising UML models
for particular application domains and platforms.

There exist various commercial and open-source tools for SysML model cre-
ation and design. These include IBM’s Rational Rhapsody Designer [23],
Atego’s Modeler [2], Modeliosoft’s Modelio [28], as well as the Eclipse-based
Papyrus [17] modelling environment. They support model-based engineering
and have been used successfully in industry to model complex systems.

A SysML block is a structural element that represents a general component of
the system, describing either functional, physical, or human behaviour. The
SysML Block Definition Diagram (BDD) shows how blocks are assembled
into architectures; it is the analogue of a UML Class Diagram. A BDD
illustrates how the system is composed from its blocks using associations
and other composition relations.

A SysML Internal Block Diagram (IBD) allows a designer to refine internal
block structures; it is similar to UML’s Composite Structure Diagram, which
shows the internal structure of a class. In an IBD, parts are assembled to
define how they collaborate to realise the block’s overall behaviour.

The INTO-SysML profile, described in INTO-CPS Deliverable D2.1a, cus-
tomises SysML for architectural modelling for FMI co-simulation. It em-
braces the many themes of the INTO-CPS project: tool interoperability, se-
mantic heterogeneity, holistic modelling, and co-simulation, and provides the
modelling gateway for the INTO-CPS approach. It specialises blocks to rep-
resent different types of components of a CPS. These constitute the building
blocks of hierarchical descriptions of CPS architectures. A component can be
a logical or conceptual unit of the system: software or a physical entity.

INTO-SysML has two types of diagrams, Architecture Structure Diagrams
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(ASD) and Connection Diagrams (CD), specialising SysML BDDs and IBDs.
The Modelio tool, mentioned above, has been extended as part of the INTO-
CPS project to support the INTO-SysML profile. For an example of an
INTO-SysML Connection Diagram, we refer to Fig. 3 on page 24.

In our railways case study, the block models are written in Modelica and
VDM-RT. Modelica, developed by the Modelica Association, is an object-
oriented equation-based language for modelling, simulating, and analysis of
multi-domain dynamic systems. Both open-source and commercial tools ex-
ist that support the Modelica language specification. These include, for
instance, OpenModelica, JModelica, Dymola, SimulationX, MappleSim, and
Wolfram SystemModeler. Modelica supports both control law diagrams and
explicit mathematical models via Differential Algebraic Equations (DAE).
VDM-RT is a bespoke language and verification method for developing con-
current real-time systems. It is an extension of the Vienna Development
Method (VDM) that includes objects and time.

2.2 FMI in a Nutshell

The FMI Standard [3] has been developed jointly by the Modelica Associa-
tion and several industrial partners. It addresses the challenge of coupling
different simulators. It achieves this by defining an API that prescribes the
interaction of simulation components in co-simulations.

Simulators are referred to as Functional Mock-up Units (FMUs). They are
passive black-box entities (slaves) that are orchestrated by a master algo-
rithm (MA). The MA drives the simulation by performing data exchange
between the FMUs, and managing their initialisation, stepping, and error
handling. The MA also determines the step size of simulations, either stat-
ically, or dynamically for each step. This is important to ensure fidelity of
the simulation with respect to the underlying real-world system.

The conceptual view of an FMI architecture entails one master algorithm
and several FMUs that wrap tool and vendor-specific simulation components.
The FMI Standard not only specifies the API by which MAs must commu-
nicate with the FMUs, but also how control and exchange of data must be
realised. Typically, the MA reads outputs from all FMUs and then forwards
them to those FMUs that require them as inputs. After this, the MA no-
tifies the FMUs to concurrently compute the next simulation step. Some
master algorithms assume a fixed step size while others enquire the largest
step size that the FMUs are cumulatively willing to accept. MAs sometimes
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also perform roll-backs of already performed simulation steps.

The three key aspects of the FMI paradigm are that (a) FMUs do not com-
municate directly with each other so that all data exchange is carried out
by the MA; (b) they proceed synchronously, following the BSP model of
concurrency [37]; and (c) the dependency between FMUs implied by their
connected input and output ports is free of algebraic loops. The third caveat
ensures stability of the co-simulation, but does not exclude feedback systems
as long as they do not exhibit cycles with direct dependencies. Finally, the
FMI standard also constrains what kind of data can be exchanged between
FMUs: real, integer, boolean and string values.

2.3 Isabelle/UTP

Isabelle/UTP is a theorem prover implemented in the Isabelle proof assistant,
on top of Higher-Order Logic (HOL). It supports proof in the context of
Hoare and He’s Unifying Theories of Programming (UTP) [21]. This is a
general and unifying framework to define programming language semantics.
It adopts a predicative approach that represents computational models as
relations over a theory-specific alphabet of variables. These determine the
observable quantities and can, for instance, include the state variables of a
program, traces of a reactive process, or trajectories of a hybrid system.

To give an example, we consider the predicate

ok ∧ y 6= 0⇒ ok ′ ∧ z ′ = x div y where div is division. (1)

It models the partial assignment z := x div y . Here, x , y and z are program
variables of type integer or real. Primed variables are used to refer to the
program state after execution, and unprimed variables to the program state
before execution. We point out that ok is a special boolean variable that
models program termination. Hence ok being true signifies that the program
has started, and ok ′ being true signifies that it has terminated.

The above predicate (1) admits, for example, the observation2 {ok ; true,
x ; 6, y ; 2, z ′ ; 3, ok ′ ; true}, capturing that the program starts in a
state where x = 6 and y = 2, and terminates in a state where z = 3. It also
admits the observation {ok ; true, x ; 6, y ; 0, ok ′ ; false}, capturing
that the program may not terminate if started in a state where y = 0. Predi-
cates specify in this way the observations that can be made of a computation

2We represent observations as bindings records. Variables not mentioned in the binding
can have arbitrary values.
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within a particular computational paradigm or model. Here, for instance,
the paradigm is sequential programming under total correctness.

In a partial correctness semantics, ok would not be needed. For the semantic
theory of a process algebra, we may in contrast need additional variables that
account for traces of interactions with the environment. During INTO-CPS,
we have encoded and mechanised several UTP theories in Isabelle/UTP that
can be used to reason about languages relevant to the design of co-simulation
models, including Modelica and VDM-RT.

For our proof technique presented in this deliverable, it is sufficient to limit
our theory to partial-correctness computations, being modelled by predicates
over program state variables only. This already provides a suitable model to
validate, for instance, the rules of Hoare logic [20]. This is important as we
use those later on in our verification technique.

Important to note is that the general view of the UTP modelling compu-
tations as predicates facilitates a contractual view. For instance, more gen-
erally, predicates of the form ok ∧ P ⇒ ok ′ ∧ Q specify computations as
familiar pre- and postcondition pairs (P ,Q). The refinement of specifications
into programs is simply reverse implication.

We extend the notion of contract to reactive contracts, as described in INTO-
CPS Deliverable D2.3b. These enable us to specify the observable interac-
tions of a reactive process — that is, a processes that communicates with its
environment. To write such contracts, we use the notation [P | R �Q ] where
P is the contract’s precondition, Q its postcondition, and R its pericondi-
tion. The pre- and postcondition play similar roles as in sequential programs,
specifying the states from which the program is guaranteed to terminate (P)
and its behaviours upon termination (Q). The pericondition characterises
nonterminating albeit nondivergent behaviours, since reactive computations
may not terminate and yet do useful things by interacting and communicat-
ing with their environment. The three predicates typically impose constraints
on a trace variable tr recording interactions.

We summarise a few salient issues about Isabelle/UTP. In order to faithfully
encode the UTP logic, Isabelle/UTP uses a deep model of predicates based on
lenses [16] rather than directly translating them into HOL predicate. In prac-
tical terms, this requires a specialised treatment of variables and alphabets,
as well as operators, which have to be ‘lifted’ from HOL into Isabelle/UTP.
Most of this is hidden from the user; however, a few notations need to be
memorised to write predicates and programs in Isabelle/UTP.
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Firstly, the alphabet command has to be employed to introduce variables
and state spaces. It is part of our tool and accepts similar arguments as
Isabelle/HOL’s record command to define new record types (we show an
example of this in Section 5). Secondly, variables have to be decorated with
$v or &v to indicate whether they refer to plain or relational state spaces.
Lastly, operators frequently have to be subscripted, as in &x =u &y . This is
because they are logically distinct from the corresponding HOL operators,
with the subscripted operators denoting lifted versions thereof.

This concludes our introduction of UTP and Isabelle/UTP. Next, we present
a general description of our analysis and verification technique for FMI.

3 Proof-based Analysis of SysML Models

In this section, we outline our general approach to reason about SysML
models of FMI co-simulations. Verification of architectural properties is the
concern of Section 3.1. Section 3.2 introduces a behavioural model of FMI
co-simulations, and, in Section 3.3, we discuss its refinement.

3.1 Architectural Model

The architectural model of an FMI co-simulation captures its structure in
terms of FMU components and their mutual connections via ports. Each
FMU provides a set of input and output ports to exchange data. Ports
have names and types, identifying them within the model and specifying the
kind of data that they transmit. The formal characterisation of an FMI co-
simulation architecture conceptually involves the following elements.

• A finite set of FMU components.

• A finite set of input ports of the FMUs.

• A finite set of output ports of the FMUs.

• Initial values for each of the input ports.

• Possible parameters for each of the FMUs.

• A graph encoding port connections of the FMI system.

• A graph recording internal direct dependencies of FMUs.

13
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Figure 1: Isabelle/HOL mechanisation of an FMI architecture.

Fig. 1 illustrates how we represent the above information in Isabelle/HOL.
FMUs are elements of a type FMI2COMP, which we introduce abstractly by
virtue of a HOL type declaration. Concrete identifiers for FMUs are then
declared using an Isabelle axiomatization, along with assumptions that they
are distinct — an example of this follows in Section 5.

The abstract constant FMUs in Fig. 1 yields a sequence of all FMUs of the
co-simulation. Recording a sequence rather than a set is deliberate. Firstly,
it guarantees finiteness of the elements; and secondly, it is useful later on to
define iterative operators over FMUs. For example, our FMI model described
in INTO-CPS Deliverable D2.3c makes frequent use of iterated constructs,
which we define via folding of the respective operator. An iterated sequence
is, for instance, used to set FMU parameters prior to simulation.

The model we use here is also used in INTO-CPS Deliverable D2.3c for addi-
tional verifications. Our overall approach does not require the construction
of several models.

Well-formedness constraints for FMUs are that the sequence is injective and
that its range is equal to the universe (carrier set) of the FMI2COMP type. Both
can be effectively checked via automatic proof in Isabelle/HOL.

Ports are formally characterised by pairs of type FMI2COMP × VAR, where
VAR encodes variables as name/type pairs. Again, using sequences facilitates
iterative operations over inputs and outputs where this is required in our
model. An example is the definition of the model of master algorithms,
which need to read the outputs of all FMUs and distribute them to their
connected input ports. Details of this are in INTO-CPS Deliverable D2.3c.
For well-formedness, we require that the sequences for inputs and outputs
are both injective, and that they are disjoint.

Model parameters and initial values are recorded by the parameter and
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initialValues lists, with the following caveats:

1. For fmu ::FMI2COMP and v ::VAR, there is at most one element (fmu, v , x )
in the range of the sequence parameters;

2. For each input port (fmu, v) in the range of inputs, there is precisely
one element (fmu, v , x ) in initialValues.

For both cases above, we also require that the value x (of type VAL) agrees
with the type of the variable v . Like those on FMUs, these constraints are
easy to check automatically within the Isabelle proof system.

Port dependency graph Connections between FMUs are encoded by
the function pdg, which maps output ports to their connected input ports.
The definition of pdg for particular FMI co-simulations can be directly in-
ferred from the Connection Diagram (CD) of the corresponding INTO-SysML
model. A constraint on pdg is that its domain must be a subset of the el-
ements of outputs, and its range must be equal to the elements of inputs.
This ensures that every input is connected to an output. Furthermore, we
require type conformity: for each connected input inp ∈ range(pdg (out)) of
some output out , inp and out must have the same port type. We recall that
ports are encoded by pairs of type FMI2COMP × VAR where elements of type
VAR record type information, so that conformity can be iteratively checked
for all maplets of the underlying relation of pdg.

