
Grant Agreement: 644047

INtegrated TOol chain for model-based design of CPSs

Foundations for FMI Co-Modelling

Deliverable Number: D2.1d

Version: 0.4

Date: December 2015

Public Document

http://into-cps.au.dk

D2.1d - Foundations for FMI Co-Modelling (Public)

Contributors:

Nuno Amálio, UY
Ana Cavalcanti, UY
Christian König, TWT
Jim Woodcock, UY

Editors:

Christian König, TWT

Reviewers:

Stylianos Basagiannis, UTRC
Bernhard Thiele, LIU
Richard Payne, UNEW

Consortium:

Aarhus University AU Newcastle University UNEW
University of York UY Linköping University LIU
Verified Systems International GmbH VSI Controllab Products CLP
ClearSy CLE TWT GmbH TWT
Agro Intelligence AI United Technologies UTRC
Softeam ST

2

D2.1d - Foundations for FMI Co-Modelling (Public)

Document History

Ver Date Author Description
0.1 21-05-2015 Christian König Initial document version
0.2 09-09-2015 Nuno Amálio Added section on FMI literature re-

view
0.3 15-11-2015 Nuno Amálio Added sections on FMI Semantics,

formal analysis of semantics, intro-
duction and conclusions

0.4 15-12-2015 Nuno Amálio Revised document according to
feedback coming from the internal
project reviews.

3

D2.1d - Foundations for FMI Co-Modelling (Public)

Abstract

The evolving FMI is becoming a well accepted industrial standard for collab-
orative modelling and co-simulation. It enables the composition of different
models developed using distinct tools and is seen as an important driver in
enabling tool interoperability in the area of cyber-physical systems. This
deliverable presents our work on defining formal foundations for FMI co-
simulation in the context of the INTO-CPS project. It presents our review
of the literature in the area of formal approaches to the FMI, and presents a
formal semantics of the FMI described in the formal specification language
CSP. The CSP model presented here is effectively a UTP model, derived
from CSP’s UTP semantics; UTP, however, allows for much richer models.
This deliverable presents our results establishing the feasibility and a gen-
eral approach to define reactive models for FMI co-simulations. The model
presented here will evolve into a INTO-CSP model, a hybrid version of CSP
with a UTP semantics that is under development. The model presented was
formally analysed with the FDR3 refinement-checker.

4

D2.1d - Foundations for FMI Co-Modelling (Public)

Contents

1 Introduction 6

2 Background 7
2.1 FMI co-simulation . 7
2.2 CSP . 10

3 FMI Formally: state of the art 11
3.1 FMI Trends . 11
3.2 A Formal Treatment of FMI 12

4 Semantics of FMI 13
4.1 Base definitions . 14
4.2 The FMI API in CSP . 16
4.3 FMI co-simulation . 18
4.4 The modus operandi of an FMU 19
4.5 Master Algorithms . 25

5 FDR3 Formal Analysis of FMI Semantics 40
5.1 FDR3 in a nutshell . 41
5.2 The FDR3 Optmised Version of the Semantics 42
5.3 Verification . 43
5.4 Validation . 46
5.5 Experimental Results . 50

6 Conclusions 50

A CSPm of FMI semantics 57
A.1 Base definitions . 57
A.2 FMU Process . 60
A.3 Common Definitions to support Master Algorithms 62
A.4 Simple Fixed Step Master Algorithm 67
A.5 Checks of the Fixed Step Master Algorithm 68
A.6 Rollback Master Algorithm . 73
A.7 3 Water Tanks . 78
A.8 Periodic Discrete Signal Generator 79

5

D2.1d - Foundations for FMI Co-Modelling (Public)

1 Introduction

The Functional Mock-up Interface (FMI) [FMI14], introduced in the ITEA
project MODELISAR1 and now being further developed and maintained
under the umbrella of the Modelica association2, is a standard whose ul-
timate goal is collaborative design and simulation of separately developed
systems.

FMI emerges from industrial needs. It tries to facilitate the cooperation
between different companies, such as automotive original equipment manu-
facturers (OEMs) and suppliers, to enable the exchange and simulation of
separately developed models. Although FMI’s inception is associated with
the automotive industry (supported by major companies such as Daimler
or Bosch), it is a standard open to any domain and designed to embrace
heterogeneity.

FMI has been applied across a variety of different domains. Project Modrio3

applied FMI to the domains of energy and aerospace using Modelica. The
more recent Acosar project4 is currently defining advanced co-simulation in-
terfaces for real-time systems integration.

To ensure the standard’s growth, a formal development process was adopted
in 2015, defining mechanisms to propose and integrate new features to be
incorporated in future versions of FMI. FMI’s growing importance is accom-
panied by the development of tools that support FMI; a list of such tools can
be found at https://www.fmi-standard.org/tools.

In the FMI setting, a model is organised around black-box slave FMUs (Func-
tional Mockup Units) — effectively, wrappings of model simulators — that
are interconnected through their inputs and outputs [BBG+13]. FMUs are
passive entities whose simulation is triggered and orchestrated by a master
algorithm (MA) [BBG+13]. The simulation process is divided into simula-
tion steps that serve as synchronisation and data exchange points; between
these steps the FMUs are simulated independently.

This deliverable presents the efforts of the INTO-CPS project on the for-
mal foundations of the FMI. The main research output reported here is a
formal semantics of the FMI described in the formal specification language
CSP [Hoa85], which acts as a front-end for a UTP (Unifying Theories of

1https://itea3.org/project/modelisar.html
2https://www.fmi-standard.org/
3https://itea3.org/project/modrio.html
4https://itea3.org/project/acosar.html

6

https://www.fmi-standard.org/tools
https://itea3.org/project/modelisar.html
https://www.fmi-standard.org/
https://itea3.org/project/acosar.html

D2.1d - Foundations for FMI Co-Modelling (Public)

Programming [HJ98]) semantic model based on the UTP semantics of CSP.
This constitutes a crucial step in defining formal semantics for FMI-based
co-simulations, which is a goal of WP2. Ultimately, our semantics will be ex-
pressed in INTO-CSP, an hybrid version of CSP, also with a UTP semantics.
In the work reported in this document, we make use of the FDR3 refinement
checker [GRABR14], which is not considered part of the INTO-CPS tool
chain, but is used solely to support the development of the foundation work
presented here.

The remainder of this deliverable is organised as follows:

• Section 2 gives some background on FMI for co-simulation, the target
of the formal investigation presented here, and the formal specification
language CSP.

• Section 3 presents the state of the art on applications of the FMI and
the formal work that has been carried out in connection with FMI.

• Section 4 presents the CSP semantics of the FMI, which includes also
the specification of one simple fixed-step MA and one variable-step MA
with support for rollback.

• Section 5 presents the machine-assisted formal analysis that has been
undertaken to validate and verify the FMI semantics using the FDR3
model-checking tool.

• Section 6 draws the conclusions of this report.

• Appendix A presents the CSPm specifications of the FMI semantics,
which were subject to a formal analysis with FDR3.

2 Background

This section gives some background on FMI for co-simulation and the formal
specification language CSP.

2.1 FMI co-simulation

Modelling and simulation of complex engineering systems, known as cyber-
physical systems (CPSs) [DLV12], typically involves components from differ-
ent engineering fields. A global system is decomposed into subsystems; each
subsystem is tackled by a team of engineers specialised in some domain using

7

D2.1d - Foundations for FMI Co-Modelling (Public)

specialised modelling and simulation tools. This approach carries the bene-
fits of modularity, applying in practice the important engineering principle
of separation of concerns [Par72, TOHSMS99].

A modularised model needs to be composed (or coupled) to yield a global
model [KS00]. This composition can be carried out at two different levels:
(a) model-description level (the equations that make up the subsystems are
combined), and (b) execution or simulation level (the executed or simulated
behaviours of the different models are coupled). The latter is known as co-
simulation.

Co-simulation, an approach for the joint simulation of models developed with
different tools (tool coupling) where each tool treats one part of a modular
coupled problem [BCWS11], aims at tool interoperability [Weg96] to facilitate
modelling and simulation of the intrinsincally heterogeneous CPSs. Each sub-
model can make use of the tool and notation that is most appropriate for the
task at hand. In technical terms, co-simulation is a simulation technique for
coupled problems that restricts the communication and exchange between
subsystems to discrete communication points [SA12].

FMI [BOA+11, BOA+12, FMI14]5 is an evolving standard for tool coupling
that intends to support a wide variety of tools to avoid the need for point-
to-point solutions [BCWS11]. It was introduced to (i) facilitate exchange
of dynamic models, (ii) co-simulate heterogeneous models, and (iii) protect
product know-how and intellectual property [BOA+11]. FMI is a result of
the MODELISAR research project [BOA+12]; it proposes a black-box model
made up of interfaces to enable model exchange and co-simulation that hides
the implementation details of the coupled components, protecting the intel-
lectual property.

FMI [FMI14] is divided in two parts: model-exchange and co-simulation.
Typically, model-exchange takes place when the FMU is imported into a
simulation tool and handled as a black box. This section describes FMI co-
simulation, a fundamental ingredient of INTO-CPS’s interoperability goal.

FMI’s co-simulation is based on a master-slave architecture [BCWS11]. A
master algorithm (MA) triggers and orchestrates a collections of FMUs to
bring about a co-simulation of different model parts [BBG+13]. Simula-
tion is divided into steps that serve as synchronisation and data exchange
points; between these steps the FMUs are simulated independently. A typi-
cal co-simulation scenario can be realised either as a stand-alone FMU which

5https://www.fmi-standard.org/

8

https://www.fmi-standard.org/

D2.1d - Foundations for FMI Co-Modelling (Public)

contains runnable code, or as a tool coupling FMU, which contains a wrap-
per to a native simulation tool. The two scenarios are depicted in Figure 1
(from [FMI14]). In the case of a stand-alone FMU, the whole simulation
model including its solver is contained in the FMU, either as source-code
or binary file. In tool-coupling, the native simulation tool, controlled by an
API, is required for execution.

Figure 1: co-simulation with stand-alone model (top) and tool coupling (bot-
tom) — from [FMI14]

When the co-simulation is started, the models of the co-simulation are solved
independently between two discrete communication points (tci). At these
communication points, the output signals of the models are read, and their
input signals are set, by the MA. At a communication point, the models are
synchronized, such that the MA waits for all models to simulate up to this
communication point, before the simulation is advanced in time. A simple
co-Simulation MA uses the following sequence of FMI commands:

at tci :
fmi2SetXXX on inputs
fmi2DoStep

at tci+1:
fmi2GetXXX on outputs
fmi2SetXXX on inputs
at tci+2:
fmi2DoStep

fmi2GetXXX on outputs

9

D2.1d - Foundations for FMI Co-Modelling (Public)

...

The commands above are as follows:

• The fmi2SetXXX and fmi2GetXXX commands set the input signals and
retrieve the output signals of a model. The XXX is replaced with the
data type, for example fmi2GetReal for real variables.

