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Abstract

The deliverable reports on our work towards the creation of a novel formal semantics for
the real-time modelling language VDM-RT. The focus of this report is on the real-time
aspects of the language, having previously dealt with the object-oriented aspects. We
provide a denotational semantics for the real-time parts of the language in a semantic
framework called Unifying Theories of Programming via an intermediate concurrent and
real-time modelling language language called CML (COMPASS Modelling Language).
We create the core VDM-RT expression model, and use CML processes to describe the
behaviour of classes, objects, threads, and busses. We then show how our semantics has
been validated using the CML interpreter in the Symphony tool, and summarise the work
towards mechanisation of the denotational model in Isabelle/HOL.
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Glossary

CML COMPASS Modelling Language, a formal lan-
guage for modelling systems of systems based
on Circus and VDM.

Circus a formal modelling language for state-rich con-
current systems building on CSP and with a
UTP semantics.

CircusTime Circus extended with primitives for real-time
modelling.

CPU Central Processing Unit.
CSP Communicating Sequential Processes, a pro-

cess calculus created by Tony Hoare.
CyPhyCircus a version of Circus for Cyber-Physical Systems

modelling.

FMI Functional Mockup Interface, a language for
describing the composition of heterogeneous
system models.

FMU Functional Mockup Unit, an encapsulated
constituent model of an FMI network.

HOL Higher Order Logic.

Isabelle a generic proof-assistant usually associated
with HOL.

RTT-MBT A toolkit for model-based testing of real time
systems including support for automated test
generation and model checking.

SUT System Under Test.
Symphony a development environment for CML, includ-

ing a model simulator.

UTP Unifying Theories of Programming, a frame-
work for reasoning about formal semantics.

VDM Vienna Development Method.
VDM++ Object-oriented dialect of VDM.
VDM-RT Real-time dialect of VDM.
VDM-SL Standardised dialect of imperative VDM.
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1 Introduction

This deliverable supplements our previous semantics of object-oriented data structures [39]
with a semantics for real-time threads in the real-time modelling language VDM-RT [47].
VDM-RT is a real-time dialect of the VDM formal modelling language [9] that can be
applied to the specification of discrete controllers for Cyber-Physical Systems (CPSs).
VDM-RT is object-oriented, with models defined as classes that are instantiated as ob-
jects. It supports concurrency through threading, and communication between threads
through message passing over shared busses. The real-time features of the language
comprise abstractions for deployment of objects to compute units (CPUs), which are
connected by busses, and the time taken to evaluate expressions, which advance a global
“wall clock” to predict the computation time of a model.

We use Hoare and He’s Unifying Theories of Programming [46, 18] (UTP) to give a
denotational semantics to VDM-RT; details of the UTP can be found in our previous
deliverables [39, 16]. VDM-RT is a discrete real-time language, which leads us to employ
the UTP theory of timed reactive designs as the semantic model, as embodied in the
COMPASS Modelling Language (CML). Thus, we use the constructs of CML to describe
VDM-RT objects, threads, CPUs, and busses, together with actions that encode their
orchestrated execution. In order to accomplish this, we also extend CML with a universe
type for VDM-RT, and also timed expressions that cause language constructs like assign-
ment to expend time during execution. Our aim for the final year of INTO-CPS is to
integrate the CML constructs in our final target language, CyPhyCircus, which will addi-
tionally enable description of continuous time behaviour, and thus allow composition of
VDM-RT discrete controllers with a continuous plant. Information about work towards
creation of CyPhyCircus can be found in sister deliverable D2.2c [16].

Our semantics of VDM-RT is based on a pattern commonly employed in the INTO-
CPS project to describe the discrete time component of a cyber-physical system. Such
a “cyber component” consists of one or more controller objects, each of which owns a
number of sensors and actuators through which to interact with the physical components.
The topology of such a cyber component is thus fixed at instantiation, and there is no
necessity to support dynamic object creation, which thus favours the use of static CML
processes to represent objects and threads. Limiting ourselves to static topologies enables
the application of static analysis techniques like model checking [40, 61, 6], which typically
requires a tractable state space.

The structure of this deliverable is as follows. In Section 2 we give background for the de-
liverable, briefly describing VDM-RT, the UTP, and CML. In Section 3 we conservatively
extend CML with the VDM-RT universe and timed expressions. In Section 4 we give our
semantics of VDM-RT as a translation into CML. We employ CML processes to represent
VDM-RT objects, CPUs, and busses. In Section 5 we provide some validation of our
semantics through a hand translation of the water tanks VDM-RT controller to CML,
and explore its simulation in the CML development environment, Symphony . In Section 6
we describe our work on mechanisation of the VDM-RT semantics in Isabelle/UTP. In
Section 7 we explore a number of areas of future work for our semantics. Finally, in
Section 8 we conclude the deliverable.
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Figure 1: Periodic thread with period p, jitter j, delay d, and offset o

2 Background

In this section we give the background to this deliverable, introducing VDM-RT, UTP,
CML, and other foundational concepts.

2.1 VDM-RT

Overview The Vienna Development Method (VDM) is a state-based formal method that
was originally designed in the 1970s to give semantics to programming languages [50].
Models in VDM have a persistent state, described through a rich set of datatypes (sets,
sequences, mappings, etc.). Functionality is described through operations that modify
the state. The core specification language, called VDM-SL, has been standardized as
ISO/IEC 13817-1 [49]. As part of the standardisation process, a full denotational seman-
tics has been defined for VDM-SL (due to Larsen et al. [53]), as well as a proof theory
and comprehensive set of proof rules [8].

Models in VDM-SL can be structured into modules. Each module has its own state,
which is global to the module, and functionality. Data and functionality can be exported
and imported between modules.

In the 1990s a new dialect, called VDM++ [27], was defined adding object-orientation
and concurrency features. VDM++ retained all the core features of VDM-SL (datatypes,
operations, pre- and post-conditions, invariants, etc.) but replaced the notion of modules
with classes and objects. In the 2000s another language extension was defined that
included abstractions for modelling real-time embedded software [66]. This work led to
the dialect used in INTO-CPS, VDM-RT (VDM Real Time).

There are two industrial-strength tools for VDM, the commercial VDMTools and the open
source Overture1. Overture is used in INTO-CPS and also forms part of the Crescendo
baseline technology. This latter allows co-simulation between VDM-RT and 20-sim mod-
els [28]. The main focus of VDM-RT is thus simulation, whereby the Overture interpreter
steps a model forward a certain number of time units and calculates the resulting state
of the system. This state can then be shared with a composed continuous model for the
purpose of co-simulating an entire Cyber-Physical system.

1http://www.overturetool.org/
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Figure 2: Relationship of VDM-RT concepts

All models in VDM-RT are built from classes, which are instantiated as objects. Variables
can have a class as a datatype, or use the datatype system as defined in VDM-SL.
Concurrency in VDM-RT is based on threads which can be executed on different modelled
CPUs. Each class may define a thread, and once an object of that class is created, its
thread can be started. A thread will terminate once its work is finished. There are also
notations for defining threads that will call an operation periodically, as illustrated in
Figure 1. Periodic threads execute every p time units, with an initial start time at offset
o. Jitter j can be used to allow imprecision around the execution time of events, and
delay d gives a minimal distance between two events. Threads can also be set to execute
sporadically, that is, at non-deterministic intervals. Such real-time features of VDM-RT
are based around a global “wall clock” that records the time, in nanoseconds, since the
start of the simulation. All expressions in a model have an associated evaluation time,
which causes the clock to advance.

VDM-RT has built-in abstractions for compute nodes, represented by CPU objects. A
special System class is used to define CPU objects. Other objects in the system can be
deployed to a CPU. When objects on different CPUs communicate, they must do so via
a BUS object, which incurs a time penalty. Both CPU and BUS objects have a notion
of their own speed. A class diagram relating the key elements introduced here is given
in Figure 2. Threads communicate via sharing of objects. When a thread makes a call
to an object operation, the interpreter has to determine whether the object is local or
remote. If it is local, then the operation can simply be executed in the context of the
present CPU. However, if it is remote then a message must be conveyed to the remote
CPU via a bus. The present thread’s execution is paused whilst the target operation is
executed, assuming the operation is synchronous. Operations can also be specified to be
asynchronous, meaning they do not return a value and the calling thread need not pause
during its execution.

The amount of time each expression takes to evaluate (i.e. the amount of time by which the
wall clock is updated) is, by default, two simulated cycles of the CPU. Objects deployed
to faster CPUs will take less (simulated) time to execute. Similarly, for CPUs connected
by faster buses, their objects will incur a smaller time penalty when communicating. The
amount of time an expression, or set of expressions, takes to execute can be altered in
two ways. Using a cycles statement, which can be used to increase or decrease the

10
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class Controller

instance variables
levelSensor : LevelSensor;
valveActuator : ValveActuator;

operations
public Controller : LevelSensor * ValveActuator ==> Controller
Controller(l,v)==

(levelSensor := l; valveActuator := v;);

private loop : () ==> ()
loop() ==

duration (40)
(

let level : real = levelSensor.getLevel ()
in
(

if (level >= HardwareInterface ‘maxlevel)
then valveActuator.setValve(true);

if (level <= HardwareInterface ‘minlevel)
then valveActuator.setValve(false );

);
);

thread periodic (10E6 ,0,0,0)( loop);

end Controller

Figure 3: Example controller class for Water Tanks pilot study in VDM-RT

simulated cycles, or using a duration expression, which directly sets the time taken in
nanoseconds (independent of the CPU). This is useful when measurements can be made
on real hardware in order make the timing predictions of the model more accurate.

Figure 3 shows an example VDM-RT class corresponding to a controller for a simple water
tank system [?]. It has two instance variables that correspond to a sensor for checking
the tank water level (LevelSensor) and an actuator for turning on and off an evacuation
valve on the tank (ValveActuator). There are also two operations: Controller, which
is the class constructor that sets initial values for the sensor and actuator, and loop that
describes the periodic thread of the class, which is set to execute every 10 milliseconds.
The body of loop has a specified execution time of 40 nanoseconds using the duration
statement. Within this a local variable level is created that obtains the present tank
level from the sensor. If the level goes above maxLevel, which is a static variable of the
HardwareInterface class, then the valve is turned on, and when it drops below minLevel
it is turned off. This example also serves to partly illustrate the VDM-RT pattern that
we use for our semantics. We will discuss this in more detail in Section 4.1.

Semantics There are two existing formal semantics for VDM-RT, both of which are
operational in nature. The first [47] gives a structural operational semantics to a simplified
version of VDM-RT. This semantics describes the behaviour of real-time threads being
concurrently executed on CPUs, and exchanging call messages locally and remotely via

11
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busses. A particular focus of this semantics is co-simulation of a discrete time VDM-RT
model with an external continuous time model. Execution of a VDM-RT model is divided
into a number of variable length time slots (t ∈ R≥0) which correspond to critical regions.
The length of a given time slot is calculated by determining the minimal time step that
all system threads are willing, by agreement, to collectively expend.

The semantics identifies two kinds of variables: LVar which are variables local to a thread,
and IOVar which are variables shared with the continuous model. Writes by a thread to
one or more IOVars are atomic, in the sense that only one thread in each time slot may
make such writes. This is ensured by locking of an IOVar the first time a thread makes a
write to it, and until the end of the time slot, the thread effectively has exclusive owner-
ship. This semantics does not explicitly consider the state of individual objects, in that
only threads have variable valuations associated with them. Moreover, periodic threads
do not exhibit timing variance constraints like clock jitter. This semantics provides the
basis of the Overture VDM-RT interpreter.

The second formal semantics [54] gives a more comprehensive operational semantics (61
structural operational rules, and more than 20 utility functions), in which most of the
constructs of concrete VDM-RT are considered. It explicitly handles the state of objects,
in addition to associated threads, and atomic synchronisation of the states at the end of
duration statements. It considers evaluation times for expressions, which are factored in
when executing operators like assignments, and adds concepts like clock jitter to periodic
threads. Moreover it also identifies and fixes a compositionality problem with the prior
semantics of the duration statement. Specifically, in the Overture VDM-RT interpreter,
nested durations are effectively ignored, and the overall execution time is simply based on
the top-level duration. Thus, the execution time of any statement can only be determined
by its context, which can of course be arbitrary, and thus the semantics is partly non-
compositional. The new semantic model [54] thus reinterprets the duration statement to
represent an atomic deadline operator, such that nested durations must sum to less than
the overall deadline. We discuss the implications of this change further in Section 4.8.
We have mechanised this semantics as described in our previous deliverable [39], and
also corrected a number of errors and inconsistencies in the rules. However, reasoning
about this operational semantics at the level of statements is difficult since all operational
deduction rules are highly context dependent.

In this deliverable, taking input from both existing semantics and also the VDM language
manual [52], we provide a novel denotational semantics for VDM-RT based on the timed
reactive language CML. Our denotational semantics allows us to prove algebraic laws
about VDM-RT programs without relying upon induction over an abstract syntax tree.
This, therefore, equips us with more reasoning capability for the purpose of mechanical
program verification. There also exists a corresponding operational semantics for CML,
which is derived from the denotational semantics [11]. Moreover, our semantic model
is defined within the context of Hoare and He’s Unifying Theories of Programming [46]
(UTP). This allows it to be formally linked to other semantic models and theories, such
as those for continuous time and hybrid systems.

12
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P ; (Q ; R) = (P ; Q) ; R (1)

P ; false = false (2)

(P 2 b 3 Q) ; R = (P ; R)2 b 3(Q ; R) (3)

while b do P = (P ; while b do P)2 b 3 II (4)

P ; Q = ∃ x0.P[x/x0] ; P[x′/x0] (5)

(P ∧ b) ; Q = P ; (b′ ∧ Q) (6)

II {x,x′}∪A = (x = x′) ∧ II A (7)

Table 2: UTP Algebraic Laws of Predicative Programming

2.2 Unifying Theories of Programming

Unifying Theories of Programming [46] (UTP) is a mathematical framework for describing
and unifying the formal semantics of programming and modelling languages. It has
previously been applied to the creation of semantic models for a variety of languages,
including Safety-Critical Java [20], SysML [56], Simulink [14], and CML [71]. During
these developments a large library of theories of programming has been built up, and we
make use of these in our semantics for VDM-RT. Moreover, UTP enables us to describe
formal links between VDM-RT and the other INTO-CPS notations, which will in turn
allow us to have a tool-chain that is semantically well founded.

Programs in the UTP are given denotational semantics using alphabetised predicates (P)
that define the relation between before variables (x) and after variables (x′) in the pred-
icate’s alphabet α(P). The calculus provides the operators typical of first-order logic,
such as connectives ∧,∨,¬,⇒ and quantification ∀ x.P,∃ x.P, [P], where [P] represents
the universal closure of P, that is a universal quantification over all the variables in α(P).
UTP predicates are ordered by a refinement partial order P v Q that equates to universal
closure of reverse implication [Q⇒ P]. Detailed tutorials on the UTP alphabetised pred-
icate calculus are available [18, 35], and so we concentrate only on the crucial elements
here.

Imperative programs can be described using relational operators such as sequential com-
position P ; Q, if-then-else conditional P 2 b 3 Q (for condition b), non-deterministic
choice u, assignment x :=A v (for expression v and alphabet A), and skip II A (do nothing
and identify all variables) all of which are given predicative interpretations. For such
imperative programs, the refinement operator P v Q corresponds to behavioural refine-
ment, where the refined program Q is more deterministic than P. This also induces a
complete lattice on programs, where true, the most non-deterministic program represents
the bottom of the lattice, and false, the miraculous program, is the top. Recursive and
iterative constructions can then be specified using lattice and fixed-point operators, such
as

d
, µX.P, and the derived while b do P. A collection of algebraic laws that can be

proved about such imperative and predicate operators is shown in Table 2 (see [46] and
[70]).

13
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Law 1 demonstrates the associativity of sequential composition. Law 2 shows that the
miraculous program false is a right annihilator of sequential composition. Law 3 shows
how sequential composition distributes through if-then-else conditional. Law 4 shows how
a while loop can be unfolded by making a copy of the body. Law 5 allows the extraction of
an intermediate variable x0 in a sequential composition through the use of an existential
quantification. Law 6 shows how a conjoined conditional predicate b can be transferred
to a postcondition on the other side of the sequential composition.

Aside from such programming operators, denotations can also be given to assertional
reasoning calculi such as the Hoare calculus triple {p}Q{r}, and weakest precondition
calculus P wp q. Moreover, UTP provides a way of linking operational semantics to
denotational semantics [46] by describing the transition relation (σ,P)→ (ρ,Q), for state
configuration predicates σ and ρ and programs P and Q, as a refinement statement –
σ′ ; P v ρ′ ; Q. From such a definition we can derive a set of structural operational laws
for our target language as theorems, and thus obtain an operational semantics that is
sound with respect to the denotational semantics.