Internal direct dependencies Lastly, the idd constant records direct
feed-through dependencies within FMU components, mapping FMU outputs
to a list of dependent inputs. Hence, for well-formedness, the function must
map output ports of an FMU to inputs ports of the same FMU. Direct
dependencies can give rise to algebraic loops in the overall co-simulation,
namely in feedback architectures. This is an issue for simulation stability
and must be avoided in well-formed models. Absence of algebraic loops is
established by taking the union of the port dependency graph (pdg) and
internal direct dependencies (idd), and requiring that the resulting graph is
acyclic. A proof of this can generally be automated for finite relations, though
in Isabelle it involves computation of the transitive closure of pdg∪idd.

We conclude that all properties for well-formedness we mentioned above can
be automatically proved after instantiating the abstract constants in Fig. 1
with concrete values of particular FMI models. The main reason for this is
that all functions and relations are finite.

15
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Property of Isabelle Definition

Parameters

Initial values

Inputs &

Outputs

Port Type

Conformance

Control Graph

Table 1: Well-formedness properties encoded in Isabelle.

Table 1 summarises the encoding of several well-formedness properties in
Isabelle/HOL. For most of them, the proof effort is linear in the size of
the mathematical structure. Absence of algebraic loops is a more challeng-
ing property, as it relies on symbolic computation of the transitive closure,
which is a costly operation. We automate this proof using Isabelle’s eval tac-
tic: rather than performing symbolic rewrite steps, it executes verified ML
code to evaluate terms. While this is efficient for relations up to few hundreds
of port connections, there exist more complex FMI models with hundreds of
FMUs and even thousands of port connections. This pushes Isabelle’s built-
in code for computing acyclicity via the closure to its limits.

To mitigate the above-noted efficiency issue in analysing large FMI systems,
we resort to a complementary solution in which the computation of the tran-
sitive closure is ‘outsourced’ to an external C++ algorithm that employs
more efficient techniques, such as [35] running on optimised machine code.
The issue here is trust: how do we ascertain that the result of the external
algorithm is correct? One possible solution is to verify the algorithm within
HOL and use Isabelle’s code-generation facilities to produce a certified im-
plementation. This requires merely to trust Isabelle’s code generator — we
note that use of eval already requires that level of trust.

Instead of verifying the algorithm, another solution that we adopt is to ver-
ify the result of the algorithm each time it is executed. Proving that some
relation c is (a super-set of) the closure of some relation r requires less com-
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putational effort than calculating the closure itself. Key in using this strategy
is the following introduction law that we have proved in Isabelle/HOL:

The predicate acyclic witness c r captures that relation c is both irreflexive
and a valid candidate for the positive closure of r , meaning that r+ ⊆ c. An
equivalent characterisation, more convenient for proof, is given below.

Above, C O R is the relational composition of C and R. We observe that the
right-hand of this definition requires less effort to show for given C and R than
actually computing the closure of R. Our strategy is hence to first apply the
introduction lemma above to transform a goal of the form acyclic R into a
witness proof (∃ C. acyclic witness C R); then invoke our external algorithm
for calculating R+ and use the result as a witness for C; and lastly unfold the
definition of acyclic witness and prove the three residual conjuncts.

The advantages of this approach are that (a) we do not have to invest effort
in verifying a particular algorithm and can even exchange algorithms without
safety implications, and (b), unlike using eval, we do not have to trust the
code generator of Isabelle. A disadvantage is that the witness proof can still
be slow due to large enumerated set terms emerging. To mitigate this, we
advocate the use of specialised proof tactics for each of the residual conjuncts;
moreover, we have implemented an efficient and robust reconstruction of the
HOL relation from the algorithm’s output that avoids, for instance, re-parsing
of the result produced by the algorithm.

The two key conclusions of our work on verifying structural properties of FMI
co-simulation models are that (a) a formal encoding can be produced on the
basis of the INTO-SysML model, and (b) proof of well-formedness of that
model can be fully automated within Isabelle/HOL without having to resort
to external tools for model-checking, even for very large systems. This is by
either using Isabelle’s built-in features for code generation and evaluation,
or alternatively interfacing with external high-performance algorithms. The
construction of the formal encoding of the architecture is currently manual,
but fundamentally it can be automated as all information needed for this is
in the respective INTO-SysML ASD and CD. We expect that, only for the
identification of internal direct dependencies, user input is needed.

We next consider the more challenging aspect of formally characterising co-
simulation behaviour by way of an abstract computational model.
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3.2 FMI Model

In this section, we describe an abstract model of FMI co-simulations: it makes
visible the structure of the system in terms of FMUs, but omits detail of how
co-simulation behaviour in FMUs is realised, perhaps for instance, by physics-
related models or real-time programs. Instead, we consider specifications of
FMUs that may be discrete abstractions of continuous models and capture se-
quential programs as specification statements. The rational for this approach
is that proofs of system-level safety properties are much easier at this level
of abstraction. Refinement is used in a separate phase to transform abstract
FMU models into executable FMU co-simulations that entail continuous and
algorithmic behaviours; this can be done stepwise and component-wise, with
high-level strategies and laws enabling automation. This separate phase is
addressed in the next section.

To give an example, rather than considering the exact position of a train on
a railway network, we may record the track segment on which the train is
located. Instead of describing its behaviour using equations of motion, we
may merely observe that trains change track segment consistently with the
railway layout while respecting red signals. This discrete abstraction allows
us to formulate and prove safety properties of the system, such as trains do
not derail or collide. Yet it manages to avoid the complexity of a hybrid
model that additionally aggregates continuous dynamics and reactive and
real-time aspects. The latter we introduce via refinement in a compositional
manner. We shall explore this example in more detail in Section 5.

The essence of the execution paradigm of FMI co-simulations is that they
proceed in lock-step. Data is exchanged only at the beginning of each sim-
ulation step, and there is no sharing of data while simulators compute their
results. The following pattern captures this design.

FMIspec =̂ Init ; µX • (FMU1 ‖ FMU2 ‖ . . . ‖ FMUn) ; step!w −→ X

Above, Init corresponds to some initialisation operation of the co-simulation,
and the FMUi are abstract models of FMU behaviours for i ∈ {1, . . . , n}.
We note that all FMUs operate on a shared centralised state σ that includes
also simulation time (time). Init and the FMUi are relational computations
on that state, hence do not communicate or interact with the environment.
Communication with the environment is via the channel step that allows
us to observe the state of the co-simulation while it executes. This ensures
that the recursion is guarded and does not diverge. More importantly, it
enables an environment to perform validation of the co-simulation behaviour
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by communicating on the channel step and thereby obtaining the sequence of
states that the co-simulation passes through. Both proof and model-checking
techniques can thus be supported by our model.

The parallel composition FMU1 || FMU2 || . . . || FMUn captures a co-
simulation step and must have the following properties: (a) FMUs write
to disjoint parts of the state space except for time which can be modified
by all FMUs; and (b) the composition only terminates when all FMUs have
completed their computation. Both these properties hold for our definition of
concurrency, which is based on parallel-by-merge [21]. This already ensures
lock-step progress of simulation cycles. A property of merging parallel be-
haviours is that any progress of time is possible as long as all FMUs agree on
it; otherwise, our model becomes infeasible and is thus not well-formed.

A healthiness condition for FMU specifications is that we can only observe
behaviours where time increases, hence time cannot go backwards. This does
not preclude master algorithms that perform roll-back, since we consider roll-
back as an implementation mechanism for optimised execution. We note that
even in such MAs, time goes forward between co-simulation steps.

Our model makes two assumptions. The first one is that simulations do not
terminate; the second one is that FMUs can agree on a step-size in each
simulation step. While it is the master algorithm that is responsible in a
concrete simulation to calculate that step size, in the abstract model it is
simply a conjunction of (possibly nondeterministic) timed behaviours. The
conjunction emerges from the definition of parallel composition, and where
multiple step sizes are possible, may still exhibit nondeterminism.

Reasoning about abstract co-simulations Dealing with a centralised
rather than distributed state considerably simplifies reasoning about co-
simulation models. The technique we use here is invariant-based reasoning. If
we need to show some safety property S of a co-simulation model, expressed
as a property of the centralised state σ, our aim is to find an invariant I
implying S that is preserved by each co-simulation step.

Since the FMU models are purely relational, Hoare logic is sufficient for proof.
Having identified a suitable invariant I of the system, our aim is to prove
that both the initialisation and parallel step operations preserve it:

{true}Init{I } (2)

{I }FMU1 ‖ FMU2 ‖ . . . ‖ FMUn{I } (3)

Via refinement laws for recursion and reactive contracts, we can then estab-
lish that all observations w communicated through the channel step must
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satisfy the invariant I . Formally, this is expressed as the refinement of a re-
active contract whose precondition is true and whose postcondition is false,
namely because our FMI model neither diverges nor terminates.

[true | (∀ evt ∈ tt • ∃w ::σ • evt = step.w ∧ I ) � false] v FMUspec

A specialised law is used to prove the above refinement from the earlier
provisos (2) and (3). The pericondition of the reactive contract effectively
states that all events evt of the contributed trace tt must have the form
step.w for some w that satisfies the invariant I . Monotonicity of reactive-
contracts in the pericondition with respect to refinement implies that the
above refinement still holds if we replace I by the safety property S , given
that S v I . (We recall that the definition of refinement for plain predicates
is (universal) reverse implication; see Section 2.3.)

Our key observation here is that the above gives us a proof strategy to reason
about co-simulations as minimal reactive models, namely that only require
a single channel step. The essence of such reasoning is to find an invariant
I that implies the safety property S , and to prove provisos (2) and (3). The
proofs can be done in the simplified context of classical Hoare logic, rather
than some reactive and hybrid language and semantic calculus.

The proofs may nonetheless profit from ways of modularising the effort by
decomposing I into component invariants I1, I2, and so on, that hold for
particular FMUs, as well as a shared invariant Is that relates the state of all
FMUs, such that I ⇔ (∀ i • Ii) ∧ Is . We shall not examine those strategies
in more detail here but revert our attention to this in Section 5.

We next examine the transformation of the abstract FMI co-simulation model
into a concrete one.

3.3 Refinement Strategy

A concrete behavioural model of FMI co-simulations is proposed in [7], and
we have mechanised that model in INTO-CPS Deliverable D2.3c. The pur-
pose of refinement here is hence to transform an abstract model of an FMI co-
simulation into a concrete one by virtue of a series of correctness-preserving
model transformations. Such transformations are typically formalised by re-
finement laws. Refinement may proceed piece-wise, meaning we can examine
the transformation of components (such as the FMUi) in isolation.

Refinement is often motivated by subdividing and modularising the effort in-
volved in verifying a complex system. Refinement laws only need to be proved
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once, while they can be applied in combination using high-level strategies to
yield a wide spectrum of possible implementation designs from a single spec-
ification. Here, the issues that refinement must address are:

1. Transforming abstract specifications of FMUs (the FMUi models) into
concrete implementations FMU c

i that introduce (continuous) dynamics
and, where applicable, algorithmic behaviours.

2. Introduce a design corresponding to the reactive model of an FMI mas-
ter algorithm, as detailed in INTO-CPS Deliverable D2.3c.

The first refinement step (1) yields a model of the form:

FMIref =̂ Initc ; µX • (FMU c
1 ‖ FMU c

2 ‖ . . . ‖ FMU c
n ) ; step!w −→ X

where each abstract FMUi specification has been replaced by a concrete
implementation FMU c

i such that FMUi v FMU c
i for i ∈ {1, . . . , n}. The

compositionality principle then justifies the claim that FMIspec v FMIref .
For continuous components, this step involves data refinement [8] in which
additional state components for continuous variables are introduced into the
model, such as the position, velocity and acceleration of a train. The concrete
variables are linked to abstract variables via gluing invariants — a technique
well understood and used in refinement-based verification techniques and
tools [1, 29]. For instance, a gluing invariant may link a train’s precise
physical position to its abstract location on a track segment.