• The fmi2DoStep command advances the co-simulation by the time-
step of the given communication step size. It returns different mes-
sages: fmi2OK indicates that the slave has performed the simulation up
to the requested point in time, fmi2Discard means that only a part
of the time interval could be computed successfully, while fmi2Error

indicates that the computation could not be performed at all.

2.2 CSP

Communicating Sequential Processes (CSP) [Hoa85, Sch00, Ros10b], a for-
mal specification language introduced by Hoare [Hoa85] that is part of a
class of languages that are known as process algebras, aims at describing
communicating processes and interaction-driven computations.

CSP’s domain of discourse consists of processes, which are self-contained
components with particular interfaces through which they interact with their
environment. The interface of a process is described as a set of events,
which describe atomic, indivisible and instantaneous actions. A process is,
therefore, characterised by the events it can engage in and their ordering.
CSP is supported by an underlying theory to enable reasoning and model
analysis about interaction and communication in this event-based model of
interaction.

In CSP, events are transmitted along communication channels, which carry
messages of particular types. A channel has a set of associated events, cor-
responding to all messages that may be carried through the channel.

Process expressions are built out of events using a number of operators:

• Event prefixing, expressed in CSP as e → P , describes a process that
expects event e and then behaves as process P .

• Interleaving, described in CSP as P1 ||| P2, defines a composition of
two processes that execute in parallel without any synchronisation.

10

D2.1d - Foundations for FMI Co-Modelling (Public)

The iterated version of interleaving, applies interleaving to any number
of indexed processes: ||| i : N • P(i).

• Parallel, P1 ‖
A

P2, describes the composition of two processes that exe-

cute in parallel synchronising on the set A of events.

• Sequential, P1; P2, describes a process that executes P1 until it termi-
nates, and then executes P2.

• Hiding, P \ N , makes a set N of events internal to a process P .

• Interrupt, P1 4 P2, defines a composition that behaves like P1, but can
be interrupted by a synchronisation on one of the initial events of P2,
which then takes over.

• Throw, P1 Θ
A

P2, a relatively recent CSP operator [Ros10a], defines a

form of interrupt where any occurrence of an event e ∈ A within P1

hands control to P2.

Every CSP process P has an alphabet αP . Its semantics is given using four
models: traces, failures, divergences and infinite traces. These are under-
stood as observations of possible executions of the process P, in terms of the
events from αP that it can engage in, refuse, or lead to divergence.

3 FMI Formally: state of the art

We present a survey of the FMI-related literature to better understand the
trends in the FMI related work (section 3.1) and the different ways in which
it has been formalised (section 3.2).

3.1 FMI Trends

FMI has, so far, emphasised the modelling of the dynamics of physical sys-
tems [BGL+14]. This reflects the origins of the FMI as a way to achieve inter-
operability of simulators for models of automative suppliers. To enlarge the
scope of FMI, there has been a call to make the FMI a hybrid co-simulation
standard [BGL+14], supporting hybrid systems [MMP92] that combine con-
tinuous and discrete dynamics. [BGL+14] argues that small extensions to
FMI are sufficient to satisfy the requirements of hybrid co-simulation.

11

D2.1d - Foundations for FMI Co-Modelling (Public)

FMI has been the focus of several research works. Bastian et al [BCWS11]
propose a fixed-step platform-independent MA. Schierz et al [SAC12] investi-
gate adaptive communication size control in the FMI to improve the accuracy
of simulations. Feldman et al [FGP14] generate FMUs from statecharts de-
scribing components (blocks) of a SysML model. Pohlmann et al [PSR+12]
generate FMUs from a UML-based DSL for real-time systems; individual
FMUs are generated from model components described as real-time stat-
echarts. Denil et al [DMMV15] generate FMI co-simulation environments
from hybrid multi-models using model transformations. These works give
an indication on the popularity and level of prolificacy of FMI as a subject
matter, as well as the trends and concerns in the FMI related work, but we
now turn to the work that is more closely related to the approach presented
here.

3.2 A Formal Treatment of FMI

To highlight and uncover issues with the evolving FMI standard, and to
investigate the FMI formally, Broman et al [BBG+13] develop FMI’s most
influential formalisation to date. This formalisation of a relevant subset
of the FMI standard consists of a state-based functional model; relevant
procedures of FMI’s API (abstract programming interface), which acts as
the interface between MA and the slave FMUs, are modelled as functions.
The paper studies FMI’s main subject-matter: simulations of continuous
models based on numerical methods to approximate differential equations.
Desirable properties of such methods are convergence (whether the method
approximates the solution) and stability (whether errors are damped out).
To ensure convergence, [BBG+13] investigates determinism, studying the
situations under which determinate execution is ensured — that is, different
runs of a MA on a given FMU network give the same results. To avoid
nondeterminism and the possibility of unexpected results, the paper proposes
a way to check for the absence of algebraic loops (convergence cannot be
guaranteed in the presence of algebraic loops) by checking the acyclicity
of the directed graph describing the dependencies between input and output
ports of FMUs. The MAs of [BBG+13] preclude configurations with algebraic
loops and are proved to be determinate. Although the model is formal, the
proofs of the paper’s main theorems are rigorous and grounded on the paper’s
formalisation, but they are not formal.

It is interesting to comment on the emphasis that [BBG+13] puts on deter-
minism. In a hybrid co-simulation setting made up of continuous and discrete

12

D2.1d - Foundations for FMI Co-Modelling (Public)

components, nondeterminism may not necessarily be a bad thing. Continu-
ous models may have non-determinism when they have components that rely
on random numbers, for instance. Abstract models of discrete systems are
often nondeterministic; that is seen as a means to achieve abstraction [HJ89].
Although nondeterminism is often at odds with model executability [HJ89],
the discrete modelling community has found ways of conciliating these two
opposing forces. The formal model of [BBG+13] would have to be refactored
to be applicable to a world of possibly non-deterministic discrete components
as all the API procedures are modelled as total functions. Given that the
authors of [BBG+13] observe in [BGL+14] that the FMI should be appli-
cable to general-purpose hybrid systems, it appears that the emphasis on
determinacy should be relaxed in a hybrid co-simulation setting.

Tripakis and Broman [TB14] use the model of [BBG+13] to investigate how
FMI copes with heterogeneity. Specifically, they study how components
with different underlying models of computation (MoC) can be encoded as
FMUs; the supported MoCs of [TB14] are state machines, discrete event
and synchronous dataflow. Given the lack of support for non-determinism
in [BBG+13], all the considered discrete MoCs are restricted to be determin-
istic.

Savicks et al [SBC14a] propose an approach to cosimulate Event-B [Abr10]
models and FMUs, outlining a general co-simulation framework for Event-
B that is based on the master-slave architecture of FMI. The paper gives
a sketch Event-B model describing the co-simulation semantics, which dis-
criminates between discrete and continuous simulation steps. The approach
is based on a simple master algorithm and it has been applied to an in-
dustrial case study in [SBC14b]. It provides support for the simulation of
FMUs within the Event-B platform Rodin [ABH+10], but it is does not
wrap Event-B models as FMUs to enable their general FMI-compliant co-
simulation.

4 Semantics of FMI

This section presents the formal semantics of FMI expressed in CSP. The
semantics presented here targets the co-simulation API.

This version of the semantics supports a simple model of time, with FMI
communication time points represented as integers to enable an analysis

13

D2.1d - Foundations for FMI Co-Modelling (Public)

with the FDR3 refinement-checker [GRABR14]6. This section presents an
idealised version of the semantics. An FDR3 optimised version, expressed
in the CSP dialect CSPm and developed based on bounded types to enable
model-checking with FDR3, is given in appendix A.

4.1 Base definitions

This version of the semantics represents time as integers7. FMU variables
and their values are also represented as integers. The allowed values of
a step (used in integration algorithms and a parameter of FMI-based co-
simulations) are defined as natural numbers greater or equal to 1:

nametype Time = Z
nametype Var = Z
nametype Val = Z
nametype Step = {n : N | n ≥ 1}

We represent environments, assignments of variables to values, as partial
functions (symbol 7→)8:

nametype Env = Var 7→ Val

An FMU state (St) consists of three environments, recording inputs, outputs
and exposed state, respectively. Constant emptySt represents the empty
state, made up of three empty environments.

nametype St = Env .Env .Env
emptySt = {}.{}.{}

The definitions above use the CSP infix dot operator (.), which builds com-
posites out of parts in a way that is akin to cartesian products.

Function opt below defines optionals for some given type, which may have a
value (singleton set) or not (empty set). Function the operates upon option-
als; it yields the element of a singleton:

opt(X) = {s | s ∈ P X ∧ # s ≤ 1}
the({x}) = x

6FDR stands for Failures Divergences Refinement; FDR3 tool is presented in section 5.1.
7This is to evolve into a representation of time as real numbers when INTO-CSP comes

into play.
8In the FDR3 version, these are represented as FDR3 maps (see FDR definitions in

appendix A.1).

14

D2.1d - Foundations for FMI Co-Modelling (Public)

The VarKind datatype indicates the type of some variable:

datatype VarKind = input | output | state

We introduce a type to represent the allowed FMI co-simulation intervals,
made up of a start and an end-times:

nametype CosimInt = {(st , et) | st ∈ Time ∧ et ∈ Time ∧ st ≤ et}

The next functions retrieve the components of a pair, such as the components
of a co-simulation interval (start and end times):

fst((st , et)) = st
snd((st , et)) = et

The next predicate says whether a given time point ct is within a given
co-simulation interval.

withinCosimInt(ct , (st , et))⇔ st ≤ ct ∧ ct ≤ et

Function nextCurrentTm issues the next communication time point, given a
current time point ct , a step-size stp and a co-simulation interval cint . The
next time point is issued provided ct is within the given cint ; otherwise it
returns ct .

nextCurrentTm(ct , stp, cint) =

{
ct + stp If withinCosimInt(ct , cint)
ct otherwise

The set FMUIdx represents FMU indices, which are used to identify partic-
ular FMUs from a FMU collection:

FMUIdx = P Int

We now introduce several functions to manipulate the state of an FMU.
Function updEnv updates an environment:

updEnv(x , v , e) =

{
e ⊕ {x 7→ v} if x ∈ dom e
e, otherwise

Above, ⊕ is the function overriding operator.

15

D2.1d - Foundations for FMI Co-Modelling (Public)

Function updSt , with signature updSt : St ×VarKind ×Var ×Val→ St , up-
dates the state of an FMU; it is defined by the following three equations:

updSt(ins .outs .sts , input , x , v) = updEnv(x , v , ins).outs .sts
updSt(ins .outs .sts , output , x , v) = ins .updEnv(x , v , out).sts
updSt(ins .outs .sts , state, x , v) = ins .outs .updEnv(x , v , sts)

Above, ins .outs .sts stand for a FMU state (a member of set St) made up of
environments corresponding to inputs, outputs and exposed state.The equa-
tion describe how the overall state is updated as a result of a variable of kind
input, output or state by resorting to function updEnv .