The UTP predicate calculus thus provides a rich language for both defining and reasoning
about semantics of programs, specifications, and models, in the algebraic, denotational,
and operational flavours. Building on the core imperative constructs, the UTP also allows
the specification of more complex language aspects using UTP theories. A UTP theory
isolates an aspect of a language, such as object orientation, real-time, or concurrency, to
allow its independent study. A language’s denotational semantics can then be constructed
by composition of the underlying building block UTP theories.

This is important for Cyber-Physical Systems, which make use of a wide variety of het-
erogeneous programming and modelling paradigms [32]. In this deliverable we will build
our semantics of VDM-RT’s real-time threads on top the UTP theory of timed reactive
designs, embodied in the formal modelling language CML, which we describe in Sec-
tion 2.4.

2.3 Reactive Designs

VDM-RT programs are reactive in nature: the threads, objects, CPUs, and busses all
have the ability to interact with their environment in various ways. Thus to give them
a semantics we need a suitable UTP theory, which is provided by the theory of reactive
designs [18, 60]. A reactive design, of the form R(P ` Q), is a specification for a reactive
program consisting of an assumption P and commitment Q. The turnstile ` constructs a
UTP design – a total correctness specification – and R is a healthiness function that makes
the specification reactive. The assumption and commitment are relations (or predicates)
whose alphabet consists of the following variables.

• wait,wait’ : B – describe whether the previous or current process, respectively, are
in an intermediate state. An intermediate state occurs when a process is waiting
for interaction with its environment, and when time is passing.

• tr, tr’ : seq ΣE – describe the history of events that were performed after the previous
or current process, respectively. ΣE is the event alphabet of the process, that is the
set of events, such as inputs and outputs, that the process can engage in.

14
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R1 (P) , P ∧ tr ≤ tr′

R2 (P) , P[〈〉, tr′ − tr/tr, tr′]2 tr ≤ tr′3 P
R3 (P) , II rea 2 wait 3 P

R , R3 ◦ R2 ◦ R1

Chaos , R(false ` true)

Miracle , R(true ` false)

II rea = R(true ` II )

x :=rea v , R(true ` x := v)

Table 3: Reactive design definitions

• v, v’ : Σ – describe the valuation of program variables before and after the current
program, respectively. Σ is the program alphabet.

The behaviour of these observational variables is constrained by the healthiness condition
R, seen above, which is a monotone idempotent function and itself consists of the com-
position of three healthiness conditions presented in Table 3. R1 states that the trace
can only get longer, or more formally that tr is monotonically increasing. R2 states that
a process is history independent: if we remove the history in tr the process still has the
same behaviour. We remove the history by replacing tr with 〈〉, and tr′ with tr′ − tr,
that is the trace of events the current process has contributed. Our presentation of R2
differs slightly from the literature, in that we only remove the history when tr ≤ tr′ as the
conditional ensures. This modification retains the standard meaning, but ensures that
R1 and R2 are independent.

R1 and R2 together ensure that the reactive behaviour of a process contributes an
extension tt to the trace, which the following theorem demonstrates:

Theorem 2.1 (R1 -R2 trace contribution)

R1(R2(P)) = (∃ tt • P[〈〉, tt/tr, tr′] ∧ tr′ = tr a tt)

The theorem shows that R1 -R2 processes ensure that there exists a trace extension tt,
and tr′ is the prior history appended with this extension.

Finally, healthiness condition R3 ensures that intermediate states are appropriately re-
spected. If a prior process is in an intermediate state, denoted by wait, then the following
process must behave as the reactive skip II rea. Otherwise, the process exhibits its own
behaviour (P). The reactive skip has the intuitive definition II rea = R(true ` II ), where
II is the relational identity. Thus II rea has a true precondition, and its postcondition
simply identifies all variables.

Since UTP designs form a complete lattice, and the reactive healthiness condition R is
monotone, we can show that reactive designs also form a complete lattice. The bottom
of the lattice is the process Chaos, defined in Table 3, which corresponds to the program
that makes no guarantees about its behaviour other than that the trace monotonically
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Construct Description
Skip terminates immediately with no activity
Stop deadlocks immediately with no activity; allows time passage
Wait e wait e time units and then terminate
Wait [m, n] non-deterministically waits between m and n units
c!e→ P offer output of e on channel c, then behave as P
c.e→ P offer event on channel c parametrised by e, then behave as P
c?x→ P(x) accept input for bound variable x of on channel c
P 2 Q external choice; choose between P and Q when one offers an event
P ; Q sequential composition of P and Q
P 2 b 3 Q conditional; behave as P if b is true, otherwise behave as Q
µX • P(X) recursive behaviour; calculates fixed point of X = P(X)

while bdoP while loop; iterates P while b is true
x :=rea e instantaneously assign e to variable x
var x : τ • P(x) creates a local variable x of type τ scoped to P

P
e
B Q timeout; behaves as P initially, if P does not perform an event or

terminate before e time units have elapsed then behave like Q
P I m deadline; P must terminate before m units have passed
P ||| Q interleave the behaviour of P and Q (no communication)
P |[ A ]| Q parallel composition of P and Q; synchronisation permitted on events in A
P \ A hide the events of P specified in A such that they become internal events

Table 4: CML process constructs

increases. The top of the lattice is Miracle, the process which violates its postcondition
and is thus impossible to execute.

Since a reactive design’s postcondition specifies both intermediate states (wait′), and final
states (6 wait′) we introduce the following derived syntax [13]: R(P ` Q � R) , R(P `
Q 2 wait′3 R). Here, Q denotes the so-called “pericondition”, that is, the predicate
that is satisfied by intermediate behaviours, and R is the postcondition satisfied by final
states.

2.4 COMPASS Modelling Language

The semantic model we use for VDM-RT is timed reactive designs, a form a specifica-
tion construct that allows the specification of reactive behaviour with discrete timing
constraints. This UTP theory is used to give a semantics to the COMPASS Modelling
Language [29, 11] (CML), which is a combination of VDM-SL and the process algebra
CSP. We give VDM-RT a UTP semantics by using CML, whose constructs are directly
defined using the UTP.

CML describes the behaviour of a system in terms of a collection of processes that commu-
nicate with each other over shared synchronous channels. These channels can optionally
carry data, and are the only way that processes can communicate. Each process addition-
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ally has a state structure which can be described using the data structures of VDM-SL,
such as numerics, sets, sequences, records, and maps. This state is encapsulated, such
that only constructs within the process’ scope can query the state variable. A CML
process is described using a sequence of paragraphs that we summarise below:

• the types paragraph, which describes the data structures the process uses;

• the values paragraph, which describes static defined values of the process;

• the state paragraph, which defines a collection of typed state variables;

• the operations paragraph, which defines a collection of (non-reactive) operations
that act on the state variables. They can be specified implicitly using pre- and
postconditions;

• the actions paragraph, which defines a collection of reactive actions that can both
manipulate the state and interact with the environment using channels;

• the main action, • P, which describes the top-level behaviour of a process using a
composition of internal actions and operations.

The reactive behaviour of CML actions is described using constructs from CSP, a number
of which are illustrated in Table 4. The various parallel operators, such as P ||| Q and
P |[A]|Q, permit the events from either P or Q, but the state is not shared – both act on an
independent copy of the state variables. This ensures there can be no race conditions on
state variables between processes. In addition to the usual constructs of CSP, CML also
provides various timing operators, such as the delay statement, Wait n, where n is an
expression of type N, and the timeout statement P

n
B Q. CML’s time domain is abstract,

in that time events do not have a concrete interpretation as a specific length of time.
For VDM-RT, the base time unit is the nanosecond and thus by default we will interpret
CML time events to be the passage of 1 nanosecond.

Another key aspect of CML processes to be observed is that they satisfy the maximal
progress assumption [43]. There are essentially three kinds of activity that a process can
engage in: invisible internal activity, such as state manipulation, visible communication
events synchronised over one or more processes, and the passage of time. The maximal
progress assumption states that the internal activity of a process occurs infinitely faster
than can be observed by the passage of time. Thus the presence of executable internal
events in a process prevent time from passing. Moreover, hiding an event a in a process
using P \ {a} converts a to an internal action, and thus ensures it too will happen before
the passage of time. Only once all possible internal activity has been executed – the
process has maximally progressed – can time pass. This assumption largely ensures that
time is of a deterministic nature, and is important for VDM-RT as it ensures, for example,
that pending state updates must take place before time can pass.

Details of the denotational and operational semantics of CML can be found in our previous
COMPASS deliverables [11]. We here briefly summarise the semantic model, and describe
the core constructs.

A timed reactive design is a reactive design whose event alphabet ΣE contains a distin-
guished event called tock that records the discrete passage of time in the trace. Assuming a
set ΣE

U of user events, then we have tock : PΣE
U → ΣE and ΣE = ΣE

U∪{tock.n | n ∈ PΣE
U}.

The parameter of tock denotes the set of refusals at the end of each clock cycle. We
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Stop , R(true ` events(tt) = 〈〉 � false)

a→ Skip , R
(

true ` events(tt) = 〈〉 ∧ a /∈ refusals(tt)
� tt = idleprefix(tt) a 〈a〉 ∧ v′ = v ∧ a /∈ refusals(tt)

)
Wait n , R

(
true ` events(tt) = 〈〉 ∧ #tt < n

� events(tt) = 〈〉 ∧ #tt = n ∧ v′ = v

)

Table 5: Example CML language semantics

abbreviate tr′− tr by tt, an expression denoting the portion of the trace that the present
process has contributed. The semantics use a number of functions on traces that we
summarise below.

• events(tt) – denotes the trace tt excluding tock events, but retaining the order of
other events;

• refusals(tt) – denotes the set of all events that are refused by at least one tock event
in the trace;

• idleprefix(tt) – denotes the maximal prefix of tt that contains only tock events, that
is, the time events that occur in the initial idle period.

We can then define some example CML language constructs in Table 5. Stop is the process
that immediately deadlocks: it has a true precondition, its pericondition ensures that no
events can occur (though time can pass), and it cannot terminate since the postcondition
is false. An event prefix, a → Skip, has a true precondition, and its pericondition is
that no CSP events occur in the trace, and yet that a is not refused anywhere. The
use of events(tt) ensures that tock events are, however, possible in the trace, meaning
that time can pass whilst we are waiting for an a event. The postcondition of event
prefix states using three conjuncts, firstly, that the contributed trace consists of a period
of time passing after which the event a is performed; secondly that all state variables
remain unaltered; and finally that a is not refused anywhere during the idle period. A
delay, Wait n, states in the pericondition that no communication events occur, and that
the length of the trace is less than n. Since the trace can consist only of tock events, this
means that less than n units of time have passed. The postcondition states, likewise, that
no communication events can occur, the length of the trace equals n, so sufficient time
has passed, and finally that the state variables remain constant.

This denotational semantics is then used to derive, and thus validate the soundness of, a
corresponding operational semantics for CML processes [11]. This operational semantics
was then used to implement the simulator in Symphony 2 [21, 22], an integrated develop-
ment environment for CML based on the Overture platform.

CML’s sister language, CircusTime [68, 67], which shares a similar semantic model based
on timed reactive designs and has many of the same operators, has been in used a similar
context to give a semantics to Safety-Critical Java [17, 20]. We adapt many of the ideas
from this work to create our semantics for VDM-RT, since many of the static analysis

2http://symphonytool.org/
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V

S

X

Figure 4: A typical lens

get (put s v) = v (PutGet)
put (put s v′) v = put s v (PutPut)

put s (get s) = s (GetPut)

Figure 5: Lens laws

techniques developed there are also of benefit to us.

2.5 Isabelle/UTP

Isabelle/UTP [38, 72, 36] is a mechanisation of the UTP semantic framework in the proof
assistant Isabelle/HOL [59]. It allows us to define UTP theories within the alphabetised
relational calculus, whilst taking advantages of Isabelle’s type checker, and then mechan-
ically prove associated theorems, such as algebraic laws. Such laws can then be applied
to program verification tasks in Isabelle.

An alphabetised relation is essentially a set of possible observations that can be made
of the model, such as the set of possible input and output mappings. Our model of
alphabetised predicates, therefore, is α upred , α ⇒ bool, where α is a suitable type for
modelling the alphabet, that corresponds to the state space. This means that we can
easily implement the usual operators of boolean algebra and complete lattices by lifting
the corresponding HOL notions on sets. Similarly, relational operators like composition
P ; Q can also be obtained by lifting the corresponding HOL functions.

Variables in the state space α are modelled abstractly using lenses [31, 30], which are
perhaps best known in the functional programming world. A lens V =⇒ S, for view type
V and source type S, identifies V with a subregion of S. This is illustrated in Figure 4,
where the hatched region denotes the portion of S that V corresponds to. Lenses can be
used to abstract many types of data structure. For example, if S is a record type, then V
might be a particular field, or if S is a function type, then V might be an element of the
domain. A lens consists of two functions: get that extracts a view from a larger source,
and put that puts back an updated view. Moreover the behaviour of lenses is constrained
by a number of algebraic laws which are summarised in Figure 5. Since lenses are semantic
rather than syntactic entities, we cannot compare them just using (in)equality, and thus
we introduce further operators. Lens equivalence, X ≈ Y, states that lenses X and Y view
precisely the same region of the source, though these views may have different types.
Lens independence, X ./ Y, states that the two lens views are independent: manipulating
the source type using X has no effect on the region identified by Y and vice-versa. Such
operators can be used as the basis for comparison of variables.

We have mechanised a theory of lenses in Isabelle during this project, including an algebra
that allows us to variously compose lenses in the style of separation algebra [12]. For
example, the sum lens X ⊕ Y represents the lens that simultaneously views the regions
characterised by both lenses X and Y. For more details please see our recent paper [38],
which has been adapted into this deliverable and can be found in Appendix B.
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(∃ x • P ∧ x = e) = P[e/x] if x ∈ mwb-lens, x ] e
x := e ; P = P[e/x]

x := e ; x := f = x := f if x ] f
x := e ; y := f = y := f ; x := e if x ./ y, x ] f , y ] e

Table 6: Isabelle/UTP laws

We model variables as abstract views on program state spaces with a uniform semantic
interface. A variable x : (τ, α) uvar is a lens that views a particular subregion of type τ in
α, which affords a very general state model. The main advantage lenses thus provide us
with is an abstract notion of variables and state space in UTP predicates, such that a wide
variety of different representations are possible. A commonly employed model for state
spaces is that of Isabelle/HOL records, with fields to model variables, as these afford a
large amount of built-in proof automation, which thus aids the program verification effort.
Our use of lenses enables a more abstract characterisation, and ensures that any lens-
based model for variables can be applied to proven laws of Isabelle/UTP, including for
example partial function maps to encode a deeper predicate model with variable names
as first-class citizens.

Mechanisation of the predicate calculus requires that we can specify meta-logical provisos,
such as x /∈ fv(P), that is, that variable x is not free in P, and also variable substitution.
Alphabetised predicates are principally semantic rather than syntactic entities, and so
these notions cannot be specified using, for example, recursive functions that depend on an
abstract syntax tree. Instead, we leverage our theory of lenses to define weaker semantic
notions. For free variables, we introduce the concept of unrestriction, written x ]P for
some variable (lens) x. A predicate P is unrestricted by variable x if the valuation of P
does not depend on x. For example, the predicate y > 10 is unrestricted by x, assuming
x ./ y, since the value of x clearly has no bearing on the truth value of the predicate.

Substitution is also introduced semantically using the notation σ †P, where σ : α → α
is a homogeneous substitution function on the state space. Application of a substitution
to a predicate updates all possible observations using the function. The most basic
substitution is the identity id, which maps all variables to their present value. We can also
write σ(x 7→s e), which updates a substitution such that x takes the value of expression e.
We also introduce the short-hand [x1 7→s e1, · · · , xn 7→s en] = id(x1 7→s e1, · · · , xn 7→s en).
A substitution P[e1, · · · , en/x1, · · · , xn] of n expressions to corresponding variables is then
expressed as [x1 7→s e1, · · · , xn 7→s en] †P. This model allows us to obtain the usual laws
of substitution, such as (P ∧ Q)[v/x] = (P[v/x] ∧ Q[v/x]).

With a complete relational calculus and associated meta-logical operators defined we are
able to mechanise all the usual laws of predicate calculus, relation algebra, Kleene algebra,
and other typical laws of programming, such as those in Table 2 and Table 6. The latter
shows how we specify meta-logical provisos in Isabelle/UTP. For example the last law,
commutativity of assignments, requires that x and y be different variables, specified using
lens independence, that x is not free in f and that y is not free in e.

20



D2.2b - VDM-RT Final Semantics (Public)

So far we have mechanised several hundreds of such algebraic laws, which provides the
foundation for automated reasoning about programs and models. These can be seeing by
viewing our Isabelle/UTP git repository3. Moreover, we have also created a number of
proof tactics for predicate calculus (pred-tac) and relational calculus (rel-tac), which also
greatly aid the proof effort. When these are combined with Isabelle’s built-in automated
proof facilities [10] like the auto deduction tactic, the sledgehammer automated theo-
rem prover integration, and the nitpick counterexample generator, Isabelle/UTP greatly
aids the effort of mechanising UTP theories and eventually applying them to program
verification.