For FMUs that carry out some discrete computational behaviour, we may use
both operational and data refinement to elicit the design of the underlying
algorithm. In either case, the refinement may involve a change in language:
for instance, the implementation model may be expressed not just using
operators for plain relational sequential programs, but timed languages and
the Hybrid Relational Calculus (HRC) [14]. This requires laws that justify
an embedding of such models into a simple relational computation where time
has been promoted to a (state) variable of the co-simulation. The issue of
linking theories is addressed in detail in INTO-CPS Deliverable D2.3d.

The second stage (2) of the refinement is the introduction of the FMI co-
simulation design and master algorithm. The key concern here is to dis-
tribute the centralised state into FMUs while establishing communication
patterns that allow FMUs to exchange data between simulation steps. This
is realised by high-level laws for Circus [6] that, for instance, introduce chan-
nels corresponding to the fmi2Get and fmi2Set methods of the FMI API
that enable MAs to obtain outputs and set inputs of FMUs. The master
algorithm emerges from such refinements by applying laws that encapsulate
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the shared data transmitted between FMUs into a single process. Laws that
are useful for this have, for instance, already been proposed in [38].

We note that although stage (2) of the refinement appears tedious, there is
overall more potential for automating it via tactics than stage (1). This is so
because FMIref above is already a sufficiently concrete target to guide subse-
quent refinements, if, for instance, additional information is given mapping
state components to FMUs and ports. Such information can be provided by
engineers who, crucially, do not have to be experts in formal techniques.

3.4 Final Considerations

We have presented techniques for analysing co-simulation models, targeting
both architectural well-formedness and abstract behavioural models. Our
key observations are that proofs about architectural properties are feasible
to fully automate in Isabelle/HOL, even for large-scale models. This is thanks
to Isabelle’s open architecture and support via tactics that exploit code gen-
eration. Behavioural models are much more challenging to analyse, and for
those we have presented an abstract view that reduces complexity to reason
about relational computations that include time as a state component: they
neither need to be concerned with continuous dynamics, nor with reactive
behaviours. MAs emerge through refinement.

In addition, we outlined a clear path to moving from an abstract to a concrete
FMI co-simulation model via refinement.This approach shares similarities
with techniques such as [38] and can profit from laws about reactive processes
and Circus [6] that have already been proved elsewhere.

The focus of our contribution in this deliverable is to formulate and prove
properties of the abstract model of a co-simulation.
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Figure 2: Railway interlocking layout of our case study.

4 Railways Case Study

This section presents an overview of the railways case study that we use
to illustrate our technique for reasoning about FMI co-simulation models in
Section 5. We briefly describe all relevant models in what follows.

4.1 Introduction

Our case study considers part of a tramway station. Its railway interlocking
layout is presented in the diagram of Fig. 2. Trains enter the interlocking at
the points V1, Q2 and Q3, and then issue a telecommand to request a route.
Telecommand stations are denoted by the three green dots, and the possible
routes for trains are V1→Q1, V1→Q2, V1→Q3, Q2→V2 and Q3→V2.
We consider scenarios where two trains arrive at different entry points and
request a route.

Access to the interlocking is controlled by the signals S11, S28 and S48.
They are initially red, causing arriving trains to stop and wait on the tracks
CDV 11, CDV Q2 and CDV Q3. When a telecommand is issued by one of
the trains, the control logic of the interlocking allocates a free route, if avail-
able, sets railway switches accordingly, and then gives the respective train a
green signal to go ahead. Two trains are allowed to proceed simultaneously
only if their routes do not intersect. This guarantees that no collision can
occur due to more than one train passing through the same track segment.
The correct setting of railway switches (SW1-5) additionally ensures that
trains move on their allotted paths and do not derail.

The interlocking controller is in essence an automaton whose functional be-
haviour is defined in relay ladder logic (RLL) [25]. Ladder models are graph-
ical representations tailored for relay-based hardware implementations. The
inputs of the interlocking controller are boolean vectors for the chemin de
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Figure 3: FMI co-simulation architecture for the railways system.

voie (CDV) and telecommand. The CDV is a bit vector of size 13 whose ele-
ments register the presence of a train on a particular track segment. Telecom-
mand requests are likewise encoded by a bit vector TC of size 4, in which
each bit roughly corresponds to a particular route request.

Outputs (actuators) of the interlocking are signals and track point switches
that control the paths of trains as they move through the interlocking. We
note that the interlocking controller does not see the telecommand of each
train individually, but the combined signal from all three telecommand sta-
tions. The same is true for the CDV, which is a combined signal of all tracks.
Next, we describe our FMI co-simulation model of this system.

4.2 System Overview

A high-level view of the system as a co-simulation architecture is given in
Fig. 3. Altogether, there are four FMU components. Two of them, Train1
and Train2, simulate the physical behaviour of both trains, which includes
the action of the train driver in setting the speed of the trains. A third FMU
Interlocking encapsulates the physical plant and the software that controls
it. Lastly, we require an additional FMU CDV/TC Merger to generate the
CDV signal from both trains’ locations and merge their telecommands into
a single vector. A supplementary function of CDV/TC Merger is to produce
monitoring signals (testing probes) for collision and derailment.

The initial models for this case study, as described in detail by INTO-CPS
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Deliverable D1.3, define the train physics and their control behaviour as bond
diagrams in 20-sim. The VDM-RT model of the interlocking was automat-
ically generated from the ladder production code of the software controller.
Two train models of increasing complexity exist: one that assumes trains
follow a predetermined fixed route, and one that moves trains according to
the setting of railway switches.

With regards to train behaviour, we consider traction and braking actions
but do not model train mass and gravity, and neither smooth acceleration
and braking curves (jerk). This is justified because the influence of those
factors does not alter the fundamental system dynamics. The 20-sim train
model has moreover been encoded in Modelica, for which we have a formal
semantics mechanised in Isabelle/UTP [13]; for details of the semantics and
embedding we refer to the INTO-CPS Deliverable D2.3b.

We have manually extracted the core algorithm for setting relays, signals
and switches from the interlocking software controller. This discards aspects
related to driving relay actuators, since we encode relays in software rather
than modelling them as hardware devices.

4.3 Behavioural Models

We next describe the behavioural model of each FMU component of the co-
simulation: the Modelica train model in Section 4.3.1, the VDM-RT interlock-
ing model in Section 4.3.2, and the CDV/TC Merger in Section 4.3.3.

4.3.1 Train Models in Modelica

Kinematics and speed control of both trains is encoded by the equations in
Fig. 4. The first equation block captures motion: acceleration is the deriva-
tive (operator der(_)) of the train’s velocity, given by the current speed

variable, and velocity the derivative of its relative position on the track,
given by the position on track variable. While an accurate physics model
of the train would be expressed in terms of traction and braking forces, the
assumption of constant train mass and Newton’s law entitles us to consider
acceleration alone.

The second equation block realises a control algorithm: acceleration is set
to either zero, normal_acceleration or normal_deceleration, depending
on whether the current speed is equal, below or above the set-point speed
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Figure 4: Train control equations in Modelica.

of the train, set by the driver. The latter two are suitable constants of the
model. A special case is added by the when clause that simultaneously sets
the train speed to the set-point speed and acceleration to zero if we are close
to the set-point speed. This is to avoid chattering during simulation and can
also be thought of as ‘engaging the brakes’ when the train approaches zero
speed while decelerating towards a halt.

The behaviour of the train driver is captured by the following equation:

The computation is carried out by the function CalculateSpeed, which ex-
pects the current track segment (current track), signal values (signals),
and maximum permissible speed (max speed) as arguments. It then sets the
set-point speed (setpoint speed) to max speed if there is either a green
light or no signal on the track; otherwise, it sets it to zero (see Fig. 5). A
Modelica model Topology records (static) constants that define the railway
topology, such as signal positions and track connections.

The encapsulation of algorithmic behaviours into Modelica functions such
as CalculateSpeed, where possible, is deliberate. Our formal encoding later
on profits from this as those functions can be naturally translated into HOL
functions within the Isabelle proof system. This kind of engineering facilitates
formal analysis and has a modularising ripple-on effect on proofs.
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Figure 5: Modelica algorithm for calculating the train’s set-point speed.

A last aspect of the train model we consider is the equations for the discon-
tinuous variable changes that occur when a train crosses one track and enters
the next. The Modelica equations for this are recaptured below.

The NextTrack() function calculates the next track segment when the train’s
relative position on the current track, given by the position_on_track vari-
able, reaches the track_length. The function requires the current track,
state of track points (switches), and travel direction as inputs, and its out-
put is equated with the newly entered track segment after the discontinuity.
Simultaneously, it also reinitialises position_on_track back to zero. The
use of pre( ) statements is to refer to the system state before the disconti-
nuity, as otherwise the equation would be self-contradictory.

In the model where trains follow a pre-determined route, we have the follow-
ing single equation for train location:

An additional variable total position records the total distance travelled
by the train. Based on the fixed route (constant fixed route), we can infer
both the train’s track segment and relative position on the track, using the
FollowRoute( ) function whose definition we omit.

In addition to the above, we also have an equation that generates the telecom-
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mand signal when trains traverse tracks equipped with a telecommand sta-
tion. We omit a discussion of its straightforward definition here, too, referring
to Appendix A for the complete Modelica train model.

In summary, our Modelica model of the case study collaterally achieved uni-
fication of the simple and full train model of the original 20-sim control law.
We also managed to factor out the railway topology into a collection of model
constants, most of them being tables and maps. This makes our model poten-
tially applicable to arbitrary architectures. For experimentation, we defined
a third train model with a minimal topology, containing only three linear
tracks and one signal; it turned out useful to study our analysis approach
and we call this the ‘three-tracks’ model.

4.3.2 VDM-RT Interlocking Model

The VDM-RT interlocking controller is in essence a finite automaton whose
state is determined by the configuration of five relays R1-R5, each corre-
sponding to a particular route being activated (locked). A fundamental safety
property is that two different routes can only be activated simultaneously if
their paths do not intersect. Moreover, signals and point switches have to be
set consistently with the activated routes at any given time.

To capture the core algorithmic behaviour of the interlocking system, we in-
troduce a variable Relay to record the state of relay switches as a boolean vec-
tor. The interlocking software controller is then modelled by virtue of a cyclic
executive that periodically performs the following sequential tasks:

1. Activate (lock) routes requested by a telecommand.

2. Deactivate routes once a train has passed through them.

3. Adjust railways switches consistently with the enabled routes.

4. Set signals consistently with the enabled routes.

The sequential program logic that performs the locking of routes (task 1) is
included in Fig. 6. We note that hwi is a VDM++ object that provides the
hardware interface (inputs and outputs) of the controller.

For locking (1) to occur, a telecommand must have been issued that re-
quests the respective route; this is achieved by the condition on the bit
vector TC that cumulatively records the telecommands recorded by all three
telecommand stations. The constraints on Relay ensure that locked routes
are non-intersecting, so that trains can pass without crossing each others’
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Figure 6: Extract form the VDM-RT algorithm for locking routes.

Figure 7: VDM-RT algorithm for resetting routes.

paths. Lastly, we have additional constraints on the CDV signal that ensure
that the track segments of the route to be locked are not still occupied by a
previous train. Where there is contention of two trains requesting intersect-
ing routes, the sequential program logic ensures that one of them is given
precedence to proceed, while the other has to wait.

Once a train has traversed a route, the respective relay has to be reset to give
other trains the opportunity to pass (task 2). This is achieved by the code
block in Fig. 7. The conditions ¬ hwi.CDV(i) here are used to determine
that a train has reached the last track segment i of a route. We note that
false signifies presence rather than absence of a train.

Tasks (3) and (4) deal with the positioning of railway switches and the set-
ting of signals. The VDM-RT code in Fig. 8, for instance, carries out the
positioning of switches, based on the relay configuration. We declare a VDM
type SWITCH POSITION for the possible states of a railway switch. Such can
be either STRAIGHT or DIVERGING. The VDM-RT code for setting signals is
similar. Each activated route causes the enabling of one of the three signals.
Since there are five routes, three of them cause the same signal to be ac-
tivated. As an additional safety measure, before flagging a green light, we
moreover check that switches have been aligned correctly to prevent derail-
ment. We omit the programme code for signal setting (task 4) but refer to
Appendix B for a complete model of the interlocking controller.