Function getVarVal gets the value associated with a variable in some envi-
ronment; it returns a singleton set with the proper value if there is one, or
the empty set otherwise.

getVarVal(x , e) =

{
{e(x)} if x ∈ dom e
{} otherwise

Function getValInFMUSt extracts the value of a given variable of given kind
(input, output or state) from an FMU state. It is defined by the equa-
tions:

getValInFMUSt(ins .outs .sts , input , x) = getVarVal(x , ins)
getValInFMUSt(ins .outs .sts , output , x) = getVarVal(x , outs)
getValInFMUSt(ins .outs .sts , state, x) = getVarVal(x , sts)

4.2 The FMI API in CSP

The FMI API for co-simulation is described in [FMI14] as a collection of
C function signatures, comprising a name, parameters and a return value.
Calls to and returns from these C functions are represented in CSP as chan-
nels; some channels have an associated CSP datatype to represent types of
parameters and return values. The correspondence between the CSP chan-
nels and the FMI’s API is given in table 1; the channels are described in the
remainder of this section.

An interaction on the channel instantiate gives life to FMUs by providing
an FMU with a specific state; it communicates an FMU index and an FMU
state. Channel setup is used to set up the simulation (or experiment) with
a specific co-simulation interval. Channels set and get are used to set and
retrieve the values of variables (unlike the C API, our formalisation abstracts

16

D2.1d - Foundations for FMI Co-Modelling (Public)

CSP C

channel instantiate C function fmi2Instantiate

channel setup C function fmi2SetupExperiment

channel get C function fmi2GetXXX (e.g. fmi2GetReal)
channel set C function fmi2SetXXX (e.g. fmi2SetReal)
channel endInit C function fmi2ExitInitializationMode

channel doStep C function fmi2DoStep

data type DoStepOutcome Enumeration fmi2Status restricted to the
values relevant to fmi2DoStep.

channel doStepOutcome C function fmi2DoStep

channel stepCancel C function fmi2CancelStep

channel stepFinished Functionality of callback function stepFin-

ished provided with fmi2Instantiate or
obtained by calling fmi2GetStaus after
fmi2DoStep returns fmi2Pending.

channel getState C Function fmi2GetFMUState.
channel setState C Function fmi2SetFMUState.
channel terminate C function fmi2Terminate

Table 1: Correspondence between CSP channels and datatypes and the FMI’s
API for co-simulation [FMI14]

from specific value types). A synchronisation on the channel endInit marks
the end of an FMU initialisation.

channel instantiate : FMUIdx .St
channel setup : FMUIdx .CosimInt
channel set : FMUIdx .VarKind .Var .Val
channel get : FMUIdx .{output , state}.Var .opt(Val)
channel endInit : FMUIdx

Above, opt is used to say that get may not yield a value — the FMU may
not have the variable being queried.

A synchronisation on the channel doStep triggers a simulation step on an
FMU; it involves an FMU index to identify the FMU, a communication time
point and a step value. The possible outcomes of a doStep operation are
captured in the CSP datatype DoStepOutcome: stepOk indicates that the
FMU carried the requested step, pending says that the FMU is still executing
the step, discard informs that the given step value has been rejected, and
fail signals that the FMU could not perform the requested step. Channel

17

D2.1d - Foundations for FMI Co-Modelling (Public)

doStepOutcome carries the result of a do step operation; it takes an FMU
index and a particular DoStepOutcome.

channel doStep : FMUIdx .Time.Step

datatype DoStepOutcome = stepOk | pending | discard | fail

channel doStepOutcome : FMUIdx .DoStepOutcome

Channels stepCancel and stepFinished are related to the asynchronous mode
of FMI step simulation and the pending outcome of step simulation. Channel
stepCancel is used to tell the FMU to cancel the step as the MA no longer
wishes to wait for the conclusion of the step operation; channelstepFinished
is used to inform the MA of the conclusion of the requested step operation.
Both these channels take an FMU index to refer to the involved FMU.

channel stepCancel , stepFinished : FMUIdx

To support a rollback mechanism, FMI 2.0 introduced functions to save and
restore the state of an FMU to enable recovery when an FMU rejects a given
communication step-size [BBG+13]. The corresponding channels carry the
index of an FMU, a communication time point and an FMU state:

channel getState, setState : FMUIdx .Time.St

Finally, we have a channel that communicates the termination of a particular
FMU:

channel terminate : FMUIdx

4.3 FMI co-simulation

Figure 2 casts FMI co-simulation in a CSP and process algebra setting. The
notion that a MA coordinates an execution of FMUs is described as the
parallel composition (CSP operator ‖) of an MA, synchronised on the FMI
API events defined in the previous section, with a network of FMUs that run
in interleaving (operator |||). This is described in CSP by the formula:

Cosimulation = MA ‖
CosimEvs

||| i : ifmus • FMU (i)

Here, MA is any master algorithm; FMU is the process that captures the
behaviour of a FMU as defined by the FMI standard (defined below).

18

D2.1d - Foundations for FMI Co-Modelling (Public)

Cosimulation

‖
MA

⫴i
FMU (i)

*1

Environment

*1 *2 *1 instantiate, setup, set, get, endInit, doStep, terminate,
stepOutcome, stepCancel, stepFinished, getState, setState
*2 startMA

Legend
P Process Reference

⫴i Process Expression

Multi-channel

P Process Definition

Figure 2: A pictorial description of FMI co-simulation in a CSP setting

In Figure 2, we see that the environment communicates with MAs through
channel startMA, which signals the MA to start the simulation:

channel startMA

The next sections define the process that captures the behaviour of an FMU
and introduce two MAs.

4.4 The modus operandi of an FMU

Figure 3 gives a pictorial representation of process FMU , which captures the
overall protocol observed by an FMU in interacting with an MA and whose
interface consists of the channels defined in section 4.2. Process FMU takes
an index to identify the particular FMU being operated upon. It says that
FMU simulation is interrupted by its termination, and that FMU simulation
consists of the parallel composition of process FMUSt with process Simulate0.
This is defined in CSP as:

FMU (i) =
let

FMUSt = . . .
Simulate = . . .
Terminate = terminate.i → SKIP

within
Simulate 4 Terminate

19

D2.1d - Foundations for FMI Co-Modelling (Public)

FMU(i)

Simulate

‖ FMUSt

Simulate0

Instantiate Setup⨾ ⨾ Init ⨾ CarrySteps

*1 get_st, upd_st, get_cint, upd_cint,
get_ct, upd_ct

�
Terminate
terminate.i→SKIP

MA

*2

*2 instantiate, setup, set, get, endInit,
doStep, terminate, stepOutcome,
stepCancel, stepFinished, getState, setState

*1

Figure 3: Pictorial description of CSP process FMU

FMUSt , Simulate and Terminate are internal processes of FMU . The defi-
nition says that an FMU is simulated until it is interrupted (CSP interrupt
operator 4) by a termination request (event terminate.i).

FMU’s internal process Simulate puts together in parallel a process that
manages the state of the FMU (FMUSt) with a process that does the actual
FMU simulation (Simulate0), as depicted in Fig. 3. These two processes
synchronise along the channels defined for updating and retrieving the FMU
state. This artificial separation of state and behaviour is necessary because
CSP is a functional language, and the state of the FMU needs to be accessed
by several components of FMU. INTO-CSP’s imperative nature will entail
the removal of such separation.

Process FMUSt controls a FMU state, a co-simulation interval and the simu-
lation’s current time point. Next channels read and write to these state com-
ponents and are the enablers of the synchronisation portrayed in Fig. 3:

channel get st , upd st : St
channel get cint , upd cint : CosimInt
channel get ct , upd ct : opt(Time)

20

D2.1d - Foundations for FMI Co-Modelling (Public)

The set of FMU state events is thus defined as:

FMUStEvs = {|upd st , get st , upd cint , get cint , upd ct , get ct |}

Above, we define a set of events extensionally using {||}.

Process FMUSt is as defined below. It controls a FMU state variable st , a
co-simulation interval cint and an optional communication time point oct ; it
offers the external choice of the state-manipulation events defined above to
update and retrieve state.

FMUSt =
let

FMUSt0(st , cint , oct) =
upd st?st ′ → FMUSt0(st ′, cint , oct)
2 get st !st → FMUSt0(st , cint , oct)
2 upd cint?cint ′ → FMUSt0(st , cint ′, oct)
2 get cint !cint → FMUSt0(st , cint , oct)
2 upd ct?oct ′ → FMUSt0(st , cint , oct ′)
2 get ct !oct → FMUSt0(st , cint , oct)

within
FMUSt0(emptySt , (0, 0), {})

Process Simulate (Fig. 3) does the parallel composition of FMUSt and Simulate0.
The synchronisation with FMUSt is done through the set of events FMUStEvs ,
which is hidden so the events become internal as they pertain to the internal
processing of a FMU only and are of no interest to the environment. Process
Simulate0 describes all the phases that a FMU has to go through, which is
defined as the sequential compositions of processes Instantiate, Setup, Init
and CarrySteps .

Simulate =
let

Instantiate = instantiate.i?st → upd st !st → SKIP
Setup = setup.i?cint → upd cint !cint → SKIP
Init =

set .i?k?x?v → get st?st → upd st !updSt(st , k , x , v)→ Init
2 endInit .i → SKIP

CarrySteps = . . .
Simulate0 = Instantiate; Setup; Init ; CarrySteps

within(
FMUSt ‖

FMUStEvs

Simulate0

)
\ (FMUStEvs)

21

D2.1d - Foundations for FMI Co-Modelling (Public)

Above, process Instantiate is first ready to take an input on the channel
instantiate, namely an FMU state, which is saved using channel upd st . Pro-
cess Setup waits for a communication on setup, providing the co-simulation
interval cint as input, which is then stored via the channel upd cint . Process
Init keeps waiting for inputs via the channel set carrying a variable kind
k , a variable x and a value v , which is used to update the current state of
the FMU (current FMU state is obtained via channel get st , which is up-
dated through function updSt and then stored using channel upd st), until
it terminates upon receiving endInit .

Process CarrySteps below models the phases associated with a simulation
step. It starts by setting up the current communication time point as the
start time of the co-simulation interval (using channels get cint and upd ct),
and proceeds with the stepping as described in CarrySteps0, which gets the
stored communication time point oct and does CarryStep if there is such a
time point (oct is not empty), or terminates otherwise (SKIP) as there are
no more time points to simulate.

CarrySteps =
let

CarrySteps0 =
get ct?oct →

if oct 6= {}
then get st?st →

CarryStep(st , the(oct))
else SKIP

within

get cint?cint → upd ct !{fst(cint)} → CarrySteps0

The next process, CarryStep, defines the preliminaries of a co-simulation
step, such as setting inputs of the FMU (through channel set), making avail-
able the state of the FMU to enable possible step rollbacks (channel getState),
and setting the FMU to a previous recorded state to perform a rollback (chan-
nel setState).