Thus far we have used Isabelle/UTP to mechanise a number of UTP theories, includ-
ing designs, reactive processes, the hybrid relational calculus [34, 16], and separation
logic [69]. In this deliverable we will show how we can use Isabelle/UTP to prove laws of
timed reactive designs and CML.

3 CML Extension

In this section we provide a number of extensions to the core CML language to cater for
specific features of VDM-RT. We provide a new universe type for VDM-SL, and also the
ability to specify timed expressions.

3.1 Universe for VDM-SL

A prerequisite of our semantics is a representation of the universe of constructible VDM-
SL values, which we call Usl. We will use this in our CML-based semantics of VDM-RT
to represent parameters that are passed from object to object for method calls. This
will allow us to have generic infrastructure processes for CPUs and busses which both
simplifies translation, and also reduces the number of processes that need specific static
analysis.

Since we are mechanising our semantics in Isabelle/HOL, the universe must be repre-
sentable within the HOL logical system. A possible candidate universe is the von Neu-
mann universe Vω+ω [72]. The von Neumann universe Vi is inductively defined for some
index i by repeated application of the power-set for ordinal indices β, and generalised
union for limit ordinals λ.

V0 =̂ ∅ Vβ+1 =̂ P(Vβ) Vλ =̂
⋃
β<λ

Vβ

Each limit ordinal index corresponds to the union of all sets constructed up to that level.
In HOL, every finite type is representable by some Vn (for n ∈ N>0), and every infinite
type by some Vω+n. For example, N can be represented by Vω and R by Vω+1. Then,
Vω+ω, which is the limit of these sets, contains all possible types that are constructible in
HOL. It is, therefore, impossible to formalise Vω+ω in HOL and thus this cannot be our
universe. Nevertheless, since it is the universe of ordinary mathematics, we will use it to

3Please see https://github.com/isabelle-utp/utp-main/
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characterise the base logic world W , Vω+ω, which could be either HOL or some other
equipollent logic.

Fortunately, VDM-SL does not require the full generality of the von Neumann universe,
as its type constructors are mainly of a finite nature. In particular, the power set operator
is a finite power set operator. The constructible VDM-SL types Tsl include the following
types, for A,B,Ti ∈ Tsl:

1. booleans (B ∈ Tsl);

2. natural numbers (N ∈ Tsl);

3. integers (Z ∈ Tsl);

4. rational numbers (Q ∈ Tsl);

5. real numbers (R ∈ Tsl);

6. products (A×B ∈ Tsl);

7. sequences (seq ofA ∈ Tsl);

8. finite sets (set ofA ∈ Tsl);

9. finite maps (map A to B ∈ Tsl);

10. records (R :: f1 : T1 · · · fn : Tn ∈ Tsl);

11. union types (A | B ∈ Tsl).

We distinguish a type code name A from its characteristic set A. The first observation is
that B,N,Z, and Q, being countable sets, clearly all have a cardinality no greater than
that of c, the cardinality of the continuum, which corresponds to |R |. Moreover, it is
well known that taking the product, union, and finite power set of a set does not increase
its cardinality. Sequences and finite maps can be also effectively encoded as finite sets of
pairs, and records are simply products. The one remaining type is R, which, by Cantor’s
famous diagonalisation proof, we know can be encoded as infinite sequences of bits, which
in turn is equivalent to PN. Thus all the types of VDM-SL can be injected into PN, or
equivalently the von Neumann set Vω+1. We have formalised in Isabelle/HOL and proved
that all the given types are injectable, which then provides the mathematical basis for
our semantics.

We define a number of functions that allow manipulation of values in the universe. We
define a function J−Ksl : Tsl → PW, which gives the carrier set for a VDM-SL type. Then
we define a function injτ : JτKsl → Usl that injects a value of type τ into the VDM-SL
universe. We also define castτ : Usl → JτKsl that casts a universe value of the type τ .
Together these two functions satisfy the following axiom:

x ∈ JτKsl =⇒ castτ (injτ (x)) = x

That is, if we inject a value of type τ and then cast it back to τ , the same value is
returned. These functions effectively allow us to perform type erasure and reinstatement
on a value, which is necessary to construct call messages in our CML semantics.
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3.2 Expressions

A VDM program variable x pairs a name (xn ∈ VarId) with a type (xτ ∈ Tsl). The state of
a program σ is a finite partial function from variable names to values Σ , {f : VarId 7 7→
Usl | ∀ x • f (x) : xτ}. A VDM-SL expression of type τ is then modelled as a partial
function from state bindings to values, that is Eτsl , {f : Σ 7→ Usl | ∀σ • f (σ) ∈ JτKsl}.
This semantic characterisation of expressions means we can give semantics to expression
operators by lifting corresponding functions of the underlying logic, such as Isabelle/HOL.
We thus define combinators for expression liftings.

⊥sl = ∅
lit(v) = {σ 7→ v | σ ∈ Σ}

uop(f , e) = {σ 7→ f (e(σ)) | σ ∈ dom(e) ∧ e(σ) ∈ dom(f )}

bop(f , e1, e2) =

{
σ 7→ f (e1(σ), e2(σ))

∣∣∣∣ σ ∈ dom(e1) ∩ dom(e2) ∧
(e1(σ), e2(σ)) ∈ dom(f )

}

trop(f , e1, e2, e3) =

σ 7→ f

 e1(σ),
e2(σ),
e3(σ)

∣∣∣∣∣∣ σ ∈ dom(e1) ∩ dom(e2) ∩ dom(e3) ∧
(e1(σ), e2(σ), e3(σ)) ∈ dom(f )


Expression ⊥sl is the undefined expression. Expression lit(v) takes a value in the un-
derlying logic, v ∈ W, and constructs a literal expression; it is constant for every state.
Combinators uop(f ), bop(f ), and trop(f ) construct unary, binary, and ternary expressions
for base logic functions of type Wn 7→W, where n ∈ {1..3}. Using these combinators, we
can lift suitable functions from the base logic like so:

Je + f K = bop(+, e, f )

Je− f K = bop(−, e, f )

Jinjτ (e)K = uop(injτ , e)

Jcastτ (e)K = uop(injτ , e)

Moreover, we can also characterise the expression definedness construct, and use this to
define VDM-SL assignment:

D(e) , {σ 7→ (σ ∈ ran(e)) | σ ∈ Σ}
x :=sl e , R(D(e) ` x := e)

The definedness condition for an expression is the set of states that are in the domain
of the expression’s characteristic partial function. For example, division is defined only
when the denominator is non-zero, and thus we would have that D(x/y) = (y 6= 0).
This then allows us to define assignment as a reactive design, where the precondition is
that the assigned expression is defined. This construct will abort for states where the
expression is undefined.

A VDM-RT expression pairs a VDM-SL expression of type N, representing the execution
time, with a VDM-SL expression of type τ , i.e. Eτrt , ENsl ×Eτsl. Then et denotes the time
expression, and ev the underlying VDM-SL expression.
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4 VDM-RT Semantics in CML

In section we describe the semantic mapping from VDM-RT into CML.

4.1 Overview

We focus our semantics of VDM-RT on the subset of the language used by the case studies
and pilot studies of the INTO-CPS project. These models follow a pattern that consists
of a static object topology with the following components:

• a World class, which describes the overall model;

• a System class, which describes the system’s configuration and topology, in terms
of its controller, sensors, and actuators, together with their construction and de-
ployment on CPUs;

• several user-defined Controller classes, corresponding to each of the discrete con-
trollers;

• several user-defined Sensor and Actuator classes, which are each owned by a con-
troller;

• several CPU objects, onto which the controllers are deployed;

• several bus objects, that connect together CPUS and provide the infrastructure for
remote operation calls between objects.

The structure of a typical System class topology is shown in Table 7. Our water tank
example in Figure 3 shows a typical controller linked to sensors and actuators. We
assume there is no sharing of sensors and actuators between controllers, and there is
no dynamic creation of additional objects – the topology is fixed by the System class.
These restrictions will also provide more scope for formal analysis of the models using
model checking and theorem proving. Nevertheless, several extensions are possible to
consider dynamic topologies, that we discuss in Section 7. For example, our previous
deliverable [39] gives semantics to object-oriented VDM-RT data structures with multiple
inheritance. Such data structures are “passive” because they do not possess threads. This
kind of object creation can be readily supported, since passive objects are simply records
with associated operations.

The general approach of our semantics is to describe each of the above objects using CML
processes, with operation invocation described using CSP events. In a sense, therefore,
all of the objects are assumed to be “active”, meaning they exhibit autonomous reactive
behaviour, which can, for example, take the form of periodic threads and asynchronous
operation calls4. Unlike [47] and [54] we do not invoke the copy rule to execute local
synchronous calls, to avoid the complexities associated with multiple object state con-
texts. Specifically, each operation must run within the context of its object process,
which is where the state is encapsulated. Moreover our active classes do not support

4It is also possible to identify the class of “passive” objects which have no reactive behaviour; however
for now VDM-RT makes no obvious distinction of these cases and so neither does our semantics.
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system System

instance variables
public static ctrl1 : [Ctrl1] := nil;
...
public static ctrln : [Ctrln] := nil;

public static cpu1 : CPU := new CPU(sp1 , s1);
...
public static cpun : CPU := new CPU(spn , sn);

operations
public System : () ==> System
(

let act1 -1 = new Actuator1 -1(...) ,
...
act1 -k1 = new Actuator1 -k1(...),
sen1 -l1 = new Sensor1 -1(...) ,
...
sen1 -ln = new Sensor1 -l1 (...)

in
ctrl1 := new Ctrl1(act1 -1,...,act1 -k1,sen1 -1,...,sen1 -l1);

cpu1.deploy(ctrl1);

let actn -1 = new Actuatorn -1(...) ,
...
act1 -kn = new Actuatorn -kn(...),
senn -1 = new Sensorn -1(...) ,
...
senn -ln = new Sensorn -ln (...)

in
ctrln := new Ctrl1(actn -1,...,actn -kn,senn -1,...,senn -ln);

cpun.deploy(ctrln);
);

end System

Table 7: Typical structure of the System class
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CPU 2

Controller 2

Sensor 2-m

Sensor 2-1 Actuator 2-1

Actuator 2-n

Node 1 Node 3

Bus 1 Bus 2

Node 2

Figure 6: Overview of the VDM-RT CML process architecture

more advanced object oriented features like inheritance to avoid the need for behavioural
subtyping [55]. Such object oriented features are supported for passive classes [39].

The process structure is exemplified in Figure 6. Each box denotes a CML process, and
the arrows denote communication channels between them. Each connected VDM-RT
compute node, consisting of a CPU and its various objects, becomes a composite CML
process, such as Node 2. The CPU process schedules execution of the node’s threads and
handles operation calls between objects. All communication is passed through the CPU
– other communications between node objects are not permitted. Each controller object
will usually encapsulate a periodic thread that gives the overall behaviour of the node in
terms of operation calls to the sensors, actuators, and potentially controllers running on
different CPUs. Each sensor and actuator will mainly consist of a collection of operations,
together with threads to handle calls to these operations. Inter-CPU communication is
made possible through the bus processes.

The overall lifecycle of a given thread is shown in Figure 7. The CPU creates a new
unique identifier for the given thread, to enable addressing of operation call return data.
The new thread first obtains permission to execute, since only one thread can be active
on the CPU at any one time, and so any other active thread must first yield. Once
permission is granted, the thread retrieves the central object state and places it into its
own local cache. The body of the thread is then executed, which may expend time, and
could require further execute-yield cycles, for example when synchronous operation calls
are made. Once the body is complete, the thread synchronises its cache back with the
central state, yields control back to the CPU and finally terminates.

The denotational semantics is specified via a function that maps a VDM-RT model writ-
ten using our pattern to a CML program. In defining this function, we use an environment
that captures the object/CPU dependency tree defined in the VDM-RT model. We do
not formalise here the construction of this environment, but broadly, the tree should
specify which controller runs on which CPU, and which sensors and actuators these con-
trollers own. The CML process defined by the semantics uses standard infrastructure
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Figure 7: Abstract thread lifecycle

processes to represent CPUs and buses, and bespoke processes generated for each con-
troller, sensor, and actuator object following the interface. Composing these processes
using an appropriate topology of abstractions and channel links then gives the overall
system definition.

We specify the semantic function as a collection of infrastructure and template CML
processes. The template processes contain meta-tags of the form ‹k› that should be
replaced with appropriate texts at the point of generation. For example, each VDM-RT
object has a name ‹Objk›, and this name will form part of the name for the corresponding
object CML process. We define the following three semantic functions for VDM-RT
classes:

J−Kcls – maps a VDM-RT class to a CML process;

J−Kthr – maps a VDM-RT thread to a CML action;

J−Kstm
d – maps a VDM-RT statement block to a CML action fragment, using vari-

able d to encode the duration context.

We will now proceed to describe the semantic model in terms of the CML process arte-
facts.

4.2 Types

We introduce a number of CML types for the VDM-RT processes, which are part of the
standard infrastructure and thus need not be generated. These include:

• Usl – the VDM-SL data universe that we defined in Section 3.1;

• SCall = SCall :: sobj : ObjId sthr : ThrId parm : Usl – a record representing a
synchronous call, with return information including the source object (sobj), thread
(sthr), and call parameters (parm);

• ACall = ACall :: parm : Usl – a record represents an asynchronous call, consisting of
only parameters (parm);

• Call = SCall | ACall – a call of either kind;

• BusCallMsg :: tobj : ObjId topr : OpId call : Call – a bus message for a call, with a
target object and operation;
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• BusRetMsg :: robj :ObjId rthr :ThrId rval :Usl – a bus return message, with a return
object, thread, and value.

Additionally, several types must be generated to represent model specific artefacts. These
include

• CPUId – a finite type of all extant CPU names, encoded as an enumeration;

• ObjId – a finite type of all extant object names, encoded as an enumeration;

• OpId – a finite type of all extant operation names, encoded as an enumeration;

• ThrId – the type of allocated thread identifiers, which in our semantics is simply a
natural number N, but could be given a more sophisticated structure .

4.3 Channels

We also introduce a number of infrastructure CML channels in our models which are
described below.

• yield : () – offered by a thread that is willing to yield to other threads;

• exec : () – used to instruct a thread to begin or resume execution;

• newThr : ThrId – used to request and allocate a thread identifier for a new thread;

• call : ObjId×OpId× (SCall | ACall) – used by threads to make operation calls;

• lCall : ObjId×OpId× (SCall | ACall) – used to delegate a call to a local operation;

• ret : ObjId× ThrId× Usl – used by an operation thread to communicate its return
value to the CPU;

• lRet : ObjId× ThrId× Usl – used by a CPU to return a value to a local object;

• rCall : CPUId× BusCallMsg – used to send a remote call via a bus;

• rRet : CPUId× BusRetMsg – used to send return messages via a bus;

• cCall : CPUId× BusCallMsg – used by the bus to forward call messages to a CPU;

• cRet : CPUId×BusRetMsg – used by the bus to forward return messages to a CPU.

Additionally, the following channels must be generated on a per-model basis:

• getState-‹Class› : State-‹Class› – used by threads of class Class to get the present
central state;

• syncState-‹Class› : State-‹Class› → State-‹Obj› – used by threads to synchronise
their internal state with the central state.

4.4 Classes and Objects

Class processes encapsulate actions corresponding to the operations and threads of the
corresponding VDM-RT class. Object processes will effectively create copies of their
corresponding class process, but with an allocated object name. In our semantics we do
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not directly consider static instance variables and functions, which can be represented
by similar constructs in CML. We assume that each class can be allocated a unique
name represented by meta-tag ‹Classk›. Additionally, each object process of a particular
class maintains its own central state. The various threads running within the class’s
context copy and synchronise with this state using the channels getState-‹Classk› and
syncState-‹Classk›.

A semantic mapping for a typical class process is shown in Figure 8. The generated
class process is parameteric over an object name objId that will be given when the class
is instantiated. The state of the class, that is, the collection m of instance variables, is
represented by the record type State-‹Classk› where ‹attri› is the instance variable name,
and ‹ATm› its type. Thus the class process, VrtClass-‹Classk› has a state variable this
of the state type, with initial values taken from the instance variable initial values ‹iai›.
The state variable upd records the updates that have been made to the state as a total
function on an existing state. It can then be applied to the central state when a thread
needs to synchronise.

We assume there are n operations, named ‹Op1› · · · ‹Opn›, with operation bodies ‹Op1Body›
· · · ‹OpnBody›, respectively, which are encoded by respective actions that encode their
thread behaviour. Additionally a class can optionally have a thread action, Thread, whose
semantics will be described in the next section. The StateMgr action manages the central
state for the class stored in state variable this. It can send the current central state to
another action using the getState-‹Classk› channel, and can synchronise the state with
an action using the syncState-‹Classk›. In the latter case the state manager updates the
value of this by applying the update function to it. The main action of the process inter-
leaves the operation and thread actions, and composes them with the state manager. The
state manipulation channels are then hidden to ensure that state updates occur urgently:
the clock cannot advance whilst a pending state update remains.