While our software implementation retains the core logic of the hardware
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Figure 8: VDM-RT algorithm for positioning railways switches.

realisation, it does not consider time delays incurred by the latency of relay
and point actuators. Although those delays can potentially impact on safety
analysis, refining our models to incorporate them would be a straightforward
extension and not crucial to illustrate our technique.

4.3.3 CDV/TC Merger Model

Our co-simulation design requires a separate FMU that generates the com-
bined CDV and telecommand vectors of both trains. These are inferred from
the current track segment and telecommand requests of each individual train.
The relevant equation for the CDV signal is presented below.

Once again, the negation reflects that track segments are occupied when their
CDV value is false. The computation of the TC signal is very similar. The
for-loop yields a conjunction of all iterated behaviours.

An important supplementary task of the CDV/TC Merger FMU is to gen-
erate signals that check whether safety requirements are met. These signals
here are collision and derailment; they are both boolean outputs of the
model, and their definition is recaptured below.
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Figure 9: Co-simulation of the railways system after injecting a fault.

To explain this equation, we note that the track segment of a train, given by
train1 segment and train2 segment, under normal conditions takes val-
ues in the range 1 to 13 — that is, when the train is within the boundaries of
the interlocking. A track segment becomes 0 when the train leaves the inter-
locking, and −1 when it derails due to crossing a badly-aligned switch.

As part of INTO-CPS Deliverable D1.3, a working co-simulation of our model
has been produced. A simulation scenario is demonstrated in Fig. 9, where
a fault has been injected into the interlocking controller. The blue and read
lines illustrate the movement of trains on the railway tracks; the green light
probes the collision signal of the CDV/TC Merger FMU and thus indicates
that a train collision occurs on track segment 8.

4.4 Final Considerations

We have presented a model of the INTO-CPS railways case study as a basis
for our analysis technique. This involved, in particular, reformulation of the
train model in Modelica and extracting the core logic of the VDM-RT soft-
ware controller. While our model can be simulated (see Fig. 9), co-simulation
does not provide universal guarantees that a violation of safety properties can
never occur, depending on the parameters of the model such as initial track
and train speed, acceleration and deceleration, and so on. In the next sec-
tion, we examine a formalisation of the co-simulation model in Isabelle/UTP
that allows for such proofs.
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Figure 10: Instantiation of the railways FMI architecture in Isabelle/HOL.

5 Mechanisation in Isabelle/UTP

In this section, we describe our mechanisation of the railways co-simulation,
as presented in detail in the previous section. This includes the FMI architec-
ture (Section 5.1) and behavioural model (Section 5.2). Property verification,
including safety requirements, is the subject of Section 5.3, and in Section 5.4
we conclude with some final considerations on the mechanisation work.

5.1 Railways Architecture

We have already presented our abstract and general model of FMI co-simula-
tion architectures in Section 3.1. There, we introduced a given type FMI2COMP

for FMU components, and several uninterpreted constants (see Fig. 1). For
instantiation with a concrete model, we next show how we endow both of
these with concrete values for our railways example.

First of all, to instantiate the abstract type FMI2COMP, we make use of an
Isabelle/HOL axiomatization that introduces concrete symbolic constants
for each of the FMUs. Here, we give them the names train1, train2, merger
and interlocking. Fig. 10 includes the corresponding mechanisation frag-
ment. Our assumptions are added: the first one, fmus distinct, captures
that the FMU identifiers are distinct; and the second one, FMI2COMP def,
that they precisely define the values (carrier set) of the FMI2COMP type. In
other words, there are no values other than those four. We note that the
built-in HOL function distinct l asserts that a list l is injective.

From the assumption fmus distinct, we moreover prove a set of corollar-
ies that establish various inequalities between FMU identifiers, such as, for
instance, train1 6= train2, and so on. These corollaries are used in the
well-formedness proofs and tactics we discuss later on.
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We note that Isabelle axiomatizations can potentially cause logical inconsis-
tencies in HOL theories. Here, however, the particular shape of the assump-
tions, being that of an enumerated type, guarantees consistency.

The INTO-SysML diagram (Fig. 3) is encoded by providing definitions for the
seven constants: FMUs, parameters, initialValues, inputs, outputs, pdg and
idd. We note that those definitions, unlike the previous one, are conservative
— no user-level axioms are hence required to formulate them.

As mentioned earlier on, FMUs is a sequence of all FMUs, hence we require
its range to include all the values of the FMI2COMP type. Below we recapture
its definition for the railways system.

The well-formedness caveat range FMUs = FMI2COMP can be easily discharged,
using unfolding of definitions and simplification alone.

Simulation parameters are of type FMI2COMP× VAR× VAL. To encode the type
VAR, which, as mentioned above, represents variables as name/type records,
we represent names as HOL strings, and types as elements of an Isabelle type
typerep. Fundamentally, HOL’s logic and type system cannot fully support
types as values; a limited facility exists in Isabelle by way of a (monomorphic)
datatype typerep that records the structure of any HOL type. Making use
of it here makes our model extensible in terms of the port types that can be
supported.

Concrete parameters of the railways co-simulation are the routes of the trains
and their maximum speed. Fig. 11 illustrates parameter instantiation in Is-
abelle. The function InjU is used to construct a value of type VAL from some
arbitrary HOL value; it is part of our universal value model [41] and allows
us to encode arbitrary HOL values as elements of a universal type VAL. Our
syntax for constructing variables is $name:{type}. The types fmi2Integer

and fmi2Real are synonyms for the HOL types int and real, encoding inte-
gers and real numbers, respectively. Indeed, we introduce such synonyms for
all permissible FMI port types as per the FMI Standard 2.0 [3].

Next, we consider the input and output ports of the control diagram in Fig. 3.
We recall that ports are modelled by pairs of type FMI2COMP× VAR.
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Figure 11: Parameters definition of the railways instantiation.

An extract of the definition of inputs is recaptured below.

For brevity, we only list the input ports of train1 and train2 and omit those
of merger and interlocking. The encoding of outputs is similar. In both
cases, we are using sequences rather than sets. As mentioned in Section 3.1,
this is to (a) ensure finiteness by construction, and (b) to provide an easy
way to formulate iterative operations over inputs and outputs.

For each input port in the list inputs, an initial value has to be provided. We
manually extract such values from the Modelica train model and VDM-RT
interlocking model, and encode them via initialValues, namely as a list of
elements of type ports× VAL where port is synonymous for FMI2COMP× VAR.
For instance, the initial value for signals is [False, False, False], capturing
that all signals show initially red. Since the Isabelle definition follows the
same schema as in Fig. 11, we omit it here referring to [39] for details.

Lastly, we consider the encoding of FMU port connections and internal de-
pendencies, recorded by the constants pdg and idd. While their type in our
mechanised model is that of a HOL function that maps outputs to their
connected (or dependent) inputs (see Fig. 1), we represent these functions by
their finite graph: that is, as a relation of type (port×port) list. The reason
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Figure 12: Extract of the definition of port dependency graph (pdg).

for this is that it simplifies (inductive) proofs of associated well-formedness
properties. We note that such a graph-based model can be easily converted
into a pure function, using the following recursive definition:

While functional representations are more useful in the behavioural model of
master algorithms (see INTO-CPS Deliverable D2.3c), from here on we as-
sume that pdg and idd are (finite) relations, encoded as lists of maplets.

An extract of the definition of the constant pdg for the railways architecture
is presented in Fig. 12. The pairs included in the list on the right-hand side
account for the connection of the Train1 and Train2 FMUs with the CVD/TC
Merger FMU. Other connections are omitted for brevity. Althought pdg

was encoded by hand here, its construction can fundamentally be automated
from the Connection Diagram of the INTO-SysML model.

A direct feed-through dependency arises in an FMU if some output is driven
with zero latency by some input, without delays or integrates in the signal
path. We record such dependencies for all FMUs via the constant idd, whose
type, as mentioned, is the same as the one of pdg. A structural difference
between pdg and idd is that maplets in pdg connect different FMUs, hence
are of the shape ((fmu1, out), (fmu2, in)) with fmu1 6= fmu2, whereas maplets
in idd model connections within the same FMU, hence must be of the shape
((fmu, in), (fmu, out)). Direct dependencies are generally determined by ex-
amining the particular FMU model. For control laws such as 20-sim models,
it is possible to automate their detection using signal flow analysis.

In the reminder of this section, we discuss our mechanised proof of well-
formedness of the instantiated railways co-simulation architecture.

Proof of well-formedness For well-formedness of the instantiation, we
have to discharge all of the constraints in Fig. 1. Hence, we first verify that
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there is only a single parameter value for each FMU and variable tuple within
the parameters list. This amounts to showing that:

The function set is used above to obtain the elements of a list. Because the
parameters list is typically short, automatic proof via Isabelle’s auto tactic
is normally sufficient to discharge this conjecture efficiently.

Next, we consider the input and output ports of the architectural diagram.
One caveat is that the lists inputs and outputs have to be injective. This is
formally captured by the predicates distinct inputs and distinct outputs.
Because port lists may be large, we automate proof here by virtue of a custom
tactic that uses a collection of bespoke rewrite laws. This provides a notable
speed-up in comparison to auto that appears to become more significant as
models grow in the number of FMUs and port connections.

Another caveat is that inputs and outputs have to be disjoint. Again, a spe-
cialised tactic aids to carry out this proof efficiently by pre-selecting appropri-
ate rewrite laws. We note that the use of small sets of engineered rewrite laws
has throughout proved useful to automate and speed-up proofs about archi-
tectural properties. We lastly also use it to show that the list initialValues

contains precisely one entry for each input port in inputs.

In summary, well-definedness properties of the constants FMUs, parameters,
initialValues, inputs and outputs can be efficiently discharged by virtue of
system-logic tactics — ones that do not have to resort to evaluation via code
generation. Those tactics, we have specified using the Eisbach language and
tool [26]; their definition can be found in the Isabelle report [39] too.

What remains to be shown is well-formedness of the port dependency graph
pdg and direct dependency relation idd. An easy property to verify is type
conformance of port connections: outputs are connected to input ports of
the same FMI type. Conformance is specified via an inductive predicate
coformant over lists of PORT pairs as follows:

It captures that for each element (p1, p2), the port types p1 and p2 must be
the same. The proof effort here is linear in the size of the pdg relation, hence
feasible to automate via HOL laws and tactics as before. More challenging is
to establish the absence of algebraic loops in Isabelle. As mentioned before,
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this amounts to showing that the relation (set pdg) ∪ (set idd) is acyclic.
While we can easily formulate this as a conjecture, using the built-in predicate
acyclic r , its proof is beyond the capabilities of the auto tactic.

As explained in Section 3.1, we propose two complementary approaches to
achieve automation nonetheless. Firstly, Isabelle’s eval tactic is able to eval-
uate acyclic r for enumerated relations r . Verified ML code is thus used to
compute the transitive closure of r and check that it is irreflexive. Although
the algorithm used for this is not optimised, it executes sufficiently fast for
our railways example to discharge the caveat for acyclicity within one second.
Imminent downsides are that (a) this approach does not scale well for larger
models, and (b) that we have to trust the Isabelle code generator.

To overcome both ramifications, we implemented our alternate solution: in-
stead of calculating the transitive closure within Isabelle, we outsource that
computation to an external and optimised C++ algorithm. Since we did not
verify that algorithm itself, trust is established by validating the algorithm’s
result on a per invocation basis. For larger models, proving the assumptions
used is overall a less complex task than calculating the closure ‘from scratch’
by way of evaluation tactics.

In conclusion, well-formedness of the railways architecture can be established
fully automatically in Isabelle, with the definitions and proofs requiring ap-
proximately 12 seconds of processing time. Towards scalability, we have pre-
sented various solutions to deal with the complexity arising in larger models.
A major contribution is an external C++ tool that interfaces with Isabelle to
outsource the computation of transitive closures, while supporting multiple
efficient algorithms such as [35]; the tool is part of Isabelle/UTP [15].

In the next section, we specify the behavioural model of the railways co-
simulation to enable analysis and proof of behavioural properties.

5.2 Abstract FMI Model

We begin by specifying the centralised state space of the abstract FMI model.
For this, we use the alphabet command of Isabelle/UTP in order to intro-
duce the necessary variables along with their types. Some of these variables
correspond to state components of FMUs, while others represent shared data
between FMUs. Conceptually, we consider variables for sharing data as part
of the state of the FMU that outputs (writes) the data.