CarryStep(st , ct) =
set .i .input?x?v → upd st !updSt(st , input , x , v)→ CarryStep(st , ct)
2 getState.i !ct !st → CarryStep(st , ct)
2 setState.i?ct ′?st ′ →(

ct ′ ≤ ct & upd st !st ′ → upd ct !{ct ′} → CarryStep(st , ct ′)
2 ct ′ > ct & CarryStep(st , ct)

)
2 DoStep

22

D2.1d - Foundations for FMI Co-Modelling (Public)

The next CSP process deals with actual co-simulation steps in response to
the events coming along channel doStep. Upon a doStep event carrying
the MA’s communication time point mct and the step-size stp, it calculates
the next communication time point ct ′. If mct and ct are the same (MA
and FMU are synchronised with respect to time), then there is a nondeter-
ministic internal choice between the following four options: (a) the FMU
carries out the co-simulation step with the given step-size stp (modelled
by DoStepOk), (b) the FMU does an asynchronous execution of the co-
simulation step (DoStepPending), (c) the FMU discards the given step-size
stp (DoStepDiscard), and (d) the FMU issues an error because the step ex-
ecution failed (DoStepError). DoStepError is also performed if FMU and
MA are out of sync with respect to time.

DoStep =
doStep.i?mct?stp → get ct?{ct} → get cint?cint →

let
ct ′ = nextCurrentTm(ct , stp, cint)

within
if mct = ct

then

DoStepOk(ct ′)
u DoStepPending(ct ′)
u DoStepDiscard
u DoStepError

else DoStepError

Above, the different responses to doStep are nondeterministic because the
FMI sees FMUs as black-boxes — we do not know what the actual response
will be. If the actual behaviour of some specific FMU is known then the
nondeterminism may be removed by defining the FMU as a refinement of
the general FMU process.

DoStepOk signals that the step has been carried out (event doStepOutcome.i !stepOk)
and concludes the step.

DoStepOk(ct ′) =
doStepOutcome.i !stepOk → get st?st → FinishStep(ct ′, st)

Process FinishStep produces non-deterministically new environments outs ′

and sts ′ to represent the new values of output and state variables, respec-
tively, that come as a result of executing the step9 and updates the FMU

9As a FMU is a blackbox in this model, we do not know what are the new values of
outputs and exposed state, hence the nondeterminism.

23

D2.1d - Foundations for FMI Co-Modelling (Public)

state accordingly (through channel upd st). Following this, it does process
UpdateCT to check whether the new communication time point ct ′ is within
the co-simulation bounds — depending on the result, the FMU’s current
communication time point is updated or voided (set to empty set). Finally,
the state of the FMU may be queried (process EnquiryFMU), and another
simulation step may be carried out, as described in process Finalise.

EnquiryFMU =
get st?st → get .i?k?x !getValInFMUSt(st , k , x)→ SKIP

Finalise =
(EnquiryFMU ; Finalise)
2 CarrySteps0

UpdateCT (ct ′, cint) =
if withinCosimInt(ct ′, cint)

then upd ct !{ct ′} → SKIP
else upd ct !{} → SKIP

FinishStep(ct ′, ins .outs .sts) =

u outs ′, sts ′ : Env •
upd st !(ins .outs ′.sts ′)→ get cint?cint
→ UpdateCT (ct ′, cint); Finalise

Above, in FinishStep, we use the nondeterministic choice operator u to say
that the values of variables outs ′ and sts ′ are assigned non-deterministically.
The expression u outs ′, sts ′ : Env • . . . introduces those variables saying
that they can have any value of their sets.

Process DoStepDiscard informs the environment that the FMU rejects the
given step-size by transmitting the event doStepOutcome.i .discard . From
then onwards, the FMU offers two options: it either goes into a state where
the FMU’s state is queried and the simulation is finished (process EndSim),
or has its state reset to a previous state to rollback the simulation and try

24

D2.1d - Foundations for FMI Co-Modelling (Public)

to perform it with the current time point and a new step-size.

EndSim =
get cint?cint → (UpdateCT (snd(cint) + 1, cint); Finalise)

DoStepDiscard =
let

DoStepDiscard0 =
(EnquiryFMU ; EndSim)
2 setState.i?ct ′?st ′ → get ct?{ct} →(

ct ′ <= ct & upd ct !{ct ′} → upd st !st ′ → SKIP
2 ct ′ > ct & DoStepDiscard0

)
within

doStepOutcome.i !discard → DoStepDiscard0

The next process tells the environment that the FMU is still carrying out
the co-simulation step by broadcasting the event doStepOutcome.i .pending .
From then onwards, the FMU may inform the environment that the step
is finished with event stepFinished , followed by the conclusion of the step
(FinishStep above) or the step may be cancelled by the environment through
channel stepCancel , after which the simulation concludes (EndSim above).

DoStepPending(ct ′) =
let

DoStepPending0 =
stepFinished .i → get st?st → FinishStep(ct ′, st)
2 stepCancel .i → EndSim

within
doStepOutcome.i !pending → DoStepPending0

The next process informs the environment that the step execution failed and
ends the simulation.

DoStepError = doStepOutcome.i !fail → EndSim

4.5 Master Algorithms

This section describes classes of master algorithms, which have a uniform
structure as depicted in Fig. 4. A MA process combines subprocesses Execute
and Terminate with the CSP interrupt operator (4) to say that that MA
termination interrupts MA execution. MA execution (process Execute) sets

25

D2.1d - Foundations for FMI Co-Modelling (Public)

MA(ifmus)

Terminate

terminateMA →
TerminateFMUs

Execute

startMA → �

Startup

⫴ i : ifmus •

Startup Simulate⨾

StartupFMU

Instantiate Setup⨾ ⨾ Init

⫴ i : ifmus • terminate.i → SKIP

Figure 4: The underlying CSP structure of a MA

up the collection of FMUs (process Setup) and then simulates them (process
Simulate).

The following start by introducing some base definitions to support the de-
scription of MAs. The, we describe in CSP two classes of MAs: simple
fixed-step, and variable-step with rollback.

4.5.1 Base definitions

Time Delays. The processing of asynchronous co-simulation steps involves
time delays. A MA waits for the FMU to finish some step up to a certain
duration of time. To support this, we need to provide a model, which is
based on the event tock that represents a unit of passing time; delays are
based on a certain number of tock events that are issued. We also introduce
an event timeout to represent the fact a certain time delay has elapsed. This
is formalised in CSP by the following channels:

channel tock , timeout

26

D2.1d - Foundations for FMI Co-Modelling (Public)

WaitUntilOrTrigger(t, evsB, evsT)

WaitUntil(t, evsB)

Timer(t) △

Timer(t)
t == 0 & timeout → SKIP
 t > 0 & tock →Timer(t-1)

WaitUntil "
{| timeout |}

☐ e : evsB ! e → SKIP

⨾ e : evsT ! e → SKIP

Figure 5: Process WaitUntilOrTrigger

Figure 5 presents process WaitUntilOrTrigger with its constituent processes,
which underpins the processing of asynchronous FMU co-simulation steps.
WaitUntilOrTrigger waits for a certain time delay for some event to hap-
pen, if it doesn’t happen and the time delay elapses, then some event is
triggered.

The next process, used by WaitUntilOrTrigger , defines a Timer . If the
current time is greater than 0 (there is still some time left) and a tock is
issued (an instant of time has passed), then we decrease the timer by one
unit. We consider that a time duration has elapsed, when the current time
reaches 0, at which point Timer issues the timeout event.

Timer(t) =

(
t = 0 & timeout → SKIP
2 t > 0 & tock → Timer(t − 1)

)

Process WaitUntil , also used by WaitUntilOrTrigger , waits a certain amount
of time until some event, of a given set, happens:

WaitUntil(t , evs) =
if t == 0

then Timer(t)

else Timer(t) 4 (2 e : evs • e → SKIP)

27

D2.1d - Foundations for FMI Co-Modelling (Public)

Above, we say that the occurrence of one of the events interrupts the timer.

Process WaitUntilOrTrigger (depicted in Fig. 5) executes WaitUntil with
the given set of break events (evsB), but if the timeout event is received then
it triggers the events of the set of timeout trigger events (evsT).

WaitUntilOrTrigger(t , evsB , evsT) =
let

WaitUntilOrTrigger0 =
WaitUntil(t , evsB) Θ

{|timeout |}
(; e : evsT • e → SKIP)

within

WaitUntilOrTrigger0 \ {|timeout |}

Above, event timeout is hidden because it is part of WaitUntilOrTrigger only,
remaining, this way, invisible to the environment.

Asynchronous steps. Next process describes how a MA responds to the
asynchronous execution of a FMU step. It takes an FMU index i and
the number of tocks to wait for the FMU response. Then it does process
WaitUntilOrTrigger , which means that it waits until event stepFinished oc-
curs; if it does not occur within the given time bound, and timeout occurs
instead, then the FMU is informed that the step is to be cancelled by trans-
mitting event stepCancel .

StepMAPending(i , to) =
WaitUntilOrTrigger(to, {|stepFinished .i |}, {|stepCancel .i |})

Setting the variables of a FMU. Next process may set the variables
of some FMU. It takes a FMU index and a set of variables kinds; the pro-
cess decides non-deterministically to set variables using channel set or do
nothing.

SetVarsFMU (i ,VK) =

u k : VK , x : Var , v : Val • set .i !k !x !v → SetVarsFMU (i ,VK)

u SKIP

Process MASetStepInputs sets the input variables of a FMU.

MASetStepInputs(i) = SetVarsFMU (i , input)

28

D2.1d - Foundations for FMI Co-Modelling (Public)

Starting up FMUs. The next process starts up a simulation for a collec-
tion of FMUs:

StartupFMUs(ifmus , cint) =
let

StartupFMU (i) =
let

Instantiate =u st : St • instantiate.i !st → SKIP
Init = SetVarsFMU (i ,VarKind); endInit .i → SKIP
Setup = setup.i !cint → SKIP

within
Instantiate; Setup; Init

within
||| i : ifmus • StartupFMU (i)

Above, we say that that overall startup is the interleaving (CSP operator |||)
of the individual FMU startups.

Getting the state of a FMU. The next process retrieves outputs and
exposed state of a specific FMU. It decides internally on whether to query
the state of a particular FMU variable or not.

MAGetStepOutputs(i) =
let

Get(i) =

u k : output , state, x : Var • get .i !k !x?val → Get(i)

u SKIP
within

Get(i)

MA Termination. We introduce a channel to trigger the termination of
a MA:

channel terminateMA

The following process terminates the MA and the associated collection of
FMUs.

MATerminate(ifmus) =
let

TerminateFMUs =||| i : ifmus • terminate.i → SKIP
within

terminateMA→ TerminateFMUs

29

D2.1d - Foundations for FMI Co-Modelling (Public)

Above, MA termination starts upon event terminateMA, which is followed
by the termination of the individual FMUs.

FMU Events. Function consFMIEvs builds a set of FMI events corre-
sponding to an indexed collection of FMUs ifmus , given a function that
gives the individual events of some FMU (fmuEvs). This is defined as the
distributed union of the events of the individual FMUs.

consFMIEvs(ifmus , fmuEvs) =
⋃

({fmuEvs(i) | i ∈ ifmus})

Using consFMIEvs , we define function CosimEvs , which yields the set of FMI
co-simulation events of an indexed collection of FMUs, and is defined using
the function FMUEvs , giving the set of co-simulation events of a particular
FMU.