We now describe the operation actions in more detail. Each operation action first waits for
a call request on the local call channel, lCall, parametrised with the respective instantiated
object and operation names, and carrying argument data in e. A replication then occurs,
whereby the behaviour of the operation thread is parallel composed with a copy of the
operation action by a recursive reference, which means that another local call can be
made and additional threads created if necessary. Thus an unbounded number of threads
can be created for each operation.

In the operation thread, a new thread name is created through a request on channel
newThr which is placed into variable thrId. The thread then waits for permission to
execute from the CPU on the exec channel. Once this is granted, the thread gets the
current central state, sets the update to the empty update id, and the value of this to
the retrieved state. A collection of local variables are created to represent the operation
parameters. These parameters are populated by casting the input parameter expression to
the appropriate type. If one of the parameters is a class type, then this should be mapped
to the type ObjId, so that the parameter corresponds to the name of an object.

After this the body of the operation is executed, the semantics of which is generated
using the semantic function J−Kstm

df , where the df parameter denotes that the statement
block is not in the context of a duration statement. After the execution of the body, the
thread synchronises its state, yields to the CPU, and finally terminates with Skip.
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class ‹Classk›
instance variables

‹attr1› : ‹AT1› := ‹ia1›;
...
‹attrm› : ‹ATm› := ‹iam›;

operations
public|private ‹Op1› : ‹PT1,1› * ... * ‹PT1,i1› ==> ‹RT1›
‹Op1›(‹p1,1›, · · · , ‹p1,i1›) == ‹Op1Body›;
...
public|private ‹Opn› : ‹PTn,1› * ... * ‹PTn,in› ==> ‹RTn›
‹Opn›(‹pn,1›, · · · , ‹pn,in›) == ‹OpnBody›;

thread ‹ThrDef›;
end ‹Classk›

}

��������������������
~

cls

⇓

types State-‹Classk› :: ‹attr1› : ‹AT1› · · · ‹attrm› : ‹ATm›

processVrtClass-‹Classk›(objId : ObjId) = begin

state

this : State-‹Classk› := mk-State-‹Classk›(‹ia1›, · · · , ‹iam›)

upd : State-‹Classk›→ State-‹Classk› := id

actions

‹Op1› =

µX • lCall.objId.〈‹Op1›〉?retInf→
newThr?thrId→ exec?→ getState-‹Classk›?σ → upd, this :=rea id, σ ;
var ‹p1› · · · ‹pi1› : ‹PT1› · · · ‹PTi1› •

(‹p1›, · · · , ‹pi1›) :=sl cast‹PT1›×···×‹PTi1›(retInf.parm) ;

J‹Op1Body›Kstm
df ; syncState-‹Classk›!upd → yield!→ Skip

 ||| X


· · ·

‹Opn› = · · ·

Thread = J‹ThrDef ›Kthr

StateMgr = µX •

 getState-‹Classk›!this→ X

2 syncState-‹Classk›?σ → this :=rea σ(this) ; X



•


(‹Op1› ||| · · · ||| ‹Opn› ||| Thread)

|[getState-‹Classk›, syncState-‹Classk›]|

StateMgr

 \ {getState-‹Classk›, syncState-‹Classk›}

end
Figure 8: VDM-RT Class Semantics
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J‹ThrBody›Kthr =


newThr?thrId→ exec?→ getState-‹Classk›?σ →

upd, this :=rea id, σ ; J‹ThrBody›Kstm
df ;

syncState-‹Classk›!upd → yield!→ Skip



Jperiodic(‹period›, ‹jitter›, ‹delay›, ‹offset›)(‹ThrBody›)Kthr =

Wait [‹offset›, ‹offset› + ‹jitter›] ;

µX •


newThr?thrId→ exec?→ getState-‹Classk›?σ → upd, this :=rea id, σ ; ((J‹PTBody›Kstm

df ; syncState-‹Classk›!upd → Skip) I ‹period›)

|||Wait [min(‹delay›, ‹period›− ‹jitter›), ‹period› + ‹jitter›]

 ;

yield!→ X



Jsporadic(‹delay›, ‹bound›, ‹offset›)(‹ThrBody›)Kthr =

Wait [‹offset›, ‹offset› + ‹bound›] ;

µX •


newThr?thrId→ exec?→ getState-‹Classk›?σ → upd, this :=rea id, σ ; ((J‹STBody›Kstm

df → syncState-‹Classk›!upd → Skip) I ‹bound›)

|||Wait [‹delay›, ‹bound›]

 ;

yield!→ X


Figure 9: Thread semantics

4.5 Class Threads

Class threads can either be procedural, periodic, or sporadic in nature. The semantics
of these different kinds of threads are shown in Figure 9. A procedural thread is the
simplest kind of thread: it simply follows the usual thread protocol and begins executing
as soon as the process is instantiated.

A periodic thread action behaves similarly, but its execution is driven by timing con-
straints. These constraints are specified in terms of the following semantic parame-
ters:

• ‹offset› – gives the lower bound on the thread’s first execution time;

• ‹period› – gives the usual period between the thread’s execution;

• ‹jitter› – gives the amount of time variance that is allowed around a single event;

• ‹delay› – gives the minimum delay between two periodic events.

The action first waits between ‹offset› and ‹offset›+ ‹jitter› nanoseconds, which gives the
start time of the first event, and then enters its iterative behaviour. The thread first waits
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processVrtCpu(cpu : CPUId, depl : FObjId) = begin

state

lastThr : ThrId := 0

actions

ThrSched = µX • exec!→ yield?→ X

ThrMgr = µX • newThr!(lastThr + 1)→ lastThr :=rea lastThr + 1 ; X

OpMgr = · · · (see Table 8)

• (ThrSched ||| ThrMgr ||| OpMgr)

end

Figure 10: VDM-RT CPU infrastructure process

for permission from the CPU to begin executing. Once this is granted, it synchronises
the state and executes the periodic thread body, which has a deadline of ‹period›. Upon
completion of the body, the thread synchronises the state, and then yields. In parallel
with the body execution, the clock waits for between min(‹delay›, ‹period› − ‹jitter›) –
the least of the minimum delay and the period minus the jitter – and ‹period› + ‹jitter›
nanoseconds. This ensures the correct timing constraints for the next execution of the
periodic thread. Once the thread is completed and sufficient time has passed for the next
execution, the action recurses.

A sporadic thread simply specifies that an event can occur at any non-deterministically
selected instant between ‹delay› and ‹bound› time units, along with a given starting offset.
It has a similar behaviour, though the inter-execution wait period is between ‹delay› and
‹bound›.

4.6 CPUs

A CPU orchestrates the execution of the objects which are deployed on it. It provides
facilities for scheduling threads, and delegating operation calls to appropriate object
processes. The CPU infrastructure process can be seen in Figure 10. The VrtCpu process
is parametrised over an identifier for the CPU, and finite set depl that contains a record of
all the deployed objects. The single state variable lastThr holds the previously allocated
thread identifier; it is incremented each time a new thread is created. This is a simplistic
semantics for thread identified allocation, and could be replaced with a more sophisticated
algorithm that similarly ensures uniqueness.

The CPU process has three actions that define the behaviour of the thread scheduler
(ThrSched), thread identifier manager (ThrMgr) and the operation call manager (Op-
Mgr). The thread scheduler ThrSched simply ensures that only one thread is active at
a time by offering exec events, and then awaiting a yield event which must come from
the same thread. The thread identifier manager offers a new identifier over newThr by
incrementing lastThr; following this, it also increments the state variable. The behaviour
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OpMgr = µX • call?(o, f , c)→ lCall!(o, f , c)→ X
2 o ∈ depl3

rCall.cpu!mk-BusCallMsg(o, f , c)→ X


2 ret?(p, t, v)→ lRet!(p, t, v)→ X

2 p ∈ depl3
rRet.cpu!mk-BusRetMsg(p, t, v)→ X


2 cCall.cpu?mk-BusCallMsg(o, f , c)→ lCall!(o, f , c)→ X
2 cRet.cpu?mk-BusRetMsg(p, t, v)→ lRet!(p, t, v)→ X

Table 8: Operation call and return manager

of the operation manager is rather more involved, and thus it is expanded in Table 8,
which we describe shortly.

The CPU process main action interleaves the behaviour of ThrSched, ThrMgr, and Op-
Mgr. Thus, composing a suitably instantiated CPU process with a collection of deployed
objects allows the CPU to orchestrate the execution of the objects. Such an instantiation
and composition is illustrated in Section 4.9.

The operation manager is shown in Table 8. It consists of a recursive external choice
over various possibilities for calls to and returns from object processes and busses. The
first two cases deal with local operation call and return requests. The first possibility is
the receipt of a call request from a local deployed object on channel call, which provides
an object identifier o, operation identifier f , and call information c. If the object to be
called is deployed locally (o ∈ depl) then the call is simply passed on to the corresponding
operation using channel lCall. If the object is not deployed then it is forwarded to an
appropriate bus using the rCall channel, parametrised by the current CPU identifier and
a new bus call message. Secondly, if a return is received from an object process on channel
ret, with return object p, thread t, and value v, then if p is local, the return value v is
sent to it. If the return object is not locally deployed then a remote return message is
sent to a bus via rRet.

The final two cases deal with call and return requests coming remotely from busses. If
a call message is received from a bus via cCall then it is treated just like a local call.
Similarly, if a return message is received from a bus, then a local return is communi-
cated.

4.7 Busses

A bus manages passing call and return messages between different CPUs, and can po-
tentially introduce delays into their transmission. The bus process is defined in Table 9.
In our semantics, bus processes connect two CPUs and are one-way. In order to produce
a two-way CPU, two bus processes must be composed, as illustrated by VrtBus2. Es-
sentially a bus is a FIFO queue for call and return messages with delays on when the
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processVrtBus(cpu1 : CPUId, cpu2 : CPUId, delay : N, sdepl : FObjId, tdepl : FObjId) =

begin

state mq : seq ((BusCallMsg | BusRetMsg)× N) := 〈〉

actions

BusLane = µX •




(rCall.cpu1?m : (m.tobj ∈ tdepl)→

mq :=rea mq a 〈(m, delay)〉 ; X) 2

(rRet.cpu2?m : (m.robj ∈ sdepl)→

mq :=rea mq a 〈(m, delay)〉 ; X)



1
B



while (#mq > 0 ∧ snd(hd(mq)) = 0)

do


(cRet.cpu1!(fst(hd(mq)))→ Skip

2 is-BusRetMsg(fst(hd(mq)))3
cCall.cpu2!(fst(hd(mq)))→ Skip) ;

mq :=rea tl(mq)

 ;

mq := map (λ(m, d).(m, d − 1)) mq ; X




• BusLane

end

processVrtBus2(cpu1 : CPUId, cpu2 : CPUId, delay : N, sdepl : FObjId, tdepl : FObjId) =

VrtBus(cpu1, cpu2, delay, sdepl, tdepl) ||| VrtBus(cpu2, cpu1, delay, tdepl, sdepl)

Table 9: VDM-RT one- and two-way bus processes
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S ::= skip | this.x :=rt e | x :=rt e | scall(x, o, f , e) | acall(o, f , e) | duration(e)(S)

| S ; S | if e then S else S | while edo S | return e

Table 10: VDM-RT Statements

messages are forwarded. The same queue can be shared for both types of messages as
the queue effectively allocates a timestamp to each message.

The process is parametrised over identifiers for the connected CPUs (cpu1, cpu2 ), a delay
parameter for message transmission (delay), and two sets of object identifiers, one for the
source CPU (sdepl) and one for the target CPU (tdepl). It is assumed that these two
sets are disjoint. Recording of the objects deployed on the CPUs ensures that a bus is
able to decide whether it can handle a remote call to a particular object.

The state of the bus consists of a single state variable mq, which represents the timed
message queue. It consists of a sequence of call and return messages. Each of these is
paired with a natural number indicating the delay left to pass before the bus can forward
the message.

The main behaviour of the bus is described by the action BusLane. The bus waits to
receive remote call messages from cpu1 on channel rCall and remote return messages
from cpu2 on channel rRet. Such messages must target objects deployed on the source
or target CPU, respectively, denoted by their membership in tdepl or tdepl. When such a
call is received, the message is added to the queue, together with the delay value. Once
no more messages can be received, and a timeout of one unit occurs, the bus proceeds to
forward all messages and update times.

The algorithm first iterates while the message queue is non-empty, and the message at
the head of the queue has a zero delay: it is ready for delivery. This being the case, the
message is forwarded to the source or target CPU, depending on whether it is a return
or call message. The message is then removed from the head of the queue. Once no more
deliverable messages exist, the bus decrements the delays of all pending messages in the
queue. It does this by applying the map function which subtracts 1 from the second
element of each item in the queue.

4.8 Statements

We consider a core subset of VDM-RT statements that are shown in Table 10. Since
we assume a static topology of active objects, we do not consider the new statement
directly, though if object-oriented data structures are necessary to model the (passive)
data structures of a VDM-RT model, then the semantics of our previous deliverable can
be combined with our work here. On the other hand, if dynamic creation of active objects
with threads is required, then please see the future work section (Section 7).

We assume a distinction is known between assignments to instance variables, which are
qualified by this, and assignments to dynamically created local variables, such as pa-
rameters. The synchronous or asynchronous nature of each operation can be statically
determined by examining the operation’s signature, and thus this information can be
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known at the call site. Thus we have both constructs for synchronous calls (scall) and
asynchronous calls (acall). The statement structure follows the protocol described in
Section 4.1, and appropriately yields to the CPU and synchronises state. All the state-
ment semantics assume that prior to beginning, permission to execute has already been
obtained, which is ensured by both thread and operation contexts.

The duration statement, duration(e)(S), denotes an atomic region whose internal state
updates only become visible after its completion. In terms of its behaviour with respect
to timing parameter e, two possible interpretations of its semantics exist:

• e denotes a time override: all previously known delay information for encapsulated
statements is discarded, and the block’s state behaviour is revealed only after e
time units;

• e denotes a strict deadline: if the encapsulated statements fail to complete within
e time units, then the program behaviour is miraculous (or aborting).

This question is discussed at length in [54], Sections 4.1.2 and 4.7. The issue with the
former interpretation is that it is non-compositional: in order to know the semantics of
any statement one needs to know whether it is in the context of a duration or not, so
that delays can be encoded appropriately. Thus it is difficult to develop VDM-RT pro-
grams in a modular way, since it is always necessary to know this contextual information.
Nevertheless, this is the behaviour of the current Overture VDM-RT interpreter. The
latter interpretation in contrast is compositional, and supports nested durations since
an outer duration can simply sum up all the encapsulated time delays and compare to
its deadline. The problem with strict deadlines, is that a real-time operating system is
needed to ensure they can be honoured, which is beyond the scope of INTO-CPS.

Thus, in our semantics we opt for the current execution semantics of the Overture tool.
However, we also note that deadlines and various other timing operators are supported
by CML, and the latter interpretation can easily be taken without affecting our semantic
model outside of the statement semantics. Nevertheless, a necessary consequence of
this choice is that generation of the semantics of statements does require contextual
information. We give the semantics of statements in terms of a semantic interpretation
function JPKstm

d , where P is a statement block and parameter d can either take the value
df or dt. If in the context of a duration statement, d will take the value dt, otherwise it
has the value df.

The semantic interpretation rules for statements are shown in Table 11. We assume that
the meta-tag ‹Classk›, along with the variables objId and thrId, are brought into scope by
the enclosing class definition. Moreover, if the enclosing scope defines an operation, then
we assume it brings the variable retInf, containing return information, into scope as well.
Essentially the difference between the dt and df versions of the rules is that the former
ignores timing information. We thus mainly consider only the df rules. Assignment of
expression e to an instance variable x firstly waits et units, and then assigns the expression
body ev to the corresponding field in the state variable this. Additionally, since this is an
instance variable, the update is added to the upd function to allow state synchronisation
later. The behaviour of local variable assignment is identical, except that upd is not
updated as the assignment is not visible outside the thread.