Fig. 13 presents the FMU state of the railways system as we have specified
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Figure 13: Definition of the centralised FMU state.

it in Isabelle/UTP. The train state is given by the variables current track1
and current track2 of type integer, recording the track segment on which
the trains are currently positioned. These variables moreover fulfil the dual
purpose of being outputs of the train FMUs. We recall that we do not
record precise physical positions of the trains at this level of abstraction yet,
but use discrete approximations of them. The variables telecommand1 and
telecommand2 are two further outputs of the train FMUs that generated the
required telecommands for the interlocking. We make use of a type ’a vector

to specify their values. That type is part of Isabelle/UTP to encode fixed-size
vectors over some type HOL ’a (here bool).

As already noted in Section 4, train locations are recorded as integers whose
values are in the range 1–13 whenever the train is within the boundaries of
the interlocking (there are 13 track segments). Locations may besides take
a special value 0 when the train has left the interlocking, or −1 when it has
derailed due to crossing a wrongly aligned railway switch.

The merger FMU does not have a state: its sole purpose is to combine the
current track[1/2] and telecommand[1/2] input signals, to yield the respective
vectors cdv and tc as its outputs, read by the interlocking.

The interlocking FMU has the state component relays to record the state of
relays for route locking. Its outputs are signals and switches, both of which
feed back into the train FMUs to control the trains’ speed and determine their
path, which is affected by the configuration of railways switches.

Instantiating the FMI specification pattern described in Section 3.2 yields
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the following reactive computation for the railways example.

Init ;

 µX •




{current track1, telecommand1 time}Train1
‖ {current track2, telecommand2, time}Train2
‖ {cdv, tc, collisions, derailment, time}Merger

‖ {signals, switches, time} Interlocking

 ;

step!(w ::railways state)−→X




Each parallel computation (corresponding to one of the FMUs) additionally
must specify the set of variables that it writes to. The only variable that all
computations jointly modify is time, modelling simulation time. Constraints
on the time variable are imposed by individual FMUs to reflect the simulation
step size they are willing to admit.

In the remainder of the section, we examine the behavioural model of the
trains, merger, and interlocking FMUs in detail.

5.2.1 Train FMU Model

Abstractly, trains are modelled by a nondeterministic computation: in each
simulation step, either the train location remains the same, or otherwise the
train moves to the next track segment. The assumption our abstraction
thus makes is that simulation steps are sufficiently small so that we cannot
observe trains advancing more than on track (we note that this is an issue for
refinement to show). To formalise the train model, we firstly specify two HOL
functions NextTrackQV and NextTrackVQ. These determine the subsequent
track segments of a moving train, moving either left-to-right (QV) or right-to-
left (VQ). The Isabelle definition of NextTrackQV is given in Fig. 14. Elements
n := k there are the maplets of a function that associates each track segment
n ∈ {1 . . 13} with a follow-up track segment k , while considering the setting
of switches (sw). We note that this function is in direct correspondence to a
constant in the Modelica model that encodes the track layout.

Another utility function we define is MustWait. It determines when a train
must wait due to a red signal:

The parameters of the function are the state of signals (sig) and the current
track segment (track). There exist only three tracks with signals, hence
this function can be defined by a simple boolean expression. We assume that
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Figure 14: HOL function that encapsulates the track layout.

Figure 15: HOL carries out the movement of trains.

when a track is not guarded by a signal, trains are permitted to proceed. The
function thus succinctly characterises the behaviour of the train driver.

To complete our train model, the function MoveTrain included in Fig. 15 ties
together both functions discussed above. It takes the track segment (track),
direction of train travel (dir), and the state of signals (sig) and switches (sw)
as arguments. Its definition caters for the case that the train may have to
wait, and also considers the case that the train has either left the interlocking
(first conditional) or derailed (second conditional). The values QtoV and VtoQ

are introduced by a datatype declaration for train directions.

We lastly define a UTP relational computation that corresponds to the be-
havioural model of the train FMU, here for the first train:
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The epsilon here specifies the largest step size that the train FMU is willing
to perform. Such can be predetermined from the maximum speed of the
train and minimum track length, to make later refinement possible. The dis-
junction represents the nondeterministic composition of two computations,
one keeping the value of current track1 and one changing it. The formula
calculating the value of telecommand1 is omitted for brevity.

An analogue definition is provided for the second train. We next turn our
attention to the encoding of the merger FMU.

5.2.2 Merger FMU Model

In each simulation step, the merger processes the current track[1/2] and
telecommand[1/2] signals, and produces bit vectors for the cdv and tc out-
puts. For this, we encode the Modelica equation in Section 4.3.3 into a HOL
function MakeCDV that takes two track segments i and j:

This function uses a utility operation MergeCDV whose purpose consists of set-
ting the n-th element in a vector to False, provided n ∈ {1 . .13}. Above, the
function mk vector constructs an initial vector of size 13, with all elements
set to True (we recall that False signifies a track being occupied).

With the above, we define the relational program that corresponds to the
Merger FMU as follows:

There are no constraints on time here since the merger admits any simulation
step size. The computation of the tc vector has been omitted as it follows the
same principle, albeit using the inputs telecommand1 and telecommand2.

To conclude the encoding of FMUs, we lastly consider the interlocking.

5.2.3 Interlocking FMU Model

The interlocking is from a computational point of view the most interesting
FMU. In Section 4.3.2, we have already examined its cyclic behaviour. We
recall that such consisted of (a) setting relays, (b) clearing relays, (c) aligning

41



D2.3a - SysML Foundations for INTO-CPS (Public)

Figure 16: Relational computation for setting railways switches.

railway switches, and (d) setting signals. Our semantic model for VDM-
RT (see INTO-CPS Deliverable D2.2b) allows for a direct translation of the
respective sequential code fragments into Isabelle/UTP.

An example of encoding that considers task (c) for setting railways switches is
presented in Fig. 16. It encodes the VDM-RT instructions in Fig. 8. We note
that the conditional statements are translated using UTP’s infix notation
P / b .Q , and for accessing the elements of the relays state component, we
introduce the syntactic abbreviation R1-R5. Less these notational changes,
the code is in direct correspondence to the VDM-RT model and profits from
our framework directly supporting imperative languages.

While tasks (a), (b) and (d) have analogue definitions and are, therefore, not
discussed further here, a point of interest is to specify permissible changes
to the time variable. As the interlocking is implemented using a cyclic exec-
utive (periodic thread), time increases by a fixed amount in each simulation
step, determined by the period of the thread. We can deduce that period
by looking at the VDM-RT program. A further step (e) of the sequential
algorithm is hence to increment time accordingly, and this is achieved by a
statement time := time + period .

This concludes our account of the FMI model of the railways example. We
note that the full architectural and abstract co-simulation model can be found
as part of the Isabelle/UTP distribution [15]. We are ready now to examine
proof-based analysis of the mechanised railways co-simulation.

5.3 Property Verification

For analysis and verification, we prove relevant invariant properties of the
abstract co-simulation model. As explained in Section 3.2, these properties
can subsequently be lifted to reactive contracts that constrain observable
behaviours of co-simulation steps by an environment.
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Figure 17: Global typing invariant of the centralised railways model.

We distinguish local invariants of FMUs that can be proved in isolation,
and shared invariants that require the consideration of multiple FMUs at
the same time. Our proof strategy first consists of identifying relevant local
invariants of each FMU and proving that the respective FMU preserves them,
using our mechanisation of Hoare logic in Isabelle/UTP.

A particular kind of local invariant concerns typing of state components. For
instance, train locations, given by the state component current track[1/2],
must either be in the range 1-13, or otherwise in the set {0,−1}. We proved
that train FMUs satisfy this invariant. Similar type invariants have also been
checked for the other FMUs, and their conjunction implies the global typing
invariant of the system included in Fig. 17.

The typing invariant in Fig. 17 is indeed also a shared invariant, since we have
to consider the behaviour of all FMUs simultaneously to establish it. The
proof, however, can be carried out in a modular fashion, since it is possible
to decompose this global invariant into conjuncts I1, I2, and so on, that are
local invariants of the respective FMUs.

The above observation leads us to further distinguish shared invariants into
decomposable and non-decomposable (holistic) ones. The former are easier
to prove since they facilitate a compositional approach in which a property
proved for individual FMUs can be lifted to a property of their parallel com-
position, by virtue of the (basic) Hoare-logic rules for parallelism. Namely,
all that needs to be shown for {Is}FMU1 ‖ FMU2 ‖ . . . ‖ FMUn{Is} is that
{Ii}FMU1{Ii} for 1 ≤ i ≤ n, supposing that Is ⇔ I1 ∧ I2 ∧ . . . ∧ In .

Proof of the invariant property in Fig. 17 provides a first validation of our
model that prevents, for instance, undefined terms from arising. For instance,
it guarantees that vectors have the expected size, so that indexed access is
always well defined. A more interesting local invariant constrains the possible
settings of relays by the interlocking FMU. At any point in time, relays must
be set so that the routes they enable do not cross each other. This is a
fundamental property that reduces the possible 25 relay combinations to
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Figure 18: Local (behavioural) exclusion invariant of the interlocking.

only 10 valid ones that may occur during execution.

The encoding of the above relay exclusion property is presented in Fig. 18.
We remind the reader that R1-R5 are abbreviations for indexed access of the
relays vector, belonging to the state of the interlocking. We mechanically
verified that the interlocking FMU preserves this local invariant. The proof
was aided by tactics for Hoare-logic reasoning about invariants.

We summarise that proofs of local and decomposable shared invariants ad-
mit a modular approach that reduces the proof effort by focusing on FMUs
in isolation. However, holistic properties such as safety requirements are
inherently non-decomposable; we discuss how to tackle them next.

Holistic Invariants Holistic invariants relate the state components of mul-
tiple FMUs and, importantly, cannot be proved compositionally. Safety re-
quirements such as non-collision and non-derailment are such properties.

By way of example, we encode the safety requirements of the railways co-
simulation as follows.

Above, present1 and present2 abbreviate the predicates current track1 6= 0
and current track2 6= 0. Analogously, derailed1 and derailed2 abbreviated
the predicates current track1 = −1 and current track2 = −1.

The predicate safety req is actually not an invariant per se. To prove it, we
require the stronger predicate in Fig. 19: the shared invariant of the trains.
Intuitively, the train invariant relates train positions to relay configurations of
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Figure 19: Shared invariant of the first train.

the interlocking. Namely, if a train has left the first track of its route, the cor-
responding relay must be activated, unless the final track was reached.

Unlike the typing invariant in Fig. 17, the train invariant cannot be decom-
posed into local invariants as it links the state of the train and interlocking
FMUs, involving the variables current track[1/2] and relays. One of our re-
sults is that nonetheless some modular reasoning is possible: to establish the
train invariant, it is not necessary to consider the particular implementation
of the interlocking, but instead assume various local invariants Iilock of the
interlocking within the post-condition of the Hoare triple.

{train1 inv ∧ Iilock}Train1{Iilock ⇒ train1 inv}

The relay exclusion invariant in Fig. 18 alone is, however, not enough to
characterise Ilock : we also need invariants that, for instance, establish the
correct setting of railways switches and activity of the merger FMU. Details
of this more challenging proof are in the Isabelle report [40].

To conclude, we have shown that mechanically proving properties of co-
simulations in Isabelle/UTP is feasible using our model. Yet, it is a highly
human-driven task that requires finding appropriate invariants and discharg-
ing proofs that they are preserved by the FMUs. Specialised Hoare rules for
parallel composition proved to be of value to retain some level of composi-
tionality in proofs that involve holistic and thus inherently non-decomposable
shared invariants. Our conclusion is that proving properties of co-simulations
is reducible to finding local and shared invariants, and in most cases these
can be proved compositionally for FMUs.

5.4 Final Considerations

We have shown that our technique to reason about FMI co-simulations can
be applied to a real-life industrial example from railways, and that it is indeed
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possible to prove high-level safety properties of it. Importantly, our model
abstracts from the particular simulation scenario in such a way that proved
results remain valid for any permissible route combination of the trains. This
is something that co-simulation tools naturally have difficulty to validate, and
where model-checking likewise reaches its limits due to state explosion. We
thereby can add value to an analysis that is exclusively based on simulation
and model checking.