FMUEvs(i) = {|instantiate.i , setup.i , set .i , endInit .i , doStep.i ,
get .i , terminate.i , doStepOutcome.i , stepCancel .i , stepFinished .i ,
getState.i , setState.i |}

CosimEvs(ifmus) = consFMIEvs(ifmus ,FMUEvs)

4.5.2 A Generic MA

For the purpose of the FDR3 analysis, we define a process describing a generic
MA that expresses the events that are expected in a FMI-based co-simulation.
This gives a good basis for the validation and analysis of co-simulations based
on different MAs: we should observe the expected events and no others.

Process GenMA captures a generic FMI co-simulation drive by a generic MA,

30

D2.1d - Foundations for FMI Co-Modelling (Public)

following the structure sketched in Fig. 4.

GenMA(ifmus , cint , to, termEvs , discEvs) =
let

TriggerTerminate = terminateMA→ SKIP
Terminate = MATerminate(ifmus)
Startup = StartupFMUs(ifmus , cint)
Execute =

let
CarrySteps(ct) = . . .
itermEvs = consFMIEvs(ifmus , termEvs)
Simulate =

CarrySteps(fst(cint)) Θ
itermEvs

TriggerTerminate

within
startMA→ Startup; Simulate

within
Execute 4 Terminate

Above, we say that MA execution and its underlying simulation (process
Execute) is interrupted by the termination of the MA. MA Execution starts
upon event startMA, followed by the setup of the FMUs and their subsequent
simulation. Process Simulate says that if one of the triggering termination
events occur (set termEvs), then the termination of the simulation is trig-
gered. Process Simulate carries the required simulation steps on the FMUs
starting with the start time of the co-simulation interval.

The next process selects a step-size non-deterministically and proceeds with
the simulation steps.

CarrySteps(ct) =
let

DoSteps(ct , stp) = . . .
within
u stp : Step • DoSteps(ct , stp)

Process DoSteps checks that the given communication time point ct is within
the bounds of the co-simulation interval cint . If it is, it gets and saves the
FMU states to enable rollback, and it carries the simulation step, which may
be rollbacked, and proceeds with the next simulation action. If ct is not

31

D2.1d - Foundations for FMI Co-Modelling (Public)

valid, then termination is triggered.

DoSteps(ct , stp) =
let

GetStates = . . .
SetStates = . . .
CarryStep = . . .
CarryAnother = . . .
sDiscEvs = consFMIEvs(ifmus , discEvs)
CarryOrRollbackStep = CarryStepΘsDiscEvsSetStates

NextSimAction = StepFMUs(ct)uCarryAnother

within
if withinCosimInt(ct , cint)

then GetStates ; CarryOrRollbackStep; NextSimAction
else TriggerTerminate

Above, CarryOrRollbackStep carries the simulation step, but if a discard
event happens it sets the FMU states to a previously recorded state to enable
rollback. NextSimAction decides, non-deterministically, either to attempt
the simulation of current ct with a new step-size (StepFMUs) to do the
rollback or to proceed with another simulation step with the given step-size
(CarryAnother).

To retrieve the FMU states in preparation for a possible rollback, we define
the following process:

GetStates =
let

GetState(i) =u st : St • getState.i .ct .st → SKIP
within

||| i : ifmus • GetState(i)uSKIP
To set the FMUs to some state to effectuate rollback, we define the following
process:

SetStates =
let

SetState(i) =u st : St • setState.i .ct .st → SKIP
within

||| i : ifmus • SetState(i)uSKIP
Process CarryStep does a complete simulation step on a collection of FMUs.
This involves setting inputs of FMUs (MASetStepInputs), doing a simulation

32

D2.1d - Foundations for FMI Co-Modelling (Public)

step (DoStep), handling pending steps (HandlePending) and getting FMU
outputs (MAGetStepOutputs).

CarryStep =
let

HandlePending(i) =
let

Tocks = tock → TocksuSKIP
FinishPendingStep =

stepCancel .i → SKIPu stepFinished .i → SKIP

within
Tocks ; FinishPendingStep

DoStep(i) = doStep.i .ct .stp →
doStepOutcome.i .stepOk → SKIP

u doStepOutcome.i .pending → HandlePending(i)

u doStepOutcome.i .discard → SKIP

u doStepOutcome.i .fail → SKIP

FullStep(i) =

MASetStepInputs(i); DoStep(i); MAGetStepOutputs(i)
within
||| i : ifmus • FullStep(i)

Process CarryAnother gets a next communication time point ct ′ from the
current one ct , if there is such a ct ′, it carries the required simulation steps for
ct ′ with the current step-size stp otherwise the termination of the simulation
is triggered:

CarryAnother =
let

ct ′ = nextCurrentTm(ct , stp, cint)
within

if ct 6= ct ′ then CarrySteps(ct ′, stp) else TriggerTerminate

4.5.3 A Simple Fixed Step Master Algorithm

We start by defining the set of events that cause the algorithm to terminate on
some FMU i . This includes the step outcomes fail and discard (the algorithm
is fixed step-size so it terminates when a FMU rejects the given step-size),

33

D2.1d - Foundations for FMI Co-Modelling (Public)

and the cancelling of FMU simulation steps (event stepCancel).

fsmaTermEvs(i) = {|doStepOutcome.i .fail , doStepOutcome.i .discard ,
stepCancel .i |}

Process fixed step master algorithm (FSMA), follows the MA structure out-
lined in Fig. 4, takes an indexed collection of FMUs to simulate ifmus , a
co-simulation interval cint , the simulation’s fixed step stp and the pending
timeout duration to.

FSMA(ifmus , cint , stp, to) =
let

TriggerTerminate = terminateMA→ SKIP
Terminate = MATerminate(ifmus)
Startup = StartupFMUs(ifmus , cint)
termEvs = consFMIEvs(ifmus , fsmaTermEvs)
Execute = startMA→ Startup; Simulate

within
Execute 4 Terminate

Above, MA execution is interrupted when the MA terminates. Process
Execute starts upon event startMA, which triggers the configuration of the
FMUs (Setup) and does the simulation (Simulate).

Simulate defines the required simulation stepping through the indexed col-
lection of FMUs, starting from the first communication time point of the
co-simulation interval cint . MA Termination is triggered upon receiving of
one of the termination events.

termEvs = consFMIEvs(ifmus , fsmaTermEvs)
Simulate = CarrrySteps(fst(cint)) Θ

termEvs
TriggerTerminate

Stepping through the FMUs (CarrySteps) starts by checking that the cur-
rent communication time point ct is within the bounds of the co-simulation
interval. If it is, it carries the step and does the following step with an
updated communication time point (function nextCurrentTm). If ct is not
valid then there is no more stepping to do and CarrySteps triggers MA ter-

34

D2.1d - Foundations for FMI Co-Modelling (Public)

mination.

CarrySteps(ct) =
let

CarryStep = . . .
ct ′ = nextCurrentTm(ct , stp, cint)

within
if withinCosimInt(ct , cint)

then CarryStep; CarrySteps(ct ′)
else TriggerTerminate

Process CarryStep does a complete simulation step on the FMUs. For each
FMU, it sets the inputs that are required for the step (MASetInputs), fol-
lowed by the simulation of an actual step (Step), followed by querying of
the FMU outputs. FMU step simulation is triggered by transmitting event
doStep, which may be sucessfull (stepOk), pending , just fail , or result in the
rejection of the given step-size discard .

CarryStep =
let

HandleStepPending(i , to) = StepMAPending(i , to)
Step(i) = doStep.i !ct !stp →

doStepOutcome.i .stepOk → SKIP

2 doStepOutcome.i .pending → HandleStepPending(i , to)

2 doStepOutcome.i .fail → SKIP

2 doStepOutcome.i .discard → SKIP

CarryStep0(i) = MASetStepInputs(i); Step(i); MAGetStepOutputs(i)

within
||| i : ifmus • CarryStep0(i)

We can now define a co-simulation with FSMA, using the FMI co-simulation
CSP formula proposed in section 4.3 (Fig. 2).

CosimFSMA(ifmus , cint , stp, to) =

FSMA(ifmus , cint , stp, to) ‖
CosimEvs(ifmus)

||| i : ifmus • FMU (i)

This is the basis for the FDR3 analysis.

4.5.4 A Variable-Step Rollback Algorithm

We describe in CSP the rollback MA with variable step that is proposed
in [BBG+13].

35

D2.1d - Foundations for FMI Co-Modelling (Public)

The sets of termination and discard events are as follows:

rbTermEvs(i) = {|doStepOutcome.i .fail , stepCancel .i ,
doStepOutcome.i .pending |}

discardEvs(i) = {|doStepOutcome.i .discard |}

Above, event doStepOutcome.i .pending is a termination event because this
MA does not support the asynchronous execution of FMU steps.

Function decStep decreases a step by some step increment and returns an
optional: a singleton if subtraction yields a valid step, and the empty set
otherwise.

decStep(stp, inc) =

{
{stp − inc} if (stp − inc) ≥ 1
{} otherwise

A FMI rollback algorithm needs to save the state of the FMUs under its
control before executing a step. To support this, we introduce some channels
to store a state of some FMU, to read the state of some FMU and to reset
the state store:

channel storeSt , readSt : FMUIdx .Time.St
channel reset

We introduce set FMUStStoreEvs to capture the events that deal with the
FMU state store.

FMUStStoreEvs = {|storeSt , readSt , reset |}

We introduce channels rollback and finishedDoStep, which act as internal
events to the processing of simulation steps. Event rollback indicates that a
rollback is required; finishedDoStep indicates that all FMUs have executed
their simulation steps for some communication time point and step.

channel rollback , finishedDoStep

Process rollback MA (RBMA) takes an indexed collection of FMUs to sim-
ulate ifmus , a co-simulation interval cint , the simulation’s allowed max step
maxStp and a step increment stpInc; it follows the general structure of MAs

36

D2.1d - Foundations for FMI Co-Modelling (Public)

depicted in Fig. 4.

RBMA(ifmus , cint ,maxStp, stpInc) =
let

TriggerMATerminate = terminateMA→ SKIP
Terminate = MATerminate(ifmus)
Startup = StartupFMUs(ifmus , cint)
Execute = startMA→ Startup; Simulate

within
Execute 4 Terminate

Above, following the MA structure of Fig. 4, we say that the MA execution is
interrupted by MA termination. MA execution starts upon event startMA,
which is followed by the setup of the FMUs and their simulation.

Process Simulate manages the FMU state store in parallel with process
Simulate0 synchronised on event set FMUStStoreEvs , which is hidden as
those events are internal to Simulate. Process Simulate0 starts the FMU
stepping (CarrySteps), which starts with the start time of the co-simulation
interval (fst(cint)) and the maximum step size maxStp; if one of the ter-
mination events occurs while doing Simulate0 then MA termination is trig-
gered.

Simulate =
let

termEvs = consFMIEvs(ifmus , rbTermEvs)
Simulate0 =

CarrySteps(fst(cint),maxStp) Θ
termEvs

TriggerMATerminate

within(
FMUSts ‖

FMUStStoreEvs

Simulate0

)
\ FMUStStoreEvs

Process FMUSts controls the FMU states that the MA needs to store to

37

D2.1d - Foundations for FMI Co-Modelling (Public)

enable rollback.