A synchronous operation call to operation f of object o first waits et time units, for
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JskipKstm
− , Skip

Jthis.x :=rt eKstm
df , Wait et ; this.x :=sl ev ; upd := (λσ • (upd(σ))(x := ev))

Jthis.x :=rt eKstm
dt , this.x :=sl ev ; upd := (λσ • (upd(σ))(x := ev))

Jx :=rt eKstm
df , Wait et ; x :=sl ev

Jx :=rt eKstm
dt , x :=sl ev

Jscall(x, o, f , e)Kstm
df , Wait et ; call!(o, f ,mk-SCall(objId, thrId, injeτ (ev)))→ yield!→

lRet.objId.thrId?r → exec?→
getState-‹Classk›?σ → this :=rea upd(σ) ; x :=rea r

Jscall(x, o, f , e)Kstm
dt , call!(o, f ,mk-SCall(objId, thrId, injeτ (ev)))→ yield!→

lRet.objId.thrId?r → exec?→
getState-‹Classk›?σ → this :=rea upd(σ) ; x :=rea r

Jacall(o, f , e)Kstm
df , Wait et ; aCall!(o, f ,mk-ACall(injeτ (ev)))→ Skip

Jacall(o, f , e)Kstm
dt , aCall!(o, f ,mk-ACall(injeτ (ev)))→ Skip

Jduration(e)(P)Kstm
df , Wait et ; JPKstm

dt ; yield!→Wait ev ;
syncState-‹Classk›!upd → exec?→
getState-‹Classk›?σ → this :=rea σ ; upd :=rea id

Jduration(e)(P)Kstm
dt , JPKstm

dt

Jreturn eKstm
df , Wait et ; ret!(retInf.sobj, retInf.sthr, injeτ (ev))→ Skip

Jreturn eKstm
dt , ret!(retInf.sobj, retInf.sthr, injeτ (ev))→ Skip

JP ; QKstm
df , JPKstm

df ; syncState-‹Classk›!upd → yield!→ exec?→
getState-‹Classk›?σ → this :=rea upd(σ)→ JQKstm

df

JP ; QKstm
dt , JPKstm

dt ; JQKstm
dt

Jif e thenP elseQKstm
df , Wait et ; (P 2 ev 3 Q)

Jif e thenP elseQKstm
dt , P 2 ev 3 Q

Jwhile edoPKstm
df , Wait et ; while ev do (JPKstm

df ; Wait et)

Jwhile edoPKstm
dt , while ev do JPKstm

dt

Table 11: Statement semantics
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parameter expression evaluation, and then offers the call information of call, together
with the current object identifier objId, thread identifier thrId, and parameter data ev. It
then yields to the CPU, and awaits a lRet event, parametrised by the object identifier,
thread identifier, and return data. Once this is received, it waits for permission to resume
execution, and once this is granted, synchronises the state and assigns the return data to
variable x.

An asynchronous call is much simpler than a synchronous call, as there is no need to pause
the current thread execution. Instead, a delay is issued for the parameter evaluation and
then the aCall event is offered with the call parameters.

The semantics of the duration statement is sensitive to whether it is in the context of
another duration statement or not. If it is – indicated by the presence of dt – then the
semantic function ignores the duration statement. Otherwise, the statement is top-level
and so indicates a timed atomic region. The semantics is to first wait for the duration
expression, e, to be evaluated. The body of the duration statement is then executed,
which must be instantaneous by the presence of the dt parameter. Once the body is
completed, the duration statement yields, and then waits for the period of the duration
ev to elapse. After sufficient time has passed, the duration statement can reveal its
state, and thus performs a state synchronisation. Note that due to the maximal progress
property of CML, this synchronisation must happen before any more time is permitted
to elapse in the system. Permission to execute is then sought, and finally the new state
is obtained, and the update function is reset to the identity function. We do not directly
give semantics to the cycles statement as these can be rewritten to duration statements
by statically applying multiplication by the associated CPU’s clock resolution.

The semantics of return is simple: a delay is issued for the return expression evaluation,
and then the expression is offered over the ret channel.

The remaining semantics consider the imperative combinators. Sequential composition
is just relational composition when in the context of a duration statement. When not
in the context of a duration, sequential composition yields and synchronises the state
in between the two statements. This is because it is then within a non-atomic section,
and so each statement’s effect must be immediately propagated to the central state. The
if statement is simply a conditional, though with an appropriate delay to evaluate the
conditional. Finally the while statement also must delay for evaluation, but in this case
must do so once after each iteration.

4.9 System Instantiation

The final stage for giving a semantics to a VDM-RT system is instantiation of objects,
CPUs, and busses, and connecting them together using the appropriate topology. This
is exemplified in the collection of CML process in Figure 11. Each of the i ≤ m objects to
be created in the static topology of the INTO-CPS pattern, ‹Obji› of class ‹ClassOfObji›,
is allocated a process VrtObj-‹Obji› that instantiates the class process with the object’s
name.

Each compute node ‹CPUi›, for i ≤ n, is also allocated a process VrtNode-‹CPUi› that
composes the set of objects to be deployed with a CPU process, instantiated with the
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processVrtObj-‹Obj1› = VrtClass-‹ClassOfObj1›(〈‹Obj1›〉)

...

processVrtObj-‹Objm› = VrtClass-‹ClassOfObjm›(〈‹Objm›〉)

processVrtNode-‹CPU1› =
(VrtObj-‹Obj1› ||| · · · ||| VrtObj-‹Objj›)

|[exec, yield, newThr, call, lCall, ret, lRet]|

VrtCpu(〈‹CPU1›〉, {〈‹Obj1›〉, · · · , 〈‹Objj›〉})


∖ exec, yield, newThr

call, lCall, ret, lRet


· · ·

processVrtNode-‹CPUn› = · · ·

processVrtSystem =

(VrtNode-‹CPU1› ||| · · · ||| VrtNode-‹CPUn›)

|[cCall, cRet, rCall, rRet]|
VrtBus2(〈‹CPU1›〉, 〈‹CPU2›〉, 1000, {〈‹Obj1›〉, · · · , 〈‹Objj›〉} , {· · · }))

||| VrtBus2(〈‹CPU2›〉, 〈‹CPU3›〉, 2000, · · · , · · · )

||| · · ·


Figure 11: VDM-RT system instantiation
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node name and set of object names. The channels for scheduling, time, and internal calls
are then hidden, which ensures their events occur urgently within the CPU.

Finally, the actual system process VrtSystem is created, which composes the set of all
compute nodes with a set of bus processes. Each bus connects two CPUs, identifies a
delay, and specifies the objects deployed on each CPU.

5 Validation of semantics

In order to validate the semantics, that is, in order to demonstrate that it exhibits our
expected behaviour, we have hand translated the CPU and bus infrastructure processes,
along with the controller, levelSensor, and valveActuator objects from the year 2
version of the “Three Tanks” pilot study [?] to CML. The associated CML code can be
found in Appendix A. We then applied the Symphony interpreter[21], which implements
the CML operational semantics [11], to explore the behaviour of the model.

Our translation into Symphony CML requires that a few simplifications be made to the
model. Firstly, the VDM-RT universe, Usl, cannot properly be created in Symphony
without extension and so we opted to use the R type as our universe (which has the
same cardinality). Secondly, timed expressions are not directly supported, and so when
generating statement semantics we manually inserted concrete time values for the appro-
priate Wait statements. Other than these two caveats, the model corresponds to the
mathematics contained in this deliverable, though with a slightly different syntax.

The encoding was useful for several reasons. Firstly, we were able to type check the model,
ensuring correct typing of variables, expressions, and channels. Secondly, we were able to
simulate the model using the Symphony interpreter, which also allowed some debugging
of the semantics. For example, in a prior version of our semantics call messages were not
removed from the active operation map during a remote call, and the simulator allowed
us to spot this.

An example simulation can be seen in Figure 12, in which we have the WaterTank1 process
from Appendix A.2 loaded, which has the three objects loaded onto a single CPU. For
the purpose of this simulation we expose the channels exec, call, and yield so that we can
observe the internal interaction of the objects. The pane to the top-right (“Observable ...”
tab) gives the sequence of events that we have stepped through so far. In the first step the
periodic thread of controller is created, a new identifier (1) is allocated to it using the
newThr channel, and the thread requests permission to execute on exec. Then, it makes a
call to the levelSensor object, operation getLevel, with call information corresponding
to the calling object, thread, and parameter data (in this case 0 as we are using reals as
the universe and the operation takes no parameters). The periodic thread then yields, to
wait for the getLevel thread to execute. A new thread is created for the latter, and this
requests permission to execute. It then needs to evaluate an internal expression which
takes some time, and so a tock event occurs next. Then, the operation has completed and
so it returns its value (0) on the ret channel. This thread then yields, and the periodic
thread of controller then becomes live again. It makes a further call to setValve on
valveActuator, yields, and then the corresponding operation thread, is created, gains
permission to execute, and takes some time to evaluate an internal expression.
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Figure 12: Trace of the water tanks system running on a single CPU
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Figure 13: Proof of definedness predicates in Isabelle/UTP

At the end of this sequence of actions, the active section of the CML file is shown in
the bottom-left pane, and the events that are being offered is shown in the bottom-right
pane. Currently, the setValve operation is about to return by communication on the
ret channel. Additional events include the tock event (as time could pass before the
return occurs), and also the events for communicating with an external bus (there is no
composed bus in the model).

In addition to the simple case of WaterTank1, we also define WaterTank2, which is the
same except for the fact that the LevelSensor object is deployed on a remote CPU.
Simulating this allows the delayed exchange of call and return messages between the two
CPUs to be observed.

6 Mechanisation in Isabelle/UTP

In addition to the validation, we have also made substantial progress towards the mechani-
sation of our semantics in Isabelle/UTP. We have mechanised the universe for VDM-RT,
Usl, and proved injectivity theorems for the majority of VDM-SL type equivalents in Is-
abelle. In particular, this includes the real numbers which necessitated the mechanisation
of Cantor’s proof that reals can be represented as infinite binary sequences, which are
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Figure 14: VDM-SL assignment in Isabelle/UTP

the equivalent to PN5.

As we mentioned in Section 2.5, we already mechanised the theory of designs and reactive
designs, and this allows us to represent the semantics of VDM-SL expressions and state-
ments. In particular, it allows us to account for expression (un)definedness. We define a
model for VDM-SL expressions, (τ, α) vexpr, for return type τ and alphabet type α, based
on partial functions. We then use this to define the constructs of Section 3.2, along with
all the functions for manipulating numbers, sequences, sets, maps etc., which is done by
lifting corresponding functions in Isabelle/HOL. HOL functions are total and do not give
an explicit account of undefinedness: an arbitrary but defined value is returned for such
cases. Thus in order to account for undefinedness we introduce the following additional
lifting partial functions:

vuop : (σ 7→ τ)→ (σ, α) vexpr→ (τ, α) vexpr
vbop : (σ1 × σ2 7→ τ)→ (σ1, α) vexpr→ (σ2, α) vexpr→ (τ, α) vexpr

These functions lift unary and binary partial functions to VDM-SL expressions. They
are both strict in the sense that vuop f ⊥v = vbop f ⊥v e = vbop f e⊥v, that is, if either
parameter is undefined, then the whole expression is also undefined. We can then define
partial operations, like division, by lifting as the following definitions demonstrate:

Je/f K = vbop {(m, n) 7→ m/n | n 6= 0} e f
Jhd(e)J = uop {xs 7→ hd(xs) | xs 6= []} e
Jf (x)K = vbop {(m, k) 7→ m(k) | k ∈ dom(m)} f x

We define division by restricting the domain of the function to those whose denominator is
non-zero. Simiarly for the hd function that takes the head of a list, we disallow non-empty
lists. Finally, for application of a map f to a key x, we require that x is in the domain of
f . Naturally, operators that are not partial can be trivially lifted. We can then use such

5This mechanised proof is located at https://github.com/isabelle-utp/utp-main/blob/master/utils/
Real_Bit.thy
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Figure 15: VDM-SL assignment experiments

definitions to prove definedness theorems in Isabelle as illustrated in Figure 13. Amongst
other laws, we prove that definedness of x/y depends on definedness of x, definedness of
y, and y being non-zero.

We then define VDM-SL assignment, as illustrated in Figure 14. The definition is near
identical to that of Section 3.2 except that we have to drop the VDM-SL expression
Dv(v) to a UTP expresssion using the b−cv operators to ignore definedness values (the
definedness predicate is always defined), and then we lift this precondition expression to
a relation using d−e<.

The definition of assignment can be used to prove some intuitve properties about VDM-
SL program fragments, as shown in Figure 15. We first show that assignment of hd([]),
which is an undefined expression, to a variable equates to the relation true, an abort.
Secondly, we prove a weakest precondition law about VDM-SL assignment that states,
for x := v to satisfy postcondition r, it must at least be the case that v is defined, and r
is true when v is substituted for x. This law can then be applied to show, for example,
when VDM-SL programs do not abort (i.e. the associated proof obligations). Lemma
wp calc test 1 states that y := hd(x) does not abort provided x is defined, and that
the length of x is greater than 0. Lemma wp calc test 2 states that y := 1/hd(x) does
not abort if, in addition, the head of x is not zero. Thus the mechanisation could in
theory be used in the future to validate the proof obligations generated by the Overture
tool.

Aside from the VDM-SL operators, we have also made progress towards mechanisation
of CML itself. We have mechanised a substantial number of laws associated with reactive
processes, designs, and reactive designs. Moreover we have begun to mechanise the
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Figure 16: CML operator definitions in Isabelle/UTP

operators of CML, as illustrated in Figure 16, using the reactive triple notation [13].
Note that RH corresponds to R as we described in Section 2.3 (R being a commonly
used name). As can be seen, we are able to mimick closely the syntax, though sometimes
require u subscripts to differentiate operators from their HOL counterparts. Finally, we
are also able to prove algebraic laws about CML. In Figure 17 we show part of the proof
for Waitm ; Wait n = Waitm + n.

7 Areas for future work

7.1 Dynamic topologies

Our current semantics supports only a static topology of objects, though each may have
an unbounded number of threads. As per our specified pattern, all controllers, sensors,
and actuators are created at the beginning and no further objects can be created. This
has the advantage of tractability, in that the system cannot grow arbitrarily and is thus
easier to analyse. However, this may be considered too restrictive for some applications.
The present semantic framework can thus be appropriately adapted to allow dynamic
object topologies.

The first step to allow dynamic topologies would be to alter the definition of ObjId to an
infinite rather than a finite type. This would then allow an arbitrary number of object
identifiers, and thus objects. Moreover a separate type ClassId is necessary to support
naming of classes as first class citizens, which can either be finite or infinite. Then the
new statement, for creating a new object of a specified class, can be implemented.

There are various ways to support construction of new objects, and in particular how
they act with respect to CPUs and threads. A relatively simple approach is a version of
the new statement that spawns a new copy of the object process on the same CPU as the
call site. Objects passed as parameters are simply identifiers, as before, and this avoids
the complexities of object mobility. If mobility is required, then it will be necessary to
adopt one of the appropriate Circus extensions for the semantic model [65, 58].
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Figure 17: Part of the proof of a Wait law

7.2 Passive and active classes

VDM-RT classes can either be “passive” or “active” in nature. An active class has threads
associated with it, whereas a passive class does not. Combining active classes and object-
oriented features such as inheritance is non-trivial as it requires consideration of how
active behaviour should be inherited in subclasses. One possible solution is to intro-
duce a form of behavioural subtyping [55], whereby the thread of a subclass must refine
that of the corresponding superclass. This would require substantial proof machinery
to support checking of such conformances. When considering features like VDM-RT’s
multiple inheritance, where two active classes could be inherited, things are even more
complicated.

An alternative approach is to provide inheritance only for passive classes, such that a class
may only extend a passive class and not an active one. Doing this would require the VDM-
RT type checker to be able to distinguish whether a class is active or passive. Semantics
of object-orientation for passive classes can follow our previous deliverable [39]. Passive
objects can then be passed around like normal data structures, without the complexity
of considering active behaviour.

7.3 Timed specifications

VDM-SL contains a specification statement that is adopted from refinement calculus [57],
and takes the form of [ext f pre p post q]. It is a non-deterministic statement that the
code should, provided that precondition p is satisfied, fulfil obligation q, within the state
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variable frame f. The statement can be used to aid in refining implicit operation contracts
into explicit code.

For VDM-RT, it may also be helpful to encode timing constraints in the specifications,
such as hard deadlines, which would allow the expression of timing budgets. We could
for instance modify the specification statement to [ext f pre p post q wcet t], where t
is an expression denoting the worst case execution time in terms of the input variables.
Fulfilling such behaviour may require deployment of VDM-RT code onto a real-time
operating system.

7.4 Model checking in FDR3

FDR3 [40] is a model checker that allows the verification of CSP [45] processes through the
specification of suitable refinement conjectures. The input language of FDR3 is a CSP
dialect called CSP-M. The Circus modelling language, which forms the foundation for
CML, has previously been abstracted to CSP-M for the purpose of model checking Circus
specifications [61, 6, 7]. A similar approach could be applied to CML which could then
be applied to model checking VDM-RT models. For example, FDR3’s deadlock freedom
checker could allow us to locate remote operations that recursively call each other. Such
a translation would require the representation of time, which in CSP-M could be done
using tock-CSP, a subset of the untimed language with a distinguished event to represent
time.