To obtain the above level of generality, careful design and proof engineering
turned out to be key factors: we need to find suitable local and shared in-
variants, and proofs that they are preserved. Whereas well-formedness of an
FMI architecture can be automatically proved even for larger-size models,
proving properties of abstract behavioural models of co-simulations requires
human expertise and knowledge.
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Figure 20: A diagram of the fan coil unit system.

6 The FCU Case Study

In this section, we discuss the mechanisation of our second case study - the fan
coil unit (FCU), described in INTO-CPS Deliverable D1.1d, in Isabelle/UTP.
Here, we use a variation of the strategy presented in Section 3. We also
discuss the properties that we have proved about the model.

We first give an overview of the FCU case study and the properties that we
prove, in Section 6.1. Then, in Section 6.2, we discuss the Modelica model
on which we base our mechanisation of the FCU case study. After that, in
Section 6.3, we discuss our mechanisation of the FCU in Isabelle/UTP, and
then we examine the proofs of its properties, in Section 6.4.

6.1 Overview of FCU Case Study

The FCU example considers a system for heating a room by passing water
from a heat pump through a coil, where heat is transferred to room air blown
through the coil by a fan. The flow of air and water through the coil are
controlled by the speed of the fan and the opening of a valve, respectively.
The fan speed and valve setting are controlled by a software controller, the
design of which is the focus of this case study. Heat transferred to the room
is gradually lost over time through the walls of the room. Fig. 20 shows the
overall layout of the FCU system.
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The water passing through the coil is heated by a heat pump to a constant
temperature. We refer to the water leaving the heat pump as the leaving
water temperature, LWT . The rate of heat transfer through the coil, Qin , is
determined by the difference between LWT and the room air temperature,
RAT , using the following equation,

Qin = ε× fanSpeed × ṁat × cair × (LWT − RAT ), (4)

where

• ε is a constant representing the effectiveness of the coil,

• fanSpeed is the setting of the fan’s speed, ranging from 0 to 1,

• ṁat is the maximum air flow rate that the fan can produce, and

• cair is the specific heat of air.

The heat transfer, Qin , corresponds to the heat loss of water flowing through
the coil. It is hence moreover related to the temperature EWT of the water
entering the heat pump by the following equation,

Qin = valveOpen × ṁwt × cwater × (LWT − EWT ), (5)

where

• valveOpen is the setting of the valve, ranging from 0 to 1,

• ṁwt is the maximum water flow rate through the coil, and

• cwater is the specific heat of water.

In addition to the heat transfer through the coil, the room air temperature
is also affected by heat lost through the wall, Qout . Such is determined by
the difference between RAT and the surface temperature Tisurf of the wall
on the inside of the room, and governed by the following equation:

Qout = hair × Awall × (RAT − Tisurf ), (6)

where

• hair is the heat transfer coefficient for the air, and

• Awall is the surface area of the wall.

The overall rate of change in RAT is then determined using the following
differential equation,

dRAT

dt
=

Qin −Qout

ρair × cair × vair
, (7)

48



D2.3a - SysML Foundations for INTO-CPS (Public)

where

• ρair is the density of air,

• cair is, as above, the specific heat of air, and

• vair is the volume of the air in the room.

The equations presented above describe the movement of heat in the room.
The movement of heat in the wall is described by the following pair of dif-
ferential equations that relate the surface temperature of the wall inside the
room, Tisurf , and surface temperature outside the room, Tosurf :

dTisurf

dt
= (hi ∗ Awall ∗ (RAT − Tisurf ) + (Tosurf − Tisurf )/R)/C (8)

dTosurf

dt
= (ho ∗ Awall ∗ (OAT − Tosurf ) + (Tisurf − Tosurf )/R)/C (9)

where

• hi is the heat transfer coefficient for the inside of the room,

• ho is the heat transfer coefficient for the outside of the room,

• R is the thermal resistance of the wall,

• C is the thermal capacity of the wall, and

• OAT is the outside air temperature.

Together, these equations define the physical system that we aim to regulate.
The FCU controller sets the values of fanSpeed and valveOpen to heat the
room to a desired set-point temperature. Control is achieved by a PID con-
troller, where the output of the PID must be split into values for fanSpeed and
valveOpen. We discuss this in more detail in Section 6.2, where we consider
the Modelica model of the system and its design as a co-simulation.

Our aim for this case study is to prove that certain desired properties are
ensured by the construction of the FCU controller, given the properties cap-
tured in the above models of the room and wall. There are four such prop-
erties here. The first one is that the difference between the temperature of
the water leaving the heat pump, LWT , and entering the heat pump, EWT ,
must be less than 5◦C. This is required to minimise the strain on the heat
pump and ensure that it can consistently heat the water to a constant tem-
perature. This first property may be stated mathematically as follows:

LWT − EWT < 5 (10)
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This statement of the property relies on the fact that, since the FCU is
being used to heat the room, LWT will always be higher than the room
air temperature, and hence EWT will always be lower than LWT . For
clarity, we state all temperatures in degrees Celsius. Since only differences of
temperatures are used in the equations it is not necessary for us to explicitly
use Kelvin, though it is the respective SI unit.

The second property we require is that the speed of the fan must always be
at least 10% of its maximum speed. This is to ensure comfort via circulation
of fresh air, since fresh air is added to the air passing through the coil. We
note that since the latter has a negligible effect on the air temperature, it is
not represented in the equations for the room. This property may be stated
mathematically as follows.

fanSpeed ≥ 0.1 (11)

The third property is that, at a steady state, the room air temperature,
RAT , must be within 1◦C of the set-point, RATSP . This limits the amount
of fluctuation that is allowed to occur after the room air temperature has
reached the set-point. The notion of steady state is not formally defined
here but may be taken as a state in which the variables of the model remain
within fixed ranges. For RAT , we have the following inequality:

|RATSP − RAT | < 1 at steady state (12)

The fourth and last property is that, when the room air temperature is more
than 1◦C below the set-point, the valve must be more than 15% open. This
ensures that the water flow round the system will be sufficient to ensure opti-
mal heat pump operation when the heat pump is operating to raise the room
air temperature to be close to the set-point. The mathematical statement of
this property is as follows.

RATSP − RAT > 1⇒ valveOpen > 0.15 (13)

The four properties above give rise to invariants of our system that we subse-
quently prove in Isabelle/UTP. First, however, we discuss the Modelica model
of the FCU case study on which we have based our Isabelle/UTP encoding
and proofs, as well as some modifications that we made to the original model
in INTO-CPS Deliverable D1.1d to ensure that the properties discussed in
this section can actually be guaranteed. As it turned out, the original model
had to be modified as it did not satisfy the desired properties.
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Figure 21: Graphical view of the original FCU model in OpenModelica.

6.2 FCU Modelica Model

A block diagram of the FCU Modelica model is depicted Fig. 21. It contains
components labelled as room and wall, that are modelled by the equations
presented in the previous section.

The room component takes as inputs the values for the surface temperature
of the wall inside the room, Tisurf , the valve control, valveOpen, and the fan
speed control, fanSpeed . It outputs the room air temperature, RAT .

The wall component takes the RAT value from the room, along with the
outside air temperature, OAT . The wall outputs the value for Tisurf that
is passed to the room. The OAT values for the wall are supplied by a table
of values for each point in time. The lowest OAT value in the table is −1◦C
and the highest is 14.22◦C.

The remaining components of the model shown in Fig. 21 comprise the FCU
controller. The room air temperature is sampled every 15 minutes by the
sensor shown at the bottom of the diagram. This sampled temperature is
passed to a PID controller, which also receives the set-point value for the
room temperature, which, like OAT , is supplied from a table of values for
the purposes of simulation. The table of values varies the set-point between
21◦C during working hours and 16◦C outside working hours.

The PID controller computes a control value to move the room air temper-
ature toward the set-point. The PID limits this control value to be between
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Figure 22: Graphical view of our modified FCU model in OpenModelica.

0.01 and 0.75. The control value is used for the values for fanSpeed and
valveOpen, with the fanSpeed value passed through a limiter to ensure it is
at least 0.1; this is crucial for the property in Eq. 11 to hold.

Our model performs well in simulations, but during verification we found
that we could not prove the first required property (LWT − EWT < 5) in
Eq 10. Further investigation revealed that this was due to the fact that, from
equations (4) and (5),

LWT − EWT =
ε× ṁat × cair × fanSpeed × (LWT − RAT )

valveOpen × ṁwt × cwater
. (14)

Substituting this into the statement of the property and rearranging the
terms yields the following. then yields,

fanSpeed

valveOpen
<

5× ṁwt × cwater
ε× ṁat × cair × (LWT − RAT )

. (15)

The first property is thus equivalent to imposing a bound on the ratio between
fanSpeed and valveOpen. Since the output from the PID controller is used for
both fanSpeed and valveOpen in the original model, the correct ratio cannot
be easily established a priori.

In order to ensure that the first property is fulfilled, we made some modifica-
tions to the OpenModelica model. The block diagram for our modified model
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is shown in Fig. 22. It has a new component, labelled as controlSplitter,
that computes the values for fanSpeed and valveOpen from the output of the
PID controller. The temperature value measured by the sensor is passed to
the controlSplitter to compute the bound on the ratio between fanSpeed
and valveOpen.

The value for the bound is computed as in Eq. 15, with 5 replaced by 4.5 to
account for changes in RAT in between samplings by the sensor. The value
output by the PID controller is then used as the value for fanSpeed , since
that determines how RAT changes.

The fanSpeed value is bounded below by 0.1, to ensure the second property
is fulfilled, and above by the computed bound, to ensure that valveOpen can
be set to a value that is not greater than 1. The valveOpen value is obtained
by dividing the value for fanSpeed by the computed bound. This ensures
that the first property is fulfilled, provided that the room temperature does
not change by too much from the value recorded by the sensor. We will see
later that we can obtain a proof for how much the room temperature may
change that can be used to ensure this property holds.

Next, we discuss how the modified OpenModelica model is mechanised in
Isabelle/UTP, so that we can analyse it and prove properties of it.

6.3 Mechanisation in Isabelle/UTP

Our Isabelle/UTP model of the FCU follows the approach in Section 3.2.
The components representing FMUs act on a centralised state space, st fcu,
which contains the variables of all the components of the model, with each
FMU only updating the variables that belong to it.

The definition of st fcu is shown in the left-hand diagram of Fig. 23. The
first four variables belong to the PID controller: control represents the out-
put from the PID controller, while previousuI, previousuDin and gain are
used internally. The next five variables correspond to the values valveOpen,
fanSpeed , Tisurf , Tosurf and EWT in the equations presented in Section 6.1.
The room air temperature is represented by two variables: RAT out, the ac-
tual temperature of the room, and RAT sensor, the temperature recorded by
the sensor. The set-point and outside temperatures are also stored in state
variables, namely RATSP and OAT. Finally, there is a variable sensor timeout

to measure how close the sensor is to taking the next sample of the room air
temperature. All of the state variables are of type real.
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Figure 23: The alphabet and constants for our Isabelle/UTP FCU model.

The constants in the model are declared as abbreviations in Isabelle. The
right-hand diagram in Fig. 23 shows the definitions of various constants used
in the model of the room. Other constants are similarly declared for use in
the other parts of the model.

The components of the model are defined using separate Isabelle definitions.
The variables are updated using assignment statements based on the equa-
tions of the model. Differential equations are handled by discretising them
using Euler’s method, with a fixed time step, which is set to 0.01 minutes in
our model. We use minutes as the time units in our mechanised model to
align it with the Modelica model.

An example of how components of the Modelica model are represented in
Isabelle/UTP is the definition of WallModel, shown below, which implements
the equations for transfer of heat through the wall. It assigns new values to
the state variables Tisurf and Tosurf, using discretisations of Eq. 8 and
Eq. 9.

The derivatives of Tisurf and Tosurf are defined separately as functions
Tisurf der and Tosurf der, the definitions of which are shown below.
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The model of the room is similarly represented in our Isabelle/UTP encoding
by RoomModel. It assigns new values to RAT out and EWT, with RAT out’s
value determined using the Euler method.