FMUSts =
let

NotFMUSt(i , ct , st) =
storeSt .i .ct .st → IsFMUSt(i , ct , st)
2 reset → NotFMUSt(i , ct , st)

IsFMUSt(i , ct , st) =
readSt .i !ct !st → IsFMUSt(i , ct , st)
2 reset → NotFMUSt(i , ct , st)

within

‖
{|reset |}

i : ifmus , ct : Time, st : St • NotFMUSt(i , ct , st)

Process CarrySteps takes a communication time point ct and steps-size stp.
It checks if given ct is within the co-simulation interval cint , if it is it saves
the states of the FMUs and carries the step on the FMUs for the step-size
stp or triggers the termination of the simulation otherwise.

CarrySteps(ct , stp) =
let

SaveFMUSts =

reset → (||| i : ifmus • getState.i?ct?st → storeSt .i !ct !st)

CarryStep(stp) = . . .
within

if withinCosimInt(ct , cint)
then SaveFMUSts ; CarryStep(stp)
else TriggerMATerminate

The process that carries steps on the FMUs performs the process that does a
simulation step (DoStep) with a process responsible for processing the next
step (DoNextStep), synchronising on event set evsDoStep, which is hidden
as those events are internal. Process DoStep does DoStepOk , but if a event
doStepOutcome.discard happens then the process that carries the work as-
sociated with step-size rejection is carried out DoStepDiscard), which is ex-

38

D2.1d - Foundations for FMI Co-Modelling (Public)

pressed using CSP’s throw operator (Θ).

CarryStep(stp) =
let

DoStepOk = . . .
DoStepDiscard = . . .
DoNextStep = . . .
DoStep =

let
discEvsFMUs = consFMIEvs(ifmus , discardEvs)

within
DoStepOk Θ

discEvsFMUs
DoStepDiscard

evsDoStep = {|finishedDoStep, rollback |}
within(

DoStep ‖
evsDoStep

DoNextStep

)
\ evsDoStep

Process DoStepOk carries does the required simulation stepping on the FMUs
and then it issues the event finishedDoStep to communication that the step-
ping has been carried out.

DoStepOk =
let

DoStepFMUs = ||| i : ifmus • DoStepFMU (i)

DoStepFMU (i) = MASetStepInputs(i); Step(i)
Step(i) =

let
Step0 =

doStepOutcome.i .stepOk → MAGetStepOutputs(i)
2 doStepOutcome.i .pending → SKIP
2 doStepOutcome.i .fail → SKIP
2 doStepOutcome.i .discard → SKIP

within
doStep.i !ct !stp → Step0

within
DoStepFMUs ; finishedDoStep → SKIP

Process DoStepDiscard performs the actions associated with a step-size re-
jection from one of the FMUs. This amounts to either restoring the states of

39

D2.1d - Foundations for FMI Co-Modelling (Public)

the FMUs to a previous state or triggering the termination of the simulation
(selected non-deterministically).

DoStepDiscard =
let

SetFMUStates =
let

SetFMUState(i) =
readSt .i?ct ′?st ′ → setState.i !ct ′!st ′ → SKIP

within

||| i : ifmus • SetFMUState(i)

within
(SetFMUStates u TriggerMATerminate); rollback → SKIP

Process DoNextStep processes the action that follows the execution of a sim-
ulation step on the indexed collection of FMUs. It considers two cases: (a)
all simulation steps executed successfully (event finishedDoStep) and (b) one
of the FMUs discarded the step and a rollback is required (event rollback).
The former proceeds with the simulation for the next communication time
point (process CarrySteps), and the latter repeats the step with current com-
munication time point but with a new smaller step-size.

DoNextStep =
let

ost = decStep(stp, stpInc)
within

finishedDoStep → CarrySteps(nextCurrentTm(ct , stp, cint), stp)
2 rollback →

if not empty(ost)
then CarryStep(the(ost))
else TriggerMATerminate

5 FDR3 Formal Analysis of FMI Semantics

This section performs a formal analysis of the FMI semantics presented in
the previous section. The analysis checks whether the semantics is accurate
(validation) and satisfies certain desired properties (verification); it was per-
formed with CSP’s FDR3 tool [GRABR14], which increased our confidence
in the accuracy and soundness of the semantics.

40

D2.1d - Foundations for FMI Co-Modelling (Public)

In the following, we briefly describe FDR3, present the optimised CSP version
that enabled an FDR3 analysis, and present the verification and validation
analysis that was carried out.

5.1 FDR3 in a nutshell

FDR (Failures Divergence Refinement) is a refinement checker for the process
algebra CSP [Hoa85, Sch00, Ros10b]. FDR3 [GRABR14], the most recent
version of FDR, is able to check if some processes refines another according
to the denotational models of CSP, namely, traces, failures and failures di-
vergences. This provides a powerful analysis mechanism as many questions
about processes can be expressed in terms of refinement.

A refinement check is a claim of the form SPEC v IMPL. This says that
IMPL refines SPEC . In the base CSP model of traces this equates to show
that traces(IMPL) ⊆ traces(SPEC): every behaviour observed in IMPL can
also be observed in SPEC . The other CSP semantic models build up on
the traces model by introducing the notions of failures, refusals and diver-
gences.

FDR is able to check important properties of concurrent systems by con-
structing the appropriate refinement checks, such as:

• Deadlock-Freedom. Deadlock arises when no further progress can be
made. In a concurrent world, one process can inhibit or temporar-
ily suspend the execution of another. Deadlocks are typically illus-
trated with the classic computer science example of the dining philoso-
phers [Hoa85]. In CSP, a process is deemed deadlock-free provided it
does not stop.

• Livelock-freedom. A livelocked system is one that diverges — it can
perform only internal events becoming unresponsive to its environment.
In CSP, a process is deemed livelock- or divergence-free when it is not
possible that it engages in an infinite amount of internal events.

• Determinism. A deterministic process is one that gives the same result
every time some offer is made from the environment. A deterministic
process does not provide any uncertainty with respect to a particular
outcome, always yielding the same result. More specifically, a determin-
istic process can never either diverge or have the option of performing
an event or refusing it.

41

D2.1d - Foundations for FMI Co-Modelling (Public)

FDR’s refinement-checking modus operandi is based on classical model-checking.
This means that is performs an exhaustive exploration of all possible be-
haviours of a model [CW+96]. Model-checking works by refutation; to prove
a property P , a model-checker will try to find a counter-example that shows
¬ P ; if none is found, then P is deemed to be true. In the context of
refinement-checking, a counter-example is a trace that highlights the non-
existence of a refinement between the compared processes.

The analysis presented here also used ProBE (Process Behaviour Explorer),
FDR’s companion tool, now integrated within FDR3. ProBE applies the for-
mal analysis technique of simulation or animation, a form of model testing
that allows tests to be executed against the model. ProBE animates CSP pro-
cesses allowing the user to interactively explore a process’s behaviour

5.2 The FDR3 Optmised Version of the Semantics

The semantics presented in the previous section was designed to constitute
an accurate CSP model with the ultimate goal of verification using a theorem
prover, such as Isabelle [NK14]. This section takes into account an optimised
version of the semantics presented in the previous section to enable a practical
formal model-checking analysis with FDR3.

The types based on integers defined in Section 4.1 need to be bounded.
Model-checking only works with finite models; a practical analysis is feasible
only when the types are restricted. In doing so, we are doing a sort of ad-
hoc abstract interpretation [CC77] to make the model-checking based analysis
practical: we create a model that is a simplified approximation of the original,
but that allows us to perform inferences that apply to the original model we
abstracted from.

We introduce constants TmUB (time upper bound), MAXFMUs (maximum num-
ber of FMUs), MAXVARs (maximum number of variables), MINSTP (minimum
step) and MAXSTP (maximum step):

TmUB = 3
MAXFMUs = 5
MAXVARs = 1
MINSTP = 1
MAXSTP = 2

Based on this we bound the types Time, Var and Val, and the sets FMUIdx

and Step:

42

D2.1d - Foundations for FMI Co-Modelling (Public)

nametype Time = { 0 . .TmUB}
nametype Var = { 1 . .MAXVARs}
nametype Val = {0 . . 1}
FMUIdx = { 1 . .MAXFMUs}
Step = {MINSTP . .MAXSTP}

We map the environments of the previous section into FDR3 maps, which
gives us the same semantics in a FDR3 world:

nametype Env = Map (Var , Val)

To further reduce the number of states, we allow FMU states to contain
inputs and outputs only:

nametype St = Env . Env

The CSP specification of the previous section defined St as Env .Env .Env to
allow for exposed variables of FMUs.

5.3 Verification

We describe the effort involved in verifying the different components that
make the CSP FMI semantics presented here.

5.3.1 FMU Process

To support the verification of deadlock-freedom in FDR3, we introduce Iter

to perform the iteration of a given process:

Iter(P) = P ; Iter(P)

This keeps running processes that terminate, which is important because
absence of deadlock involves checking that a process does not stop. By
removing the possibility of normal termination, we can have an analysis that
looks for genuine and unexpected deadlocks.

Using FDR3, we model-checked that the FMU process is both livelock- and
deadlock-free (assertions below). Absence of deadlock is formulated using
Iter: continuously-running FMUs must not deadlock.

a s s e r t FMU(1) : [d ive rgence f r e e]
a s s e r t I t e r (FMU(1)) : [deadlock f r e e]

43

D2.1d - Foundations for FMI Co-Modelling (Public)

5.3.2 Fixed Step Master Algorithm

The analysis of the fixed-step MA (FSMA) involves the following variables:

FSTP = 1
discEvs (i) = { | | }

Above, we say that the FSTP fixed step-size has the value 1, and that there
are no step discard events (function discEvs) as we are in the setting of
fixed-step simulation.

We start by verifying the healthiness of the generic MA that is used in the
checks of FSMA. The following assertions, discharged in FDR3, check absence
of both deadlock and livelock:

a s s e r t GenMAC({ 1 . . 5 } , (0 , 2) , fsmaTermEvs , d i scEvs) : [l i v e l o c k f r e e]
a s s e r t I t e r (GenMAC({ 1 . . 5 } , (0 , 2) , fsmaTermEvs , d i scEvs)) : [deadlock f r e e]

The following assertions, discharged in FDR3, check that the fixed-step mas-
ter algorithm (FSMA), in a setting with 5 FMUs and 3 time points, is both
livelock- and deadlock-free, and that only the expected events can be ob-
served. To improve the performance of the checks, we use FDR3’s diamond
compression with strong bisimulation (functions sbisim and diamond).