7.5 Timed state machines for RTT-MBT

RTT-MBT is a toolkit for model-based testing which forms part of the INTO-CPS tool
chain [5]. It provides facilities for both production of test suites, based on an abstract
system model and high-level requirements, and also for model checking. A test system
consists of a System Under Test (SUT), which describes the part of the system we are
testing, and a Test Environment, which provides a context for the SUT. The main lan-
guage for describing the SUT’s abstract behaviour is a form of hierarchical timed state
machines, which include timers that introduce waits, delays and resets. Once such an
abstract model has been created, RTT-MBT can semi-automatically construct a suitable
test suite, and use it to verify a concrete implementation.

VDM-RT models are likewise timed, and it would be highly advantageous if they could
be used as an input language to RTT-MBT. In the context of INTO-CPS, this would
allow us to use a VDM-RT model to provide testing and model checking for corresponding
optimised deployed controller code. In order to do this, it would be necessary to convert a
VDM-RT model to a timed automaton. In general this is not possible, for example since
transcendental functions like those of trigonometry, if present in a controller, cannot easily
be mapped. However, if a simpler controller specification is present, as is the case for many
of the pilot studies and case studies, then this could be performed by suitably abstracting
the variables to be exposed by the timed automata. The denotational semantics presented
in this deliverable could provide a basis for this mapping, when combined with the CML
operational semantics [11].
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7.6 Encoding FMUs

Sister deliverable D2.2d [19], and the associated paper [15], presents a Circus-based se-
mantics for FMI. FMUs are represented as processes that expose channels to orchestrate
simulation, such as fmi2Set, which sets the FMU state, fmi2Get, which retrieves the cur-
rent state, and fmi2DoStep that advances a model by a certain amount of time. In order
to give formal semantics to entire INTO-CPS multi-models it will be necessary to cast
the various model semantics into a form with this interface. For the VDM-RT semantics,
this could be done by adding special objects that interface with the FMI channels. We
will consider this in the final year of INTO-CPS, as part of our work on the lingua franca
CyPhyCircus, which will subsume CML.

8 Conclusion

We have presented a denotational semantics for VDM-RT based on a pattern for Cyber-
Physical Systems in the INTO-CPS project using the CML formal real-time modelling
language. We gave semantic mappings for VDM-RT constructs, including classes, objects,
operations, threads, CPUs, and busses, all of which become forms of CML process. We
then validated this semantics through an encoding into the Symphony CML tool. Finally
we showed our work towards mechanisation of CML in Isabelle/UTP. Though Task 2.2
ends with this deliverable, next year we will use the semantics contained herein to develop
INTO-CPS multi-models using CyPhyCircus.

Appendices

A VDM-RT Symphony Model

A.1 Infrastructure Processes

types
Univ = real
ThrId = nat
SCall :: sobj : ObjId sthr : ThrId parm : Univ
ACall :: parm : Univ
Call = SCall | ACall
BusCallMsg :: tobj : ObjId topr : OpId call : Call
BusRetMsg :: robj : ObjId rthr : ThrId rval : Univ

/* The decDelay function decrements the remaining delay associated
with each message in the queue. We implement it this way as
VDM -SL has no map function built -in. */

functions
mDelay: seq of (( BusCallMsg | BusRetMsg) * nat) -> nat
mDelay(xs) == len xs
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decDelay: seq of (( BusCallMsg | BusRetMsg) * nat) ->
seq of (( BusCallMsg | BusRetMsg) * nat)

decDelay(xs) ==
if (xs = [])
then []
else [mk_((hd(xs)).#1 , (hd(xs)).#2 -1)] ^ decDelay(tl(xs))

measure mDelay

channels
yield
exec
newThr : ThrId
call : ObjId * OpId * Call
lCall : ObjId * OpId * Call
ret : ObjId * ThrId * Univ
lRet : ObjId * ThrId * Univ
rCall : CPUId * BusCallMsg
rRet : CPUId * BusRetMsg
cCall : CPUId * BusCallMsg
cRet : CPUId * BusRetMsg

process VrtCpu = cpu : CPUId , depl: set of ObjId @ begin
state

lastThr : ThrId := 0
actions

ThrSched = mu X @ (exec -> yield -> X)
ThrMgr = mu X @ (newThr !( lastThr + 1) -> lastThr := lastThr + 1 ; X)
OpMgr =

mu X @
(call?o?f?c ->

(if (o in set depl)
then (lCall!o!f!c -> X)
else (rCall.cpu!( mk_BusCallMsg(o, f, c)) -> X))

[] ret?p?t?v ->
(if (p in set depl)

then (lRet!p!t!v -> X)
else (rRet.cpu.mk_BusRetMsg(p, t, v) -> X))

[] (cCall.cpu?b -> lCall!(b.tobj )!(b.topr )!(b.call) -> X)
[] (cRet.cpu?r -> lRet!(r.robj )!(r.rthr )!(r.rval) -> X)
)

@ (ThrSched ||| ThrMgr ||| OpMgr)
end

process VrtBus = cpu1 : CPUId , cpu2 : CPUId , delay : nat ,
sdepl : set of ObjId , tdepl : set of ObjId @ begin

state mq : seq of (( BusCallMsg | BusRetMsg) * nat) := []

actions
BusLane = mu X @ ((rCall.cpu1?m:(m.tobj in set tdepl) ->

mq := mq ^ [mk_(m, delay)] ; X
[] rRet.cpu2?m:(m.robj in set sdepl) ->

mq := mq ^ [mk_(m, delay)] ; X)
[_1_ > while (len(mq) > 0 and (hd(mq)).#2 = 0)

do ((if (is_BusRetMsg ((hd(mq )).#1))
then cRet.cpu1 !((hd(mq )).#1) -> Skip
else cCall.cpu2 !((hd(mq )).#1) -> Skip);
mq := tl(mq));
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mq := decDelay(mq); X)

@ BusLane
end

A.2 Water Tank Controller Instantiation

types
CPUId = <CPU1 > | <CPU2 > | <CPU3 >
ObjId = <controller > | <levelSensor > | <valveActuator >
OpId = <getLevel > | <setValve >
State_LevelSensor :: level : real
State_ValveActuator :: on : real
State_Controller ::

channels
getState_LevelSensor : State_LevelSensor
syncState_LevelSensor : State_LevelSensor -> State_LevelSensor
getState_ValveActuator : State_ValveActuator
syncState_ValveActuator : State_ValveActuator -> State_ValveActuator
getState_Controller : State_Controller
syncState_Controller : State_Controller -> State_Controller

process VrtClass_LevelSensor = objId : ObjId @ begin
state

this : State_LevelSensor := mk_State_LevelSensor (0)
upd : State_LevelSensor -> State_LevelSensor

:= (lambda x : State_LevelSensor @ x)
actions

getLevel = mu X @ (
lCall.objId.<getLevel >? retInf ->
(( newThr?thrId -> exec ->
getState_LevelSensor?s ->
(upd := (lambda x : State_LevelSensor @ x); this := s;

// return level
(Wait 1; ret!( retInf.sobj )!( retInf.sthr )!( this.level) -> Skip);
syncState_LevelSensor!upd -> yield -> Skip

)
) ||| X))

StateMgr = mu X @ (getState_LevelSensor!this -> X
[] syncState_LevelSensor?s -> this := s(this) ; X)

@ (( getLevel)
[|{ getState_LevelSensor , syncState_LevelSensor }|]

StateMgr) \\ {getState_LevelSensor , syncState_LevelSensor}
end

process VrtClass_ValveActuator = objId : ObjId @ begin
state

this : State_ValveActuator := mk_State_ValveActuator (0)
upd : State_ValveActuator -> State_ValveActuator

:= (lambda s : State_ValveActuator @ s)
time : nat := 0

actions
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setValve = mu X @ (
lCall.objId.<setValve >? retInf ->
(( newThr?thrId -> exec ->
getState_ValveActuator?s ->
(upd := (lambda x : State_ValveActuator @ x); this := s;

// on := e
(Wait 1; this.on := retInf.parm;
upd := (lambda - : State_ValveActuator

@ mk_State_ValveActuator(retInf.parm ));
// return ()
ret!( retInf.sobj )!( retInf.sthr )!0 -> Skip);

syncState_ValveActuator!upd -> yield -> Skip
)

) ||| X))
StateMgr = mu X @ (getState_ValveActuator!this -> X

[] syncState_ValveActuator?s -> this := s(this) ; X)
@ (( setValve)

[|{ getState_ValveActuator , syncState_ValveActuator }|]
StateMgr) \\ {getState_ValveActuator , syncState_ValveActuator}

end

process VrtClass_Controller = objId : ObjId @ begin
values

maxLevel: real = 10
minLevel: real = 5

state
this : State_Controller := mk_State_Controller ()
upd : State_Controller -> State_Controller

:= (lambda s : State_Controller @ s)
time : nat := 0

actions
Thread =

// Wait for offset period (in this case 0)
Wait 0;
mu X @

(newThr?thrId -> exec ->
getState_Controller?s ->
(upd := (lambda x : State_Controller @ x); this := s;

((dcl level : real @

// level := levelSensor . getLevel ()
call!<levelSensor >!<getLevel >

!mk_SCall(<controller >, thrId , 0) ->
yield ->
lRet.objId.thrId?r -> (
exec -> getState_Controller?s -> this := upd(s);

level := r;

// if (level <= minLevel ) then valveActuator . setValve (true)
if (level <= minLevel)
then (call!<valveActuator >!<setValve >

!mk_SCall(objId , thrId , 1) ->
yield -> lRet.objId.thrId?r ->

exec -> getState_Controller?s ->
this := upd(s))

// if (level >= maxLevel ) then valveActuator . setValve (false)
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else if (level >= maxLevel)
then (call!<valveActuator >!<setValve >

!mk_SCall(objId , thrId , 0) ->
yield -> lRet.objId.thrId?r ->

exec -> getState_Controller?s ->
this := upd(s))));

// Yield , and wait for the end of the duration (4)
yield -> Wait 4; syncState_Controller!upd -> exec ->

/* Synchronise state , and wait the remaining
time before iterating */

getState_Controller?s -> this := s;
upd := (lambda x : State_Controller @ x);

syncState_Controller!upd -> Skip) ||| Wait 20); yield -> X)

StateMgr = mu X @ (getState_Controller!this -> X
[] syncState_Controller?s -> this := s(this) ; X)

@ (Thread
[|{ getState_Controller , syncState_Controller }|]

StateMgr) \\ {getState_Controller , syncState_Controller}
end

process VrtObj_levelSensor = VrtClass_LevelSensor(<levelSensor >)
process VrtObj_valveActuator = VrtClass_ValveActuator(<valveActuator >)
process VrtObj_controller = VrtClass_Controller(<controller >)

process VrtNode_CPU1 =
(( VrtObj_controller ||| VrtObj_levelSensor ||| VrtObj_valveActuator)
[|{exec , yield , newThr , call , ret , lCall , lRet }|]
VrtCpu(<CPU1 >, {<levelSensor >, <valveActuator >, <controller >})

) \\ {exec , yield , newThr , call , ret , lCall , lRet}

process VrtNode_CPU2 =
(( VrtObj_controller ||| VrtObj_valveActuator)
[|{exec , yield , newThr , call , ret , lCall , lRet }|]
VrtCpu(<CPU2 >, {<valveActuator >, <controller >})

) \\ {exec , yield , newThr , call , ret , lCall , lRet}

process VrtNode_CPU3 =
(VrtObj_levelSensor
[|{exec , yield , newThr , call , ret , lCall , lRet }|]
VrtCpu(<CPU3 >, {<levelSensor >})

) \\ {exec , yield , newThr , call , ret , lCall , lRet}

// Standard deployment ; all objects running on same CPU
process WaterTank1 = VrtNode_CPU1

/* Alternative deployment : LevelSensor running on a different CPU with a
bus with associated delay of 2 connecting them */

process WaterTank2 =
(VrtNode_CPU2 ||| VrtNode_CPU3)

[|{rCall , rRet , cCall , cRet }|]
VrtBus(<CPU2 >, <CPU3 >, 2, {<valveActuator >,<controller >}, {<levelSensor >})
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B Lenses

B.1 Introduction

Predicative programming [41] is a unification technique that uses predicates to describe
abstract program behaviour and executable code alike. Programs are denoted as logical
predicates that characterise the observable behaviours as mappings between the state
before and after execution. Thus one can apply predicate calculus to reason about pro-
grams, as well as prove the algebraic laws of programming themselves [44]. These laws can
then be applied to construct semantic presentations for the purpose of verification, such
as operational semantics, Hoare calculi, separation logic, and refinement calculi, to name
a few [2, 23]. This further enables the application of automated theorem provers to build
program verification tools, an approach which has seen multiple successes [1, 51].

Modelling the state space of a program and manipulation of its variables is a key problem
to be solved when building verification tools [64]. Whilst relation algebra, Kleene algebra,
quantales, and related algebraic structures provide excellent models for point-free laws of
programming [33, 3], when one considers point-wise laws for operators that manipulate
state, like assignment, additional behavioural semantics is needed. State spaces can be
heterogeneous — that is consisting of different representations of state and variables. For
example, separation logic [12] considers both the store, a static mapping from names to
values, and the heap, a dynamic mapping from addresses to values. Nevertheless, one
would like a uniform interface for different variable models to facilitate the definition and
use of generic laws of programming. When considering parallel programs [46], one also
needs to consider subdivision of the state space into non-interfering regions for concurrent
threads, and their eventual reconciliation post execution. Moreover, we have the overar-
ching need for meta-logical operators on state, like variable substitution and freshness,
that are often considered informally but are vital to express and mechanise many laws of
programming [44, 41, 46].

In this paper, we propose lenses [30] as a unifying solution to state-space modelling.
Lenses provide a solution to the view-update problem in database theory [31], and are
similarly applied to manipulation of data structures in functional programming [26]. They
employ well-behaved get and put functions to identify a particular view of a source data
structure, and allow one to perform transformations on it independently of the wider
context.

Our contribution is an extension of the theory of lenses that allows their use in modelling
variables as abstract views on program state spaces with a uniform semantic interface.
We define a novel lens algebra for manipulation of variables and state spaces, including
separation-algebra-style operators [12] such as state (de)composition, that enable abstract
reasoning about program operators that modify state spaces in sophisticated ways. Our
algebra has been mechanised in Isabelle/HOL [59] and includes a repository of verified
lens laws.

We apply the lens algebra to model heterogeneous state space models within the context
of Hoare and He’s Unifying Theories of Programming [46, 18] (UTP), a predicative pro-
gramming framework with an incremental and modular approach to denotational model
construction. Therein, we use lenses to semantically model UTP variables and the predi-
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x := v , x′ = v ∧ y′ = y P ; Q , ∃ x0 • P[x0/x′] ∧ Q[x0/x]

(P 2 b 3 Q) , (b ∧ P) ∨ (¬b ∧ Q) P
∗

, νX • P ; X

Table 12: Imperative programming in the alphabetised relational calculus

cate calculus’ meta-logical functions, with no need for explicit abstract syntax, and thence
provide a purely algebraic basis for the meta-logical laws, predicate calculus laws, and the
laws of programming. We have further used Isabelle/HOL to mechanise a large repository
of UTP laws; this both validates the soundness of our lens-based UTP framework and,
importantly, paves the way for future program verification tools6.

The structure of our paper is as follows. In §B.2, we provide background material and
related work. In §B.3, we present a mechanised theory of lenses, in the form of an
algebraic hierarchy, concrete instantiations, and algebraic operators, including a useful
equivalence relation. This theory is standalone, and we believe has further applications
beyond modelling state. Crucially, all the constructions we describe require only a first-
order polymorphic type system which makes it suitable for Isabelle/HOL. In §B.4, we
apply the theory of lenses to show how different state abstractions can be given a unified
treatment. For this, we construct the UTP’s relational calculus, associated meta-logical
operators, and prove various laws of programming. Along the way, we show how our
model satisfies various important algebraic structures to validate its adequacy. We also
use lenses to give an account to parallel state in §B.6. Finally, in §B.7, we conclude.

B.2 Background and related work

B.2.1 Unifying Theories of Programming

The UTP [46] is a framework for defining denotational semantic models based on an
alphabetised predicate calculus. A program is denoted as a set of possible observations.
In the relational calculus, imperative programs are in view and thus observations consist of
before variables x and after variables x′. This allows operators like assignment, sequential
composition, if-then-else, and iteration to be denoted as predicates over these variables,
as illustrated in Table 12. From these denotations, algebraic laws of programming can be
proved, such as those in Table 13, and more specialised semantic models developed for
reasoning about programs, such as Hoare calculi and operational semantics. UTP also
supports more sophisticated modelling constructs; for example concurrency is treated in
[46, Chapter 7] via the parallel-by-merge construct P ||M Q, a general scheme for parallel
composition that creates two copies of the state space, executes P and Q in parallel on
them, and then merges the results through the merge predicate M. This is then applied
to UTP theory of communication in Chapter 8, and henceforth to give a UTP semantics
to the process calculus CSP [18, 45].