We similarly define Sensor to model the behaviour of the sensor, LimPID to
model the behaviour of the PID controller that limits its output to a prede-
fined range, and ControlSplitter to model our controlSplitter compo-
nent in the Modelica model. These definitions have been created by carefully
examining the OpenModelica definitions of the components.

The above functions defined in Isabelle/UTP characterise FMUs that to-
gether form the FCU system, composed together as described in Section 3.
However, our proofs only involve local invariants, so we do not need to con-
sider the composition of the FMUs. The local invariants are sufficient to
establish those invariants globally, as we discuss in the next section.

6.4 Proofs of Properties in Isabelle/UTP

The properties of our model that we have proved are stated, as before, using
Hoare logic. We formalise the preconditions that we assume to hold for vari-
ous components of the model and the postconditions that are established. In
the preconditions, we require bounds on the state variables. We use the sim-
ulations to inform our choices of values for these bounds and, where possible,
we use more general bounds for the variables to obtain statements about the
model with wider applicability.

We use 21◦C for the set-point, since that is the set-point value used during
working hours in the simulation, and hence the case we focus on in our
verification. We assume the room air temperature is between 0◦C and 29◦C.
The room air temperature in the simulation falls within this range and it
is wide enough to cover all realistic cases in which the FCU may be used
to heat a room. We assume the internal surface temperature of the wall
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Figure 24: The statement of the first property in Isabelle/UTP (Eq. 10).

falls within a similar range, as it converges to the room air temperature in
simulation.

The form in which we state the properties can be seen in the statement of the
first property, UTRC FCU 001, shown in Fig. 24. It holds whenever RAT out

is less than 34◦C, and the value measured by the sensor, RAT sensor, is no
more than 0.6◦C below and 0.3◦C above the room temperature value. It
is also required that control, the value output by the PID controller, be
within the bounds the PID controller restricts it to, which are 0.01 and 0.75
in our model. The statement of the property then captures that LWT −
EWT < 5 is established by the execution of ControlSplitter followed by
RoomModel.

The consideration of the sequential composition of the components, rather
than parallel composition as in Section 3.2 and the railways example, is
justified since the postcondition established by the first component is true
for the second component. All that then needs to be ensured is that the
precondition of the property is not affected by the execution of the first
step. The precondition on the RAT out value is much more general than the
assumptions on the room air temperature discussed above. The precondition
on the value of control is ensured by the operation of LimPID, and we have
proved that this is always the case, although we omit the proof here.

The relationship between RAT out and RAT sensor in the precondition of
UTRC FCU 001 is justified by the lemma RAT out movement bounds, recap-
tured in Fig. 25. It has a precondition similar to UTRC FCU 001, but RAT out

is restricted to be between 0◦C and 29◦C and Tisurf is restricted to the same
range, in accordance with the assumptions discussed above. When this pre-
condition is fulfilled, the composition of ControlSplitter and RoomModel

ensures that RAT out does not increase by more than 0.0004◦C and does not
decrease by more than 0.0002◦C within a 0.01 minute time step. Since the
sensor is updated every 15 minutes, the sensor value never moves outside the
required bounds.
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Figure 25: A lemma ensuring bounds on the change in RAT out.

Figure 26: Encoding and proof of the second property in Isabelle/UTP.

The second property, UTRC FCU 002, is stated as shown in Fig. 26. It says
that ControlSplitter ensures fanSpeed will always be greater than 0.1
when RAT sensor is between −52◦C and 40◦C. These bounds on the tem-
perature measured by the sensor are wide enough to be consistent with our
assumption about the room air temperature. The lower bound arises from
the fact that ControlSplitter prioritises imposing the correct ratio to en-
sure the first property (LWT − EWT < 5) over ensuring that fanSpeed

is less than 0.1. For temperature values much lower than −52◦C, the ratio
forces fanSpeed below 0.1.

For the third property, we also need to consider changes across multiple time
steps to account for drift away from the set-point after the temperature has
already converged. To deal with these, we establish further local invariants
that can be used in proofs concerning other components of the model.

Tisurf Tosurf invariant, shown in Fig. 27, is an example of a lemma
establishing such an invariant. It establishes that Tisurf and Tosurf are
within their ranges when RAT out is within 1◦C of the set-point and OAT is
between −10◦C and 15◦C. The ranges established by this lemma can be used
in proofs of how the temperature changes in the room, since that depends
on the value of Tisurf.

For the fourth property, we have proved UTRC FCU 004, shown below. This
states that, when control is within the range that LimPID restricts it to, and
RAT sensor is between −66◦C and 24◦C, valveOpen will always be greater
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Figure 27: A lemma establishing an invariant about Tisurf and Tosurf.

Figure 28: The statement of the fourth property in Isabelle/UTP.

than 0.15. As stated earlier, the bounds on control are always ensured. The
lower bound on RAT sensor is consistent with our assumptions about the
room air temperature. The upper bound is sufficient to fulfil the property,
since it is only required to hold when the room air temperature is more than
1◦C below the set-point, which, as mentioned earlier, we take to be 21◦C.
It may be possible to obtain a proof for higher set-points if the setting of
control by LimPID is considered in more detail.

The lemmas and properties that we have verified in Isabelle/UTP have been
proved by first expanding definitions of functions and constants using Is-
abelle’s simplifier and then applying a proof tactic called hoare auto. The
latter works by first applying Hoare-logic laws to break down the goal state-
ment into simpler statements, and then trying to obtain an automatic proof
using Isabelle’s standard proof tactics along with definitions and laws from
Isabelle/UTP.

For some proofs, hoare auto alone is sufficient. This is true of UTRC FCU 002,
as can be seen in Fig. 26. For others, hoare auto produces a list of sub-
goals stated in terms of standard mathematics. These can often be proved
by manual application of mathematical laws but we have found that the
approximation tactic [22] is very useful for proving subgoals that appear
in our model. This tactic allows for proofs of inequalities about real num-
bers when ranges are given for each of the input variables. This requires
us to supply the variable ranges in the correct form but when they have
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Figure 29: The proof of the first subgoal of UTRC FCU 004.

been supplied, the proofs proceed automatically. This can be seen in Fig. 29,
which illustrates the proof of one of the subgoals that hoare auto generates
for UTRC FCU 004. The assumptions that hoare auto provides are used to
prove the aforementioned ranges on the variables.

6.5 Final Considerations

As a second case study to illustrate our analysis and verification technique for
FMI, described in Section 3, we have presented our mechanisation of the FCU
case study and proofs of some desired safety properties of it. We have based
our mechanisation on the OpenModelica model of the FCU but found that
it required some changes since it did not satisfy one of the properties. This
testifies the added value of our mechanised theory and shows that attempting
formal proofs with tools such as Isabelle/UTP can feed-back into on-going
design work conducted using modelling and simulation tools.

Our proofs make use of the automation provided by the hoare auto and
approximation tactics, which has enabled us to experiment with the nec-
essary preconditions of the properties to obtain bounds on state variables.
In some cases the bounds obtained are more general than those observed in
simulation. The proofs can therefore grant greater certainty of the correct-
ness of properties in more general cases than can be considered in individ-
ual simulations. An Isabelle report of our FCU example can be found in
the Isabelle/UTP distribution on GitHub: https://github.com/isabelle-utp/
utp-main.
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7 Discussion and Related Work

In this section, we discuss ramifications of our approach (Section 7.1), as well
as its application in an industrial context (Section 7.2) and relevant related
work (Section 7.3).

7.1 Ramifications

Our technique is based on the premise that a discrete abstraction can be
found and used to reason about the continuous co-simulation model. For the
railways case study, this is indeed so: the only potential safety hazard occurs
when a signal changes from green to red and a moving train is present on the
track controlled by that signal. Violation of safety in the continuous model
can occur if the train is moving too fast and located too close to the signal
at the moment when the signal change takes place.

A proof that the above scenario cannot arise in the concrete physical train
model is an issue for refinement, which introduces the continuous train state
and behaviour. Proofs about that model profit from our semantics of con-
tinuous and hybrid behaviours in Modelica in terms of the hybrid relational
calculus (HRC) [19]. We have mechanised that calculus in Isabelle/UTP too,
using the Multivariate Analysis and HOL-ODE theory libraries [24].

More specifically, to verify that trains do not overrun red signals, we impose a
maximum speed threshold on trains; this also reflects real-world requirements
of railways traffic. Since all signals are red initially, and any change of a signal
from green to red only takes place once an initial track has been vacated (no
new trains arrive in our scenario), for correct refinement we merely have to
establish that a train can halt in time on its first track. A proof of this
has been mechanised in Isabelle/UTP too, and is reported in one of our
publications [42]. It makes use of restrictions on the length of the initial
track segments and maximum speed of trains.

The above confirms the conceptual viability of our verification technique.
They can be done compositionally, not having to consider the continuous
behaviour of the entire FMI co-simulation.

Another point to consider is soundness. This is, for instance, important for
certification evidence. The only place where unsound proofs can enter our
verification approach is through Isabelle axiomatisations and the use of the
eval tactic, though the latter is less likely to cause real issues since this tactic
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is part of Isabelle/HOL itself and tested by a large community of users.

Nonetheless, we have made an effort to mitigate both potential sources of
inconsistency. First, by proposing a sound definitional schema (Fig. 10) in
the one place where an axiomatizaion is required, and, secondly, by verifying
the result of our external C++ algorithm for closure computation, rather
than trusting it. This means that we are principally not forced to employ
Isabelle code generation, even for models of larger size.

7.2 Industrial Perspective

From an industrial perspective, we claim that our approach can add value to
techniques that use co-simulation tools alone. For one, our experience is that
once a co-simulation model has been developed, the construction of the archi-
tectural model in Isabelle/HOL is mostly straightforward, and fundamentally
automatable from the INTO-SysML diagram: merely knowledge about inter-
nal direct dependencies has to be provided by the engineer. Well-formedness
proofs of the architectural model can moreover be fully automated, using
the tactics that we have presented in Section 5 and selecting one of the two
strategies for discharging caveats about the control graph.

Reasoning about the behavioural FMI model is more challenging, and does
require expertise and knowledge in formal modelling and theorem proving.
However, our results show that a cleanly developed co-simulation model
translates more easily into a mechanised model. The fact that we only have
to consider relational computations limits expertise to being familiar with
state-based verification methods and laws.

A basic knowledge in Isabelle/UTP and the refinement calculus [29] ought,
in practice, suffice to formulate the abstract co-simulation model. For proof,
we have to elicit and prove suitable invariants of the FMUs in order to val-
idate, for instance, holistic and safety properties. Despite this, there are
ways to aid the formal engineer in writing those models and conducting the
proofs. For instance, the centralised FMU state is partially derivable from
the INTO-SysML model; and bespoke tactics for Hoare logic turn out useful
to subdivide and structure proofs. Finding local FMU invariants adds value
to the analysis, as it helps the engineer to understand the assumptions and
commitments that are made by various parts of the system (FMUs).

The last step in the proof is the refinement into a continuous model. Tech-
niques of data refinement are applicable here out-of-the-box. Once again,
it is universally acknowledged that refinement is a human-driven process,
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though, in certain cases, it can be automated with high-level tactics and
strategies. Automation typically requires the specification and target to be
of a particular known shape. There exist various examples in the literature of
refinement strategies that profit from well-defined target models [31, 38, 27],
and our reactive model of an FMI co-simulation in INTO-CPS Deliverable
D2.3c satisfies this property, too.

7.3 Related Work

First to mention is Broman’s formalisation of FMI co-simulations [10]. Bro-
man’s model is very concrete, directly encoding the behaviour of FMI inter-
face functions such as fmi2Get, fmi2Set and fmi2doStep for each FMU. This
is because his work work focusses in the first instance on verifying properties
of master algorithms rather than particular co-simulations instances. In con-
trast, our technique aims to be more abstract: we consider the FMI interface
and master algorithm as artefacts introduced through refinement.

Apart from this, there are similarities between Broman’s and our approach in
that they are both based on a relational view that admits a notion of contract
for abstraction. In the report [36], Tripakis and Broman explore the idea of
mapping other formalisms into their model to facilitate descriptions of FMUs
in various languages, including finite state machines, and discrete-event as
well as synchronous data flow actor models. In comparison, we benefit form
the UTP as a lingua franca to formalise and integrate semantic theories of
various heterogeneous languages.