FSMA1 = sbi s im (diamond (FSMAC({ 1 . . 5 } , (0 , 2) , FSTP, 0)))
a s s e r t FSMA1 : [l i v e l o c k f r e e]
a s s e r t I t e r (FSMA1) : [deadlock f r e e]
a s s e r t GenMAC({ 1 . . 5 } , (0 , 2) , fsmaTermEvs , d i scEvs) [T= FSMA1

Likewise, for a setting of 3 FMUs and a delay of 3 tocks for asynchronous
steps:

a s s e r t FSMAC({ 1 . . 3 } , (0 , 2) , FSTP, 3) : [d ive rgence f r e e]
a s s e r t I t e r (FSMAC({ 1 . . 5 } , (0 , 2) , FSTP, 3)) : [deadlock f r e e]
a s s e r t GenMAC({ 1 . . 3 } , (0 , 2) , fsmaTermEvs , d i scEvs)

[T= FSMAC({ 1 . . 3 } , (0 , 2) , FSTP, 3)

We now turn to a global check to verify overall cosimulations. The next
assertions, discharged in FDR3, check that the cosimulation with FSMA
with two FMUs and a pending-wait time of 3 tocks is both livelock and
deadlock-free, and that only the expected evens can be observed:

a s s e r t CosimFSMA ({1 , 2} , (0 , 2) , FSTP, 3) : [d ive rgence f r e e]
a s s e r t I t e r (CosimFSMA ({1 , 2} , (0 , 2) , FSTP, 3)) : [deadlock f r e e]
a s s e r t GenMAC({1 , 2} , (0 , 2) , fsmaTermEvs , d i scEvs)

[T= CosimFSMA ({1 , 2} , (0 , 2) , FSTP, 3)

Likewise for a setting of up to 5 FMUs:

44

D2.1d - Foundations for FMI Co-Modelling (Public)

CoSimFSMA6 = sbi s im (diamond (CosimFSMAO ({ 1 . . 5 } , (0 , 2) , FSTP)))
a s s e r t CoSimFSMA6 : [l i v e l o c k f r e e]
a s s e r t I t e r (CoSimFSMA6) : [deadlock f r e e]
GenFMI2 =

sb i s im (diamond (GenMAO({ 1 . . 5 } , (0 , 2) , fsmaTermEvs , d i scEvs)))
a s s e r t GenFMI2 [T= CoSimFSMA6

Above, CoSimFSMA6 uses FDR3’s diamond compression in the setting of
strong bi-simulation. The assertions were discharged with FDR3.

5.3.3 Rollback Master Algorithm

We model-checked absence of livelock and deadlock for the rollback MA
(process RBMA) in a setting with 3 FMUs and 3 time points:

a s s e r t RBMA({ 1 . . 3 } , (0 , 2) , MAXSTP, 1) : [d ive rgence f r e e]
a s s e r t I t e r (RBMA({ 1 . . 3 } , (0 , 2) , MAXSTP, 1)) : [deadlock f r e e]

The generic simulation with discard events (as defined in event set discEvs
above) is both deadlock- and livelock-free, as stated in the assertions that
follow for 3 FMUs, which were discharged in FDR3:

a s s e r t
GenMAC({ 1 . . 3 } , (0 , 2) , rbTermEvs , d i scEvs) : [l i v e l o c k f r e e]

a s s e r t
I t e r (GenMAC({ 1 . . 3 } , (0 , 2) , rbTermEvs , d i scEvs)) : [deadlock f r e e]

The rollback MA is less efficient than the fixed-step MA because the states
of the FMUs need to be saved at each step, and this is reflected in the
efficiency of the FDR3 analysis. For the rollback MA, we could only perform
the required verification checks (livelock and deadlock-freedom and expected
events) in settings with up to 3 FMUs and 3 time-points:

CoSimRBMA3 = sbi s im (diamond (CoSimRBMA ({ 1 . . 3} , (0 , 2) , MAXSTP, 1)))
a s s e r t I t e r (CoSimRBMA4) : [d ive rgence f r e e]
a s s e r t I t e r (CoSimRBMA4) : [deadlock f r e e]
GenSim3 = sb i s im (diamond (GenMAC({1 . . 3} , (0 , 2) , rbTermEvs , d i scardEvs)))
a s s e r t GenSim3 [T= CoSimRBMA3

Above, we make use FDR3’s diamond compression in the setting of strong
bi-simulation.

45

D2.1d - Foundations for FMI Co-Modelling (Public)

Valve

Tank 1

Tank 2

Tank 3

Figure 6: The three cascading Water Tanks Example

5.4 Validation

We validate the FMI semantics presented here with two examples: the three
cascading water tanks, and the periodic discrete signal generator.

5.4.1 Three Water Tanks

The three cascading Water Tanks System (3WTS), the running example of
INTO-CPS deliverable D2.1a [APC+15] that describes the SysML/INTO-
CPS profile, is given in Figure 6. The SysML/INTO-CPS architecture struc-
ture diagram (ASD) and connections diagram (CD) that describe a design
of 3WTs are given in Figure 7.

The FMI interpretation of the CD (Fig. 7(b)) gives three FMUs: TanksCon-
trol1, TanksControl2 and Controller10. We describe here in CSPm the
casting of the SysML/INTO-CPS model of 3WTs into the FMI semantics
presented here, and provide a run of 3WTs with 3 time points. We check,
using FDR3, that the run is a traces refinement of a cosimulation with a
FSMA.

The following CSPm snippet defines the state of the three FMUs:

C o n t ro l l e r S t = (| |) . (| 1=>0 |)
TanksControl1St = (| 1=>0 |) . (| 1=>0 |)
TanksControl2St = (| 1=>0 |) . (| 1=>0 |)

10It gives three FMUs because FMU nesting is not currently supported.

46

D2.1d - Foundations for FMI Co-Modelling (Public)

<<System>>
WaterTanksSys

1

ASD::WaterTanks

kind = Subsystem
co-modelling

platform = 20sim
modelTy = continuous

<<EComponent>>
TanksControl1

2

1

kind = Subsystem
co-modelling

platform = 20sim
modelTy = continuous

<<EComponent>>
TanksControl2

1

kind = Cyber
flow ports

out v1 : OpenClosed = closed
co-modelling

platform = VDM/RT
modelTy = discrete

<<EComponent>>
Controller

kind = Physical
variables

v : OpenClosed
flow ports

in v2 : OpenClosed
out w : FlowRate ← v2

<<POComponent>>
Valve

open
closed

<<Enumeration>>
OpenClosed

unit = "m3/s"

<<ValueType>>
FlowRate⇨Realkind = Physical

variables
h : Height = 0
parameter a : Area
parameter r : Real

flow ports
in win : FlowRate
out wout : FlowRate ← win

<<POComponent>>
WaterTank

unit = "meters"

<<ValueType>>
Height⇨Real

unit = "m3"

<<ValueType>>
Area⇨Real

1 1

(a) ASD

WT: WaterTanks

TC1: TanksControl1

CD::WaterTanks

V : Valve WT1 : WaterTank

TC2 : TanksControl2

WT2 : WaterTank

C : ControllerOpenClose ◀

WT3 : WaterTank
FlowRate ▶ FlowRate ▶ FlowRate ▶

v2
w win wout

v1

win wout win wout

(b) CD

Figure 7: SysML/INTO-CPS ASD and CD of the three cascading Water
Tanks Example

Above, we define map extensions using the parenthesis (| |). 1=>0 means
that variable 1 is given value 0.

The process described in the next CSPm snippet defines a FMI co-simulation
of 3WTs. The process is as follows: (i) it starts the MA, (ii) it instantiates the
Controller FMU (FMU index 1), sets its output and ends the initialisation
of this FMU, (iii) does the same for the TanksControl1 (FMU index 2) and
TanksControl2 (FMU index 3), (iv) it does three steps on the FMUs as
described in WTsRun0 and (v) ends the cosimulation.

WTsSimulation =
l e t

WTsSimulation (ct) =

47

D2.1d - Foundations for FMI Co-Modelling (Public)

Notice that we do not attempt to define this for CT inputs. Indeed, if presented with a CT input, this
component will produce a rather odd output signal, one whose initial value is always absent, and subsequent
values are present. If the input is a piecewise continuous DE signal, then the input is always absent at
microstep zero, and the output will also be piecewise continuous. If the input is free of chattering Zeno
conditions, then the output will be free of chattering Zeno conditions. In this case, the final value of the
input is also ", so the final value of the output will be ".

Notice further that we do not generalize this component to have a parameter m to delay by m microsteps.
See the discussion in Section 4.4 below for the reason for this.

4 Composition Test Cases

A hybrid cosimulation FMI standard that enables definition of the above components provides a rich frame-
work for composition of discrete and continuous simulation tools. Any such standard should be able to
unambiguously define FMUs that realize such components and should ensure that host simulators are capa-
ble of executing these FMUs. Such capabilities can be verified using unit tests that check each of the above
components individually by providing a range of inputs and verifying that the outputs match the ideal (up
to some precision, where appropriate). But such unit tests are not quite su�cient. We also need to ensure
that interactions between multiple components behave correctly.

In this section, we discuss some test cases that combine a few of the above components, and give accep-
tance criteria that define correct behavior. These test cases are, in e↵ect, constraints on master algorithms.
Host simulators that conform with the standard must implement master algorithms that satisfy these ac-
ceptance criteria.

4.1 Synchronous Events

This test case checks that multiple components with discrete timed behavior coordinate their representations
of time. Consider the composition shown in Figure 4. This has three components:

1. A Periodic Discrete Signal Generator with period p=1/3 and a=1.

2. A Periodic Discrete Signal Generator with period p=2/3 and a=1.

3. A Sampler with DE input x

The test criterion is that the output of the Sampler should equal the output of second Periodic Discrete
Signal Generator at all superdense times. More generally, we would like the periods to be p = q and 2q,
where q is a representable time, given as 1/3 in our test case.

Discussion. FMUs may internally use representations of time that are di↵erent from that of the host
simulator. This test criterion is intended to ensure that no matter how the FMU and host simulator
internally represent time, the Sampler and Periodic Discrete Signal Generator semantics are respected. This
test case also checks for a well-defined notion of simultaneity. In particular, the periods chosen are not

Figure 4: Test case for sampling of discrete event signals.

19

Figure 8: The periodic discrete signal generator example of [BGL+14]

doStep . 1 . c t .1−> doStepOutcome . 1 . stepOk
−> get . 1 . output .1?{ v} −> s e t . 2 . input . 1 . v
−> doStep . 2 . c t .1−> doStepOutcome . 2 . stepOk
−> get . 2 . output .1?{w} −> s e t . 3 . input . 1 .w
−> doStep . 3 . c t .1−> doStepOutcome . 3 . stepOk
−> get . 3 . output .1?{w2}−>SKIP

with in
startMA −> i n s t a n t i a t e . 1 ! C o n t r o l l e r S t −> setup . 1 ! (0 , 2)
−>s e t . 1 . output . 1 . 1 −> endIn i t . 1
−> i n s t a n t i a t e . 2 ! TanksControl1St −> setup . 2 ! (0 , 2) −> endIn i t . 2
−> i n s t a n t i a t e . 3 ! TanksControl2St −> setup . 3 ! (0 , 2)
−> endIn i t . 3
−> (WTsSimulation0 (0) ; WTsSimulation0 (1) ; WTsSimulation0 (2)) ;

terminateMA−>terminate . 1
−>terminate .2−> terminate .3−>SKIP

The next assertion, model-checked using FDR3, confirms that WTsSimula-

tion is a traces refinement of a cosimulation of the fixed-step master algo-
rithm presented in section 4.5.4.