Mechanisation of the UTP for the purpose of verification necessitates a model for the
6For supporting Isabelle theories, including mechanised proofs for all laws in this paper, see http:

//cs.york.ac.uk/~simonf/ictac2016
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predicate and relational calculi [37, 72] that must satisfy laws such as those in Table 13.
LP1 and LP2 are point-free laws, and can readily be derived from algebras like relation
algebra or Kleene algebra [33]. The remaining laws, however, are point-wise in the sense
that they rely on the predicate variables. Whilst law LP3 can be modelled with KAT [2]
(Kleene Algebra with Tests) by considering b to be a test, the rest explicitly reference
variables. LP4 and LP5 require that we support quantifiers and substitution. LP6
additionally requires we can specify free variables. Thus, to truly provide a generic
algebraic foundation for the UTP, a more expressive model supporting these operators is
needed.

B.2.2 Isabelle/HOL

Isabelle/HOL [59] is a proof assistant for Higher Order Logic. It includes a functional
specification language, a proof language for discharging specified goals in terms of proven
theorems, and tactics that help automate proof. Its type system supports first-order
parametric polymorphism, meaning types can carry variables – e.g. α list for type variable
α. Built-in types include total functions α ⇒ β, tuples α × β, booleans bool, and
natural numbers nat. Isabelle also includes partial function maps α ⇀ β, which are
represented as α ⇒ β option, where β option can either take the value Some (v : β) or
None. Function dom(f ) gives the domain of f , f (k 7→ v) updates a key k with value v, and
function the : α option ⇒ α extracts the valuation from a Some constructor, or returns
an underdetermined value if None is present.

Record types can be created using recordR = f1 : τ1 · · · fn : τn, where fi : τi is a field.
Each field fi yields a query function fi : R ⇒ τi, and update function fi-upd : (τi ⇒ τi)⇒
(R ⇒ R) with which to transform R. Moreover Isabelle provides simplification theorems
for record instances (| f1 = v1 · · · fn = vn |):

fi(| · · · fi = v · · · |) = v fi-upd g (| · · · fi = v · · · |) = (| · · · fi = g(v) · · · |)

The HOL logic includes an equality relation = : α⇒ α⇒ bool that equates values of
the same type α. In terms of tactics, Isabelle provides an equational simplifier simp, gen-
eralised deduction tactics blast and auto, and integration of external automated provers
using the sledgehammer tool [10].

(P ; Q) ; R = P ; (Q ; R) (LP1)

P ; false = false ; P = false (LP2)

while b do P = (P ; while b do P)2 b 3 II if ∀ x • x′ /∈ fv(b) (LP3)

P ; Q = ∃ x0 • P[x0/x] ; Q[x0/x′] (LP4)

x := e ; P = P[e/x] (LP5)

(x := e ; y := f ) = (y := f ; x := e) if x 6= y, x /∈ fv(f ), y /∈ fv(e) (LP6)

Table 13: Typical laws of programming
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Our paper does not rely on detailed knowledge of Isabelle, as we present our definitions
and theorems mathematically, though with an Isabelle feel. Technically, we make use
of the lifting and transfer packages [48] that allow us to lift definitions and associated
theorems from super-types to sub-types. We also make use of Isabelle’s localemechanism
to model algebraic hierarchies as in [33].

B.2.3 Mechanised state spaces

Several mechanisations of the UTP in Isabelle exist [24, 25, 37, 72] that take a variety
of approaches to modelling state; for a detailed survey see [72]. A general comparison
of approaches to modelling state was made in [64] which identifies four models of state,
namely state as functions, tuples, records, and abstract types, of which the first and third
seem the most prevalent.

The first approach models state as a function Var⇒ Val, for suitable value and variable
types. This approach is taken by [62, 37, 23, 72], and requires a deep model of variables
and values, in which concepts such as typing are first-class. This provides a highly
expressive model with few limitations on possible manipulations [37]. However, [64]
highlights two obstacles: (1) the machinery required for deep reasoning about program
values is heavy and a priori limits possible constructions, and (2) explicit variable naming
requires one to consider issues like α-renaming. Whilst our previous work [72] effectively
mitigates (1), at the expense of introducing axioms, the complexities associated with
(2) remain. Nevertheless, the approach seems necessary to model dynamic creation of
variables, as required, for example, in modelling memory heaps in separation logic [12,
23].

The alternative approach uses records to model state; a technique often used by veri-
fication tools in Isabelle [1, 24, 25, 2]. In particular, [24] uses this approach to create
a shallow embedding of the UTP and library of laws7 which, along with [62], our work
is inspired by. A variable in this kind of model is abstractly represented by pairing the
field-query and update functions, fi and fi-upd, yielding a nameless representation. As
shown in [24, 25, 2], this approach greatly simplifies automation of program verification
in comparison to the former functional approach through directly harnessing the poly-
morphic type system and automated proof tactics. However, the expense is a loss of
flexibility compared to the functional approach, particularly in regards to decomposition
of state spaces and handling of extension as required for local variables [64]. Moreover,
those employing records seldom provide general support for meta-logical concepts like
substitution, and do not abstractly characterise the behaviour of variables.

Our approach generalises all these models by abstractly characterising the behaviour of
state and variables using lenses. Lenses were created as an abstraction for bidirectional
programming and solving the view-update problem [30]. They abstract different views on
a data space, and allow their manipulation independently of the context. A lens consists
of two functions: get that extracts a view from a larger source, and put that puts back an
updated view. [26] gives a detailed study of the algebraic lens laws for these functions.
Combinators are also provided for composing lenses [31, 30]. They have been practically
applied in the Boomerang language8 for transformations on textual data structures.

7See archive of formal proofs: https://www.isa-afp.org/entries/Circus.shtml
8Boomerang home page: http://www.seas.upenn.edu/~harmony/
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Figure 18: Visualisation of a simple lens
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Figure 19: Lens algebraic hierarchy

Our lens approach is indeed related to the state-space solution in [64] of using Isabelle
locales to characterise a state type abstractly and polymorphically. A difference though
is the use of explicit names, where our lenses are nameless. Moreover, the core lens
laws [26] bear a striking resemblance to Back’s variable laws [4], which he uses to form
the basis for the meta-logical operators of substitution, freshness, and specification of
procedures.

B.3 Lenses

In this section, we introduce our lens algebra, which is later used in §B.4 to give a uniform
interface for variables. The lens laws in §B.3.1 and composition operator of §B.3.3 are
adapted from [30, 26], though the remaining operators, such as independence and sublens,
are novel. All definitions and theorems have been mechanically validated6.

B.3.1 Lens laws

A lens X : V =⇒ S, for source type S and view type V , identifies V with a subregion
of S, as illustrated in Figure 18. The arrow denotes X and the hatched area denotes the
subregion V it characterises. Transformations on V can be performed without affecting
the parts of S outside the hatched area. The lens signature consists of a pair of total
functions9 getX : S ⇒ V that extracts a view from a source, and putX : S ⇒ V ⇒ S
that updates a view within a given source. When speaking about a particular lens we
omit the subscript name. The behaviour of a lens is constrained by one or more of the
following laws [26].

get (put s v) = v (PutGet)
put (put s v′) v = put s v (PutPut)

put s (get s) = s (GetPut)

PutGet states that if we update the view in s to v, then extracting the view yields v.
PutPut states that if we make two updates, then the first update is overwritten. GetPut
states that extracting the view and then putting it back yields the original source. These
laws are often grouped into two classes [30]: well-behaved lenses that satisfy PutGet and
GetPut, and very well-behaved lenses that additionally satisfy PutPut. We also identify
weak lenses that satisfy only PutGet, and mainly well-behaved lenses that satisfy PutGet
and PutPut but not GetPut. These weaker classes prove useful in certain contexts,

9Partial functions are sometimes used in the literature, e.g. [31]. We prefer total functions, as these
circumvent undefinedness issues and are at the core of Isabelle/HOL.
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notably in the map lens implementation (see §B.3.2). Moreover [26, 30] also identify the
class of bijective lenses that satisfy PutGet and also the following law.

put s (get s′) = s′ (StrongGetPut)

StrongGetPut states that updating the view completely overwrites the state, and thus
the source and view are, in some sense, equivalent. Finally we have the class of ineffectual
lenses whose views do not effect the source. Our complete algebraic hierarchy of lenses
is illustrated in Figure 19, where the arrows are implicative.

B.3.2 Concrete lenses

We introduce lenses that exemplify the above laws and are applicable to modelling differ-
ent kinds of state spaces. The function lens (fl) can represent total variable state functions
Var ⇒ Val [37], whilst the map lens (ml) can represent heaps [23]. The record lens (rl)
can represent static variables [25, 2].
Definition B.1 (Function, Map, and Record lenses)

getfl(k) , λ f . f (k) putfl(k) , λ f v. f (k := v)

getml(k) , λ f . the(f (k)) putml(k) , λ f v. f (k 7→ v)

getrl(fi) , fi getrl(fi) , λ r v. fi-upd (λ x. v) r

The (total) function lens fl(k) focusses on a specific output associated with input k. The
get function applies the function to k, and the put function updates the valuation of k to
v. It is a very well-behaved lens:

Theorem B.1 (The function lens is very well-behaved)

Proof B.1 Included in our mechanised Isabelle theories6.

The map lens ml(k) likewise focusses on the valuation associated with a given key k. If
no value is present at k then get returns an arbitrary value. The map lens is therefore
not a well-behaved lens since it does not satisfy GetPut, as f (k 7→ the(f (k))) 6= f when
k /∈ dom(f ) since the maps have different domains.

Theorem B.2 (The map lens is mainly well-behaved)

Finally, we consider the record lens rec(fi). As mentioned in §B.2.3, each record field
yields a pair of functions fi and fi-upd, and associated simplifications for record instances.
Together these can be used to prove the following theorem:

Theorem B.3 (Record lens) Each fi : R ⇒ τi yields a very well-behaved lens.

This must be proved on a case-by-case basis for each field in each newly defined record;
however the required proof obligations can be discharged automatically.

B.3.3 Lens algebraic operators

Lens composition X #Y : V1 =⇒ S, for X : V1 =⇒ V2 and Y : V2 =⇒ S allows one to focus
on regions within larger regions. The intuition in Figure 20 shows how composition of X

58



D2.2b - VDM-RT Final Semantics (Public)

V
1

V
2

S

X
Y

X ; YX ; Y

Figure 20: Lens composition visualised
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Figure 21: Lens independence visualised

and Y yields a lens that focuses on the V1 subregion of S. For example, if a record has a
field which is itself a record, then lens composition allows one to focus on the inner fields
by composing the lenses for the outer with those of the inner record. The definition is
given below.

Definition B.2 (Lens composition)

putX#Y , λ s v. putY s (putX (getY s) v) getX#Y , getX ◦ getY

The put operator of lens composition first extracts view V2 from source S, puts v : V1 into
this, and finally puts the combined view. The get operator simply composes the respective
get functions. Lens composition is closed under all lens classes ({weak,wb,mwb, vwb}-lens).
We next define the unit lens, 0 : unit =⇒ S, and identity lens, 1 : S =⇒ S.

Definition B.3 (Unit and identity lenses)

put0 , λ s v.s get0 , λ s.() put1 , λ s v.v get1 , λ s.s

The unit lens view is the singleton type unit. Its put has no effect on the source, and get
returns the single element (). It is thus an ineffectual lens. The identity lens identifies the
view with the source, and it is thus a bijective lens. Lens composition and identity form a
monoid. We now consider operators for comparing lenses which may have different view
types, beginning with lens independence.

Definition B.4 (Lens independence) Lenses X : V1 =⇒ S and Y : V2 =⇒ S are
independent, written X ./ Y, provided they satisfy the following laws:

putX(putY s v) u = putY(putX s u) v (LI1)
getX(putY s v) = getX s (LI2)
getY(putX s u) = getY s (LI3)

Intuitively, two lenses are independent if they identify disjoint regions of the source as
illustrated in Figure 21. We characterise this by requiring that the put functions of X and
Y commute (LI1), and that the put functions of each lens has no effect on the result of the
get function of the other (LI2,LI3). For example, independence of function lenses follows
from inequality of the respective inputs, i.e. fl(k1) ./ fl(k2)⇔ k1 6= k2. Lens independence
is a symmetric relation, and it is also irreflexive (¬(X ./ X)), unless X is ineffectual.

The second type of comparison between two lenses is containment.

Definition B.5 (Sublens relation) Lens X : V1 =⇒ S is a sublens of Y : V2 =⇒ S,
written X � Y, if the equation below is satisfied.

X � Y , ∃Z : V1 =⇒ V2. Z ∈ wb-lens ∧ X = Z # Y
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Figure 22: Lens sum visualised

The intuition of sublens is simply that the source region of X is contained within that of
Y. The definition is explained by the following commuting diagram:

S

V1

X 66

Z // V2

Yhh

Intuitively, Z is a “shim” lens that identifies V1 with a subregion of V2. Focusing on region
V1 in V2, followed by V2 in S is the same as focusing on V1 in S. The sublens relation is
transitive and reflexive, and thus a preorder. Moreover 0 is the least element (0 � X),
and 1 is the greatest element (X � 1), provided X is well-behaved. Sublens orders lenses
by the proportion of the source captured. We have also proved the following theorem
relating independence to sublens:

Theorem B.4 (Sublens preserves independence)
If X � Y and Y ./ Z then also X ./ Z

We use sublens to induce an equivalence relation X ≈ Y , X � Y ∧ Y � X. It is a weaker
notion than homogeneous HOL equality = between lenses as it allows the comparison of
lenses with differently-typed views. We next prove two correspondences between bijective
and ineffectual lenses.
Theorem B.5 (Bijective and ineffectual lenses equality equivalence)

X ∈ ief-lens ⇔ X ≈ 0 X ∈ bij-lens ⇔ X ≈ 1

The first law states that ineffectual lenses are equivalent to 0, and the second that bijective
lenses are equivalent to 1. Showing that a lens is bijective thus entails demonstrating
that it characterises the whole state space, though potentially with a different view type.
We lastly describe lens summation.

Definition B.6 (Lens sum)

putX⊕Y , λ s (u, v). putX (putY s v) u getX⊕Y , λ s.(getX s, getY s)

The intuition is given in Figure 22. Given independent lenses X : V1 =⇒ S and Y : V2 =⇒
S, their sum yields a lens V1×V2 =⇒ S that characterises both subregions. The combined
put function executes the put functions sequentially, whilst the get extracts both values
simultaneously. A notable application is to define when a source can be divided into
two disjoint views X ./ Y, a situation we can describe with the formula X ⊕ Y ≈ 1,
or equivalently X ⊕ Y ∈ bij-lens, which can be applied to framing or division of a state
space for parallel programs (see §B.6). Lens sum is closed under all lens classes. We
also introduce two related lenses for viewing the left and right of a product source-type,
respectively.
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Definition B.7 (First and second lenses)

putfst , (λ(s, t)u.(u, t)) getfst , fst
putsnd , (λ(s, t)u.(s, u)) getsnd , snd

We then prove the following lens sum laws:

Theorem B.6 (Sum laws) Assuming X ./ Y, X ./ Z, and Y ./ Z:

X ⊕ Y ≈ Y ⊕ X X ⊕ (Y ⊕ Z) ≈ (X ⊕ Y)⊕ Z

X ⊕ 0 ≈ X (X ⊕ Y) # Z = (X # Z)⊕ (Y # Z)

X � X ⊕ Y fst ⊕ snd = 1

X ⊕ Y ./ Z ifX ./ Z and Y ./ Z

Lens sum is commutative, associative, has 0 as its identity, and distributes through
lens composition. Naturally, each summand is a sublens of the whole, and it preserves
independence as the next law demonstrates. The remaining law demonstrates that a
product is fully viewed by its first and second component.

B.4 Unifying state-space abstractions

In this section, we apply our lens theory to modelling state spaces in the context of the
UTP’s predicate calculus. We construct the core calculus (§B.4.1), meta-logical operators
(§B.4.2), apply these to the relational laws of programming (§B.5), and finally give an
algebraic basis to parallel-by-merge (§B.6). We also show that our model satisfies various
important algebras, and thus justify its adequacy.