Second to mention, our previous work [7] proposes a concrete reactive model
of FMI co-simulations. That model — like Broman’s — aims to faithfully
represent the FMI interface and can likewise potentially be used to verify
properties of master algorithms. The language used there is Circus, a process
algebra for state-based reactive systems, and the technique for verification
is either model-checking or algebraic refinement. We could have used that
model directly to formulate properties of co-simulations but this would have
made proofs much more difficult. Yet, as explained, our approach is based
on refinement and the final step of the refinement results in a model that
indeed matches the one in [7].

Several other works exist that propose MAs [4, 34, 12, 9], but usually they
do not provide a semantic underpinning to prove that the algorithm or co-
simulation instance satisfies general and particular properties.
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8 Conclusion

We have presented a novel technique for reasoning about FMI co-simulation
architectures and behavioural models defined via the INTO-SysML profile.
We have illustrated that technique by way of elaborate case studies, supplied
by our industrial collaborators for the INTO-CPS project. Our technique is
based on abstraction: we use a relational view of FMUs that abstracts from
reactive behaviours as well as the API imposed by the FMI. This allows us
to focus on the fundamental properties of a co-simulation, while introducing
details into the model view refinement that preserves those properties.

The concrete target of our refinement is the Circus model of an FMI co-
simulation, as described in [7] and mechanised in INTO-CPS Deliverable
D2.3c. A refinement strategy that allows us to produce such a model from the
one described in this report is similar to that in [38] and can moreover reuse
some of its laws. The fundamental issue is localisation of states into FMUs
and replacing the single synchronisation on the step channel by multiple
synchronisations on the channels fmi2Get , fmi2Set and fmi2doStep that
corresponding to method calls.

As future work, we first suggest the development of a tool that supports
the user of our technique in automatically generating the Isabelle/UTP ar-
chitectural model, as well as a sketch of the behavioural model. The formal
developer can use the sketch as a starting point, completing it with a detailed
encoding of functional behaviours of FMUs. Secondly, elements of the refine-
ment strategy from abstract into concrete FMU models ought be explored
for a larger spectrum of case studies and examples, beyond the ones we pre-
sented in this report. Both these works could be tackled by the INTO-CPS
Association.

63

http://projects.au.dk/into-cps/dissemination/publications/
http://projects.au.dk/into-cps/dissemination/publications/


D2.3a - SysML Foundations for INTO-CPS (Public)

References

[1] J.-R. Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, New York, NY, USA, 1st edition, 2010.

[2] Atego (acquired by ptc). Integrity Modeler. See https://www.ptc.com/
en/products/plm/plm-products/integrity-modeler, 2017.

[3] Modelica Association. Functional Mock-up Interface for Model Ex-
change and Co-Simulation. Technical Report Document Version 2.0,
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within	Railways.Full;

model	FullTrain	"Physics	model	of	the	train	and	behavioural
model	of	the	driver."
		/*	Constants	*/
		import	Railways.Common.Topology.*;

		/*	Functions	*/
		import	Railways.Common.TrainControl.*;

		/*	Parameters	*/

		/*	Note	that	fixed_route	does	not	control	the	path	in	the	full
train	model.	*/
		parameter	Integer	fixed_route(start	=	V1Q1);

		/*	Initial	speed	of	the	train.	*/
		parameter	Real	initial_speed(start	=	0,	unit	=	"m.s-1");

		/*	Parameters	of	the	simulation	scenario.	*/
		parameter	Integer	initial_track(start	=	1);
		parameter	Integer	direction(start	=	QtoV);

		/*	Maximum	permitted	speed	of	the	train.	*/
		parameter	Real	max_speed(unit	=	"m.s-1")	=	4.1;

		/*	Safety	margin	to	stop	before	the	end	of	the	track.	*/
		parameter	Real	safety_margin(unit	=	"m")	=	2.0;

		/*	Normal	acceleration	when	there	is	no	restriction	on	the
track.	*/
		parameter	Real	normal_acceleration(unit	=	"m.s-2")	=	0.25;

		/*	Normal	deceleration	when	the	train	must	stop	before	a	red
signal.	*/
		parameter	Real	normal_deceleration(unit	=	"m.s-2")	=	-1.4;

		/*	Inputs	and	Outputs	*/

		/*	Signals	on	the	track	observed	by	the	train	driver.	*/
		Modelica.Blocks.Interfaces.BooleanInput	signals[3](each	start
=	RED);

		/*	Current	configuration	of	railway	switches.	*/
		Modelica.Blocks.Interfaces.IntegerInput	switches[5];

		/*	Track	segment	on	which	the	train	is	currently	located.	*/
		Modelica.Blocks.Interfaces.IntegerOutput	track_segment;

1

D2.3a - SysML Foundations for INTO-CPS (Public)

A Modelica Train Model

68



		/*	Telecommand	issued	by	the	train	driver	to	request	a	route.
*/
		Modelica.Blocks.Interfaces.BooleanOutput	telecommand[4];

		/*	Local	Variables	*/
		Real	acceleration(unit	=	"m.s-2");
		Real	current_speed(unit	=	"m.s");
		Real	position_on_track(unit	=	"m");
		Real	track_length(unit	=	"m");
		Real	setpoint_speed(unit	=	"m.s");

		/*	Initial	equations	determine	the	speed	and	location	of	the
train	at	time	zero.	*/

		initial	equation
				track_segment	=	initial_track;
				current_speed	=	initial_speed;
				position_on_track	=	0;

		/*	Algorithms	and	Equations	*/

		/*	Physical	movement	of	the	train.	*/

		equation
				der(current_speed)	=	acceleration;
				der(position_on_track)	=	current_speed;

		/*	Control	equation	for	acceleration	and	braking	of	the	train.
*/

		/*	Currently	gravity	and	smooth	acceleration	are	not
considered.	*/

		equation
				when	abs(current_speed	-	setpoint_speed)	<	0.001	then
						/*	To	avoid	chattering	during	simulation.	*/
						/*	This	case	also	corresponds	to	engaging	the	brakes.	*/
						reinit(current_speed,	setpoint_speed);
						reinit(acceleration,	0);
				end	when;
				/*	In	reality,	we	would	use	a	PID	controller	here.	*/
				if	current_speed	>=	setpoint_speed	then
						/*	To	avoid	chattering	during	simulation.	*/
						acceleration	=	0;
				else
						if	current_speed	<	setpoint_speed	then
								/*	Accelerate	*/
								acceleration	=	normal_acceleration;
						else
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								/*	Decelerate	*/
								acceleration	=	normal_deceleration;
						end	if;
				end	if;

		/*	Behaviour	of	the	train	driver	in	defining	the	set-point
speed.	*/

		equation
				setpoint_speed	=	CalculateSpeed(track_segment,	signals,
max_speed);

		/*	Calculation	and	update	of	the	track	segment.	*/

		equation
				when	position_on_track	>	pre(track_length)	then
						/*	The	donkey	work	is	done	by	the	NextTrack()	function	in
TrainControl.	*/
						track_segment	=	NextTrack(pre(track_segment),
pre(switches),	direction);
						reinit(position_on_track,	0);
				end	when;

		equation
				/*	The	track	length	becomes	0	when	we	derail	or	leave	the
interlocking.	*/
				track_length	=	(if	track_segment	>	0	then
track_length_tab[track_segment]	else	0);

		/*	Algorithm	to	issue	the	necessary	telecommand	for	a	route
request.	*/

		algorithm
				/*	We	assume	the	train	starts	from	a	track	with	a
telecommand	station.	*/
				telecommand	:=
						/*	Simulation	seems	to	complain	about	an	if	*statement*
here?!	*/
						if	track_segment	==	initial_track	then
								Railways.Common.Topology.Route2TC(fixed_route)
						else	TC_NONE;
end	FullTrain;
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class Interlocking

types

SWITCH_POSITION = <STRAIGHT> | <DIVERGING>

instance variables

private hwi : HardwareInterface;

private Relay : seq of bool;

private Switch : seq of SWITCH_POSITION;

operations

-- Constructor for Interlocking
public Interlocking: HardwareInterface ==> Interlocking
Interlocking(hardware) ==
(
  hwi := hardware;
  Relay := [false,false,false,false,false];
  Switch := 
[<DIVERGING>,<DIVERGING>,<DIVERGING>,<DIVERGING>,<DIVERGING>]
);

-- Control loop
public Step: () ==> ()
Step() ==
(
    -- Relay Setting
    if hwi.TC(4) and not hwi.TC(3) and not Relay(2) and not Relay
(3) and hwi.CDV(4) and hwi.CDV(5)
       then Relay(1) := true;
    if hwi.TC(3) and not hwi.TC(4) and not Relay(1) and not Relay
(3) and not Relay(4) and not Relay(5) and hwi.CDV(4) and hwi.CDV
(8) and hwi.CDV(9) and hwi.CDV(10) and hwi.CDV(1)
       then Relay(2) := true;
    if hwi.TC(3) and not hwi.TC(4) and not Relay(1) and not Relay
(2) and not Relay(3) and not Relay(5) and hwi.CDV(4) and hwi.CDV
(8) and hwi.CDV(9) and hwi.CDV(11) and hwi.CDV(2)
       then Relay(4) := true;
    if hwi.TC(1) and not Relay(2) and not Relay(4) and not Relay
(5) and hwi.CDV(10) and hwi.CDV(9) and hwi.CDV(8) and hwi.CDV(7) 
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and hwi.CDV(6)
       then Relay(3) := true;
    if hwi.TC(2) and not Relay(2) and not Relay(3) and not Relay
(4) and hwi.CDV(11) and hwi.CDV(9) and hwi.CDV(8) and hwi.CDV(7) 
and hwi.CDV(6)
       then Relay(5) := true;

    /* Relay Clearing */
    if Relay(1) and not hwi.CDV(5) then Relay(1) := false;
    if Relay(2) and not hwi.CDV(1) then Relay(2) := false;
    if Relay(3) and not hwi.CDV(6) then Relay(3) := false;

if Relay(4) and not hwi.CDV(2) then Relay(4) := false;
    if Relay(5) and not hwi.CDV(6) then Relay(5) := false;

    /* Switch Positioning */
    Switch(1) := <STRAIGHT>;
    if Relay(1)
      then Switch(3) := <STRAIGHT>
      else Switch(3) := <DIVERGING>;
    if Relay(3) or Relay(5)
      then Switch(2) := <STRAIGHT>
      else Switch(2) := <DIVERGING>;
    Switch(4) := <STRAIGHT>;
    if Relay(2) or Relay(3)
      then Switch(5) := <STRAIGHT>
      else Switch(5) := <DIVERGING>;

    /* Signal Settings */
    hwi.signals(1) := Relay(3) and Switch(5) = <STRAIGHT> and 
Switch(2) = <STRAIGHT> and Switch(4) = <STRAIGHT>;
    hwi.signals(2) := Relay(5) and Switch(5) = <DIVERGING> and 
Switch(2) = <STRAIGHT> and Switch(4) = <STRAIGHT>;
    hwi.signals(3) := (Relay(1) and Switch(1) = <STRAIGHT> and 
Switch(3) = <STRAIGHT>)
     or (Relay(2) and Switch(1) = <STRAIGHT> and Switch(3) =
<DIVERGING> and Switch(2) = <DIVERGING> and Switch(5) =
<STRAIGHT>)
     or (Relay(4) and Switch(1) = <STRAIGHT> and Switch(3) =
<DIVERGING> and Switch(2) = <DIVERGING> and Switch(5) =
<DIVERGING>);

    /* Switches Actuators */
    hwi.switches(1) := if Switch(1) = <STRAIGHT> then true else 
false;
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    hwi.switches(2) := if Switch(2) = <STRAIGHT> then true else 
false;
    hwi.switches(3) := if Switch(3) = <STRAIGHT> then true else 
false;
    hwi.switches(4) := if Switch(4) = <STRAIGHT> then true else 
false;
    hwi.switches(5) := if Switch(5) = <STRAIGHT> then true else 
false;
);

-- 10Hz control loop
thread periodic(1E8, 0, 0, 0)(Step);

end Interlocking
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