CosimFSMA1 = sbi s im (diamond (CosimFSMA ({ 1 . . 3 } , (0 , 2) , FSMASTP, 0)))
a s s e r t CosimFSMA1 [T= WTsSimulation

5.4.2 Periodic discrete signal generator

The periodic discrete signal generator example of [BGL+14] is pictured in
Figure 8. It highlights a configuration with 4 FMUs.

The next CSPm snippet describes the states of these four FMUs:

PDSG1St = (| |) . (| 1=>0 |)
PDSG2St = (| |) . (| 1=>1 |)

48

D2.1d - Foundations for FMI Co-Modelling (Public)

SamplerSt = (| 1 => 0 , 2= >0 |) . (| 1=>1 |)
CheckEqualitySt = (| 1 => 0 , 2= >0 |) . (| 1=> 0 |)

A CSPm process that describes a simulation of these four FMUs is as fol-
lows:

PDSGSimulate =
startMA−>i n s t a n t i a t e . 1 ! PDSG1St −>setup . 1 ! (0 , 2)
−>endIn i t . 1
−> i n s t a n t i a t e . 2 ! PDSG2St −> setup . 2 ! (0 , 2)
−>endIn i t . 2
−> i n s t a n t i a t e . 3 ! SamplerSt −> setup . 3 ! (0 , 2)
−>endIn i t . 3
−> i n s t a n t i a t e . 4 ! CheckEqualitySt −> setup . 4 ! (0 , 2)
−>endIn i t . 4
−− F i r s t Run g i v e s equal
−>doStep .1.0.1−> doStepOutcome . 1 . stepOk
−> get . 1 . output .1?{ v}
−> doStep .2.0.1−> doStepOutcome . 2 . stepOk
−> get . 2 . output .1?{w}
−> s e t . 3 . input . 1 . v −> s e t . 3 . input . 2 .w
−> doStep .3.0.1−> doStepOutcome . 3 . stepOk
−> get . 3 . output .1?{w}
−> s e t . 4 . input . 1 .w
−> s e t . 4 . input . 2 .w
−> doStep .4.0.1−> doStepOutcome . 4 . stepOk
−> get . 4 . output .1?{1}
−− Second Run g i v e s not equal
−>doStep .1.1.1−> doStepOutcome . 1 . stepOk
−> get . 1 . output .1?{ v}
−> doStep .2.1.1−> doStepOutcome . 2 . stepOk
−> get . 2 . output .1?{w}
−> s e t . 3 . input . 1 . v −> s e t . 3 . input . 2 .w
−> doStep .3.1.1−> doStepOutcome . 3 . stepOk
−> get . 3 . output .1?{ v2}−>s e t . 4 . input . 2 . v2
−> s e t . 4 . input . 1 .w
−> doStep .4.1.1−> doStepOutcome . 4 . stepOk
−> get . 4 . output .1?{0}
−− Third Run g i v e s equal
−>doStep .1.2.1−> doStepOutcome . 1 . stepOk
−> get . 1 . output .1?{ v}
−> doStep .2.2.1−> doStepOutcome . 2 . stepOk
−> get . 2 . output .1?{w}
−> s e t . 3 . input . 1 . v −> s e t . 3 . input . 2 .w
−> doStep .3.2.1−> doStepOutcome . 3 . stepOk
−> get . 3 . output .1?{ v}
−>s e t . 4 . input . 2 . w−> s e t . 4 . input . 1 .w
−> doStep .4.2.1−> doStepOutcome . 4 . stepOk
−> get . 4 . output .1?{1}

49

D2.1d - Foundations for FMI Co-Modelling (Public)

−− The terminat ion phase
−>terminate .1−> terminate .2−> terminate . 3
−>terminate .4−>SKIP

The following assertions, which check whether the process ’PDSGSimulate’
is a valid run of FSMA, were checked using FDR3

a s s e r t FSMAO ({ 1 . . 4 } , (0 , 2) , FSTP) [T= PDSGSimulate
a s s e r t FSMAC ({ 1 . . 4 } , (0 , 2) , FSTP, 0) [T= PDSGSimulate

The following global assertion (in an overall co-simulation setting) could not
be checked using FDR3 due to the state explosion problem. It was checked
through simulation using ProBE.

CosimFSMA1 = sbi s im (diamond (CosimFSMAO ({ 1 . . 4 } , (0 , 2) , FSTP)))
a s s e r t CosimFSMA1 [T= PDSGSimulate

5.5 Experimental Results

We now present some experimental results related with model-checking in
FDR3 assertions that verify and validate the CSP semantics as described
above. The experiments were performed on a MacBook Pro with a 2.5 GHz
Intel core i7 processor and 16GB RAM memory. The results of the experi-
ment are summarised in table 2. Of all the assertions listed in the table, only
the one related with the periodic-discrete signal generator (PDSG) could not
be discharged with FDR3 (signalled in table 2 as ∞); as described above,
this assertion was checked using ProBE; FDR’s inability to discharge this
assertion is due to PDSG’s larger state space (PDSG requires 4 FMUs with
two variables, the extra variable constituting an unsurmountable hurdle for
refinement-checking).

6 Conclusions

This deliverable presents the efforts of INTO-CPS’s WP2 on the formal foun-
dations of the FMI standard. The document gives an introduction to the
FMI, emphasising FMI’s co-simulation facet, surveys the FMI-related liter-
ature with a special focus on formal approaches to the FMI, develops the
formal semantics of FMI expressed in the CSP process algebra, and does
a formal analysis based on model-checking of semantics. The deliverable’s
main contribution is the CSP semantics of FMI co-simulation, which denotes

50

D2.1d - Foundations for FMI Co-Modelling (Public)

Assertion # FMUs # Vars Time (sec)

FMU livelock – 1 0.12
FMU deadlock – 1 0.52
CosimFSMA livelock, 0 tocks 2 1 0.77
CosimFSMA deadlock, 0 tocks 2 1 0.33
GenFMISim vT CosimFSMA, 0 tocks 2 1 0.27
CosimFSMA livelock, 3 tocks 2 1 6.2
CosimFSMA deadlock, 3 tocks 2 1 7.93
GenFMISim vT CosimFSMA, 0 tocks 2 1 13.61
CosimFSMA livelock, 0 tocks 5 1 520.39
CosimFSMA deadlock, 0 tocks 5 1 0.09
GenFMISim vT CosimFSMA, 0 tocks 5 1 397.46
RBMA livelock 3 1 119.63
RBMA deadlock 3 1 28.36
CosimRBMA livelock 2 1 2.32
CosimRBMA deadlock 2 1 0.25
CosimRBMA livelock 3 1 117.51
CosimRBMA deadlock 3 1 7.37
3WTs 3 1 9.76
PDSG 4 2 ∞

Table 2: Experimental results of formally analysing FMI’s CSP Semantics
with FDR3 refinement-checker. Columns indicate the analysed assertions,
the number of FMUs, the number of variables and the time FDR3 took to
execute the assertion.

51

D2.1d - Foundations for FMI Co-Modelling (Public)

an underlying UTP semantics. As master algorithms are a a crucial com-
ponent of FMI co-simulation, the document presents the formalisations of
two classes of MAs: simple fixed-step MAs, and the variable-step MAs with
support for rollback proposed in [BBG+13].

CSP has been chosen to express the semantics due to its appropriateness to
express interaction-driven computations. FMI co-simulation revolves around
the interaction between a MA with FMUs, which is precisely what is covered
by the semantics presented here. This interaction is concisely expressed in
the following CSP process that is portrayed in Fig. 2:

Cosimulation = MA ‖
CosimEvs

||| i : ifmus • FMU (i)

FMI co-simulation involves an MA that synchronises with a collection of
FMUs that run in interleaving, where the synchronisation is based on the FMI
API for co-simulation described in CSP as communication channels.

It is interesting to compare the CSP formal semantics against [BBG+13],
which is, to our knowledge, the only alternative FMI formalisation to the
work presented here. A striking difference from our semantics to [BBG+13]
lies in the level of fidelity with respect to the underlying FMI. The model
of [BBG+13] makes many simplifications with the aim of showing the condi-
tions under which a composition of FMUs ensures determinism; for example
the mathematical model of [BBG+13] models FMU step executions as a to-
tal function that considers only two possible outcomes: success and rejection
of the proposed step size. There is no consideration for the possibility that
a FMU may simply fail to execute the step, or that it executes the step
asynchronously and a master algorithm needs to wait for the step execution
to finish, or simply that the FMU is non-deterministic (has it happens so
oftenly with abstract discrete models, such as the discrete CSP model pre-
sented here, which is nondeterministic). The semantics presented here was
developed to (a) gain a better understanding of the FMI and FMI-based
co-simulation, (b) reason about the FMI, and (c) evaluate the impact of pos-
sible FMI extensions by studying them at the model level. These three aims
require a mathematical account with high-level of fidelity. Now that we have
this very general and accurate model that tells us how a FMU works, we
can study the properties of classes of FMUs from our semantics similar to
[BBG+13]’s deterministic study. Using the theory of CSP refinement, we can
build a deterministic FMU that is proved to be a refinement of the most gen-
eral FMU and that, like in [BBG+13], can only execute the step or discard
the given step-size, and from then we can study deterministic compositions
of FMUs as done in [BBG+13]. But the semantics presented here gives us

52

D2.1d - Foundations for FMI Co-Modelling (Public)

other possibilities also; for example, we can use it for reasoning about FMU
failures and MAs that ensure resilient co-simulations, study the interaction
of classes of MAs with FMUs, study MAs that tolerate asynchronous modes
of FMU execution, etc.

Another difference lies in the fact that [BBG+13] does not describe the depen-
dencies that exist between the different operations and phases that a FMU
goes through in a FMI co-simulation. For example, before a FMU is allowed
to execute a step it must have been set up and certain state components must
have been initialised. The CSP formalisation presented here describes such
dependencies. This means that unlike [BBG+13], the CSP model enables
the analysis of deadlock and livelock in the interaction between a MA and
FMUs and enables us to certify certain master algorithms as deadlock- and
livelock-free.

The CSP formalisation presented here has ben subject to a machine-assisted
analysis with the FDR3 refinement-checker, albeit in a setting of constant
parameters that confine the CSP model within small bounds to avoid the
state explosion problem. This was not exploited in [BBG+13]; proofs were
performed without machine-assistance. In the future we would like to explore
verification with the Isabelle theorem prover [NK14]. This means that we
no longer have to imprison our CSP model within small bounds. Hence, the
analysis becomes more general but it also requires more user intervention.
We no longer have model enquiries answered by simply pushing a button; we
somehow loose this straightforward feedback capability when we move into
an interactive theorem proving world, where user-written proofs are required.
However, it allows us to relax some restrictions of the semantics presented
here and increase its accuracy, in particular, with respect to time, represented
as integers in CSP model presented here; in the future, we would like to have
a representation of time based on reals and its machine-representation based
on floating-point numbers.

53

D2.1d - Foundations for FMI Co-Modelling (Public)

References

[ABH+10] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede,
Thai Son Hoang, Farhad Mehta, and