B.4.1 Alphabetised predicate calculus

Our model of alphabetised predicates is α⇒ bool, where α is a suitable type for modelling
the alphabet, that corresponds to the state space. We do not constrain the structure of
α, but require that variables be modelled as lenses into it. For example, the record lens
rl can represent a typed static alphabet [24, 25, 2], whilst the map lens ml can support
dynamically allocated variables [23]. Moreover, lens composition can be used to combine
different lens-based representations of state. We begin with the definition of types for
expressions, predicates, and variables.
Definition B.8 (UTP types)

(τ, α) uexpr , (α⇒ τ) α upred , (bool, α) uexpr
(α, β) urel , (α× β) upred (τ, α) uvar , (τ =⇒ α)

All types are parametric over alphabet type α. An expression (τ, α) uexpr is a query
function mapping a state α to a given value in τ . A predicate α upred is a boolean-
valued expression. A (heterogeneous) relation is a predicate whose alphabet is α× β. A
variable x : (τ, α) uvar is a lens that views a particular subregion of type τ in α, which
affords a very general state model. We already have meta-logical functions for variables,
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in the form of lens equivalence ≈ and lens independence ./ . Moreover, we can construct
variable sets using operators 0 which corresponds to ∅, ⊕ which corresponds to ∪, 1
which corresponds to the whole alphabet, and � that can model set membership x ∈ A.
Theorem B.6 justifies these interpretations. We define several core expression constructs
for literals, variables, and operators, from which most other operators can be built.
Definition B.9 (UTP expression constructs)

lit : τ ⇒ τ uexpr var : (τ, α) uvar⇒ (τ, α) uexpr
lit k , λ s. k var x , λ s. getx s

uop : (τ ⇒ φ)⇒ (τ, α) uexpr⇒ (φ, α) uexpr
uop f v , λ s. f (v(s))

bop : (τ ⇒ φ⇒ ψ)⇒ (τ, α) uexpr⇒ (φ, α) uexpr⇒ (ψ, α) uexpr
bop f u v , λ s. f (u(s)) (v(s))

A literal lit lifts a HOL value to an expression via a constant λ-abstraction, so it yields
the same value for any state. A variable expression var takes a lens and applies the get
function on the state space s. Constructs uop and bop lift functions to unary and binary
operators, respectively. These lifting operators enable a proof tactic for predicate calculus
we call pred-tac [37] that uses the transfer package [48] to compile UTP expressions and
predicates to HOL predicates, and afterwards apply auto or sledgehammer to discharge
the resulting conjecture. Unless otherwise stated, all theorems below are proved in this
manner.

The predicate calculus’ boolean connectives and equality are obtained by lifting the cor-
responding HOL functions, leading to the following theorem:

Theorem B.7 (Boolean Algebra) UTP predicates form a Boolean Algebra

We define the refinement order on predicates P v Q, as usual, as universally closed reverse
implication [Q⇒ P], and use it to prove the following theorem.

Theorem B.8 (Complete Lattice) UTP predicates form a Complete Lattice

This provides suprema (
⊔
), infima (

d
), and fixed points (µ, ν) which allow us to express

recursion. The bottom of the lattice is true, the most non-deterministic specification,
and the top is false, the miraculous program. Next we define the existential and universal
quantifiers using the lens operation put:

Definition B.10 (Existential and universal quantifiers)

∃ x • P , (λ s.∃ v.P(putx s v)) ∀ x • P , (λ s.∀ v.P(putx s v))

The quantifiers on the right-hand side are HOL quantifiers. Existential quantification
(∃ x • P) states that there is a valuation for x in state s such that P holds, specified using
put. Universal quantification is defined similarly and satisfies (∀ x • P) = (¬∃ x • ¬P).
We derive universal closure [P] , ∀ 1 • P, that quantifies all variables in the alphabet
(1). Alphabetised predicates then form a Cylindric Algebra [42], which axiomatises the
quantifiers of first-order logic.

Theorem B.9 (Cylindric Algebra) UTP predicates form a Cylindric Algebra; the fol-
lowing laws are satisfied for well-behaved lenses x, y, and z:

(∃ x • false)⇔ false (C1)
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P⇒ (∃ x • P) (C2)
(∃ x • (P ∧ (∃ x • Q)))⇔ ((∃ x • P) ∧ (∃ x • Q)) (C3)

(∃ x • ∃ y • P)⇔ (∃ y • ∃ x • P) (C4)
(x = x)⇔ true (C5)
(y = z)⇔ (∃ x • y = x ∧ x = z) if x ./ y, x ./ z (C6)

false⇔
(

(∃ x • x = y ∧ P) ∧
(∃ x • x = y ∧ ¬P)

)
if x ./ y (C7)

Proof B.2 Most proofs are automatic, the one complexity being C4 which we have to
split into cases for (1) x ./ y, when x and y are different, and (2) x ≈ y, when they’re the
same. We thus implicitly assume that variables cannot overlap, though lenses can. C6
and C7 similarly require independence assumptions.

From this algebra, the usual laws of quantification can be derived [42], even for nameless
variables. Since lenses can also represent variable sets, we can also model quantification
over multiple variables such as ∃ x, y, z • P, which is represented as ∃ x ⊕ y ⊕ z • P, and
then prove the following laws.
Theorem B.10 (Existential quantifier laws)

(∃A⊕ B • P) = (∃A • ∃B • P) (Ex1)
(∃B • ∃A • P) = (∃A • P) ifB � A (Ex2)

(∃ x • P) = (∃ y • Q) if x ≈ y (Ex3)
Ex1 shows that quantifying over two disjoint sets or variables equates to quantification
over both. Ex2 shows that quantification over a larger lens subsumes a smaller lens.
Finally Ex3 shows that if we quantify over two lenses that identify the same subregion
then those two quantifications are equal.

In addition to quantifiers for UTP variables we also provide quantifiers for HOL variables
in UTP expressions, ∃x • P and ∀x • P, that bind x in a closed λ-term. These are needed
to quantify logical meta-variables, which are often useful in proof. This completes the
specification of the predicate calculus.

B.4.2 Meta-logical operators

We next move onto the meta-logical operators, first considering fresh variables, which we
model by a weaker semantic property known as unrestriction [62, 37].
Definition B.11 (Unrestriction)

x ]P ⇔ (∀ s, v • P(putx s v) = P(s))

Intuitively, lens x is unrestricted in P, written x ]P, provided that P’s valuation does not
depend on x. Specifically, the effect of P evaluated under state s is the same if we change
the value of x. It is thus a sufficient notion to formalise the meta-logical provisos for
the laws of programming. Unrestriction can alternatively be characterised as predicates
whose satisfy the fixed point P = (∃ x • P) for very well-behaved lens x. We now show
some of the key unrestriction laws.
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Theorem B.11 (Unrestriction laws)
−

U1 0 ]P
x � y y ]P

U2
x ]P

x ]P y ]P x ./ y
U3

(x⊕ y) ]P

−
U4

x ] true
x ]P x ]Q

U5
x ]P ∧ Q

x ]P x ]Q
U6

x ](P = Q)

x ]P
U7

x ]¬P

x ./ y
U8

x ] y
x ∈ mwb-lensU9

x ](∃ x • P)
x ./ y x ]P

U10
x ](∃ y • P)

−
U11

x ][P]

Laws U1–U3 correspond to unrestriction of multiple variables using the lens operations;
for example U2 states that sublens preserves unrestriction. Laws U4–U7 show that unre-
striction distributes through the logical connectives. Laws U8–U11 show the behaviour
of unrestriction with respect to variables. U8 states that x is unrestricted in variable
expression y if x and y are independent. U9 and U10 relate to unrestriction over quanti-
fiers; the proviso x ∈ mwb-lens means, for example, that a law is applicable to variables
modelled by maps. Finally U11 states that all variables are unrestricted in a universal
closure.

We next introduce substitution P[v/x], which is also encoded semantically using homo-
geneous substitution functions σ : α ⇒ α over state space α. We define functions for
application, update, and querying of substitutions:

Definition B.12 (Substitution functions)

σ †P , λ s.P(σ(s))

σ(x 7→s e) , (λ s. putx (e(s)) (σ(s))

〈σ〉s x , (λ s. getx (σ(s)))

Substitution application σ † P takes the state, applies σ to it, and evaluates P under this
updated state. The simplest substitution, id , λ x. x, effectively maps all variables to
their present value. Substitution lookup 〈σ〉s x extracts the expression associated with
variable x from σ. Substitution update σ(x 7→s e) assigns the expression e to variable x
in σ. It evaluates e under the incoming state s and then puts the result into the state
updated with the original substitution σ applied. We also introduce the short-hand [x1 7→s

e1, · · · , xn 7→s en] = id(x1 7→s e1, · · · , xn 7→s en). A substitution P[e1, · · · , en/x1, · · · , xn] of
n expressions to corresponding variables is then expressed as [x1 7→s e1, · · · , xn 7→s en] †P.

Theorem B.12 (Substitution query laws)

〈σ(x 7→s e)〉s x = e (SQ1)
〈σ(y 7→s e)〉s x = 〈σ〉s x if x ./ y (SQ2)

σ(x 7→s e, y 7→s f ) = σ(y 7→s f ) if x � y (SQ3)
σ(x 7→s e, y 7→s f ) = σ(y 7→s f , x 7→s e) if x ./ y (SQ4)

SQ1 and SQ2 show how substitution lookup is evaluated. SQ3 shows that an assignment
to a larger lens overrides a previous assignment to a small lens and SQ4 shows that
independent lens assignments can commute. We next prove the laws of substitution
application.
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Theorem B.13 (Substitution application laws)

σ † x = 〈σ〉s x (SA1)
σ(x 7→s e) †P = σ † e if x ]P (SA2)

σ † uop f v = uop f (σ † v) (SA3)
σ † bop f u v = bop f (σ † u) (σ † v) (SA4)

(∃ y • P)[e/x] = (∃ y • P[e/x]) if x ./ y, y ] e (SA5)

These laws effectively subsume the usual syntactic substitution laws, for an arbitrary
number of variables, many of which simply show how substitution distributes through
expression and predicate operators. SA2 shows that a substitution of an unrestricted
variable has no effect. SA5 captures when a substitution can pass through a quantifier.
The variables x and y must be independent, and furthermore the expression e must not
mention y such that no variable capture can occur. Finally, we will use unrestriction and
substitution to prove the one-point law of predicate calculus [41, §3.1].

Theorem B.14 (One-point)

(∃ x • P ∧ x = e) = P[e/x] if x ∈ mwb-lens, x ] e

Proof B.3 By predicate calculus with pred-tac.

The one-point law states that a quantification can be eliminated if precisely one value
for the quantified variable is specified. We state the requirement “x does not appear in
e” with unrestriction. Thus we have now constructed a set of meta-logical operators and
laws which can be applied to the laws of programming, all the while remaining within
our algebraic lens framework and mechanised model. Indeed, all our operators are deeply
encoded first-class entities in Isabelle/HOL.

B.5 Relational laws of programming

We now show how lenses can be applied to prove the common laws of programming within
the relational calculus, by augmenting the alphabetised predicate calculus with relational
variables and operators. Recall that a relation is simply a predicate over a product state:
(α × β) upred. Input and output variables can thus be specified as lenses that focus on
the before and after state, respectively.

Definition B.13 (Relational variables) JxK = x # fst Jx′K = x # snd

A variable x is lifted to a input variable x by composing it with fst, or to an output
variable x′ by composing it with snd. We can then proceed to define the operators of the
relational calculus.

Definition B.14 (Relational operators)

P ; Q , ∃v • P[v/1′] ∧ Q[v/1] II , (1′ = 1)

P 2 b 3 Q , (b ∧ P) ∨ (¬b ∧ Q) x := v , II [v/x]
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The definition of sequential composition is similar to the standard UTP presentation [46],
but we use 1 and 1′ to represent the input and output alphabets of Q and P, respectively.
Skip (II ) similarly uses 1 to state that the before state is the same as the after state.
We then combine II with substitution to define the assignment operator. Note that
because x is a lens, and v could be a product expression, this operator can be used
to represent multiple assignments. We also describe the if-then-else conditional operator
P 2 b 3 Q. Sequential composition and skip, combined with the already defined predicate
operators, provide us with the facilities for describing point-free while programs [2], which
we illustrate by proving that alphabetised relations form a quantale.

Theorem B.15 (Unital quantale) UTP relations form a unital quantale; that is they
form a complete lattice and in addition satisfy the following laws:

(P ; Q) ; R = P ; (Q ; R) P ; II = P = II ; P

P ;
(

d

Q∈Q
Q

)
=

d

Q∈Q
(P ; Q)

(
d

P∈P
P
)

; Q =
d

P∈P
(P ; Q)

This is proved in the context of Armstrong’s Regular Algebra library [2], which also
derives a proof that UTP relations form a Kleene algebra. This in turn allows definition
of iteration using while b do P , (b ∧ P)

∗ ∧ (¬b′), where b′ denotes relational converse of
b, and thence to prove the usual laws of loops. We next describe the laws of assignment.

Theorem B.16 (Assignment laws)

x := e ; P = P[e/x] (ASN1)

x := e ; x := f = x := f if x ] f (ASN2)

x := e ; y := f = y := f ; x := e if x ./ y, x ] f , y ] e (ASN3)

x := e ; (P 2 b 3 Q) = (x := e ; P)2 b[e/x]3
(x := e ; Q) if 1′ ] b (ASN4)

We focus on ASN3 that demonstrates when assignments to x and y commute, and models
law LP6 on page 55. Thus we have illustrated how lenses provide a general setting in
which the laws of programming can be proved, including those that require meta-logical
assumptions.

B.6 Parallel-by-merge

We further illustrate the flexibility of our model by implementing one of the more complex
UTP operators: parallel-by-merge. Parallel-by-merge is a general schema for parallel
composition as described in [46, Chapter 7]. It enables the expression of sophisticated
forms of parallelism that merge the output of two programs into a single consistent after
state. It is illustrated in Figure 23 for two programs P and Q acting on variables x and
y. The input values are fed into P and Q, and their output values are fed into predicates
U0 and U1. The latter two rename the variables so that the outputs from both programs
can be distinguished by the merge predicate M. M takes as input the variable values
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Figure 23: Pictorial representation of parallel-by-merge P ||M Q

before P and Q were executed, and the respective outputs. It then implements a specific
mechanism for reconciling these outputs depending on the semantic model of the target
language. For example, if P and Q both yield event traces as in CSP [45, 18], then only
those traces that are consistent will be permitted.

Lenses can be used to define the merge predicate and post-state renamings U0 and U1.
The merge predicate takes as input three copies of the state: the outputs from P and
Q, and the before state of the entire computation. Thus if the state has type A then
M : ((A×A)×A,A) urel, and similarly U0,U1 : (A, (A×A)×A) urel. We thus give syntax
to refer to indexed variables n.x, and prior variables <x, that give the input values, using
the following lens compositions:

Definition B.15 (Separated and prior variables)

J0.xK = x # fst # fst J1.xK = x # snd # fst J<xK = x # snd

Lenses 0.x and 1.x focus on the first and second elements of the tuple’s first element, and
<x focusses on the second element. We now define U0 and U1:

Definition B.16 (Separating simulations)

U0 , 0.1′ = 1 ∧ <1′ = 1 U1 , 1.1′ = 1 ∧ <1′ = 1

U0 and U1 copy the before value of the whole state into both their respective indexed
variables, and also the prior state. We can now describe parallel-by-merge, given a suit-
able basic parallel composition operator || which could, for example, be plain conjunction
or design parallel composition (see [46, Chapter 3]):

Definition B.17 (Parallel-by-merge)

P ||M Q , ((P ; U0) || (Q ; U1)) ; M

We also define predicate swapm , 0.x, 1.x := 1.x, 0.x that swaps the left and right copies,
and then prove the following generalised commutativity theorem:

Theorem B.17 (Commutativity of parallel-by-merge) If M ; swapm = M then
P ||M Q = Q ||M P.

This theorem states that if a merge predicate is symmetric, the resulting parallel com-
position is commutative. In the future we will also show the other properties of parallel
composition [46], such as associativity and units. Nevertheless, we have shown that lenses
enable a fully algebraic treatment of parallelism.
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B.7 Conclusions

We have presented an enriched theory of lenses, with algebraic operators and lens com-
parators, and shown how it can be applied to generically modelling the state space of
programs in predicative semantic frameworks. We showed how lenses characterise vari-
ables, express meta-logical properties, and enrich and validate the laws of programming.
The theory of lenses is general, and we believe it has many applications beyond program
semantics, such as verifying bidirectional transformations [30]. We have also defined var-
ious other useful lens operations, such as lens quotient which is dual to composition.
Space has not allowed us to cover this, but we claim this is useful for expressing the
contraction of state spaces. Further study of the algebraic properties of these operators
is in progress.

Overall, lenses have proven to be a useful abstraction for reasoning about state, in terms
of properties like independence and combination. We have used our model to prove
several hundred laws of predicate and relational calculus from the UTP book [46] and
other sources [41, 18, 63]. We have also mechanised the Hoare calculus and a weak-
est precondition calculus that support practical program verification. Although details
were omitted for brevity, lenses enable definition of operators like alphabet extension and
restriction, through the description of alphabet coercion lenses that are used to repre-
sent local variables and methods. We are currently exploring links with Back’s variable
calculus [4].

In future work we will to apply lenses to additional theories of programming, such as
hybrid systems [34] and separation logic [69], especially since our lens algebra resem-
bles a separation algebra. Moreover, we will use our UTP theorem prover10 to apply
our database of programming laws to build practical verification tools for a variety of
semantically rich languages [63], in particular for the purpose of analysing heterogeneous
Cyber-Physical Systems [34]. We also plan to integrate our work with the existing Is-
abelle/Circus [25] library7 to further improve verification support for concurrent and
reactive systems.

10See our repository at github.com/isabelle-utp/utp-main/tree/shallow.2016
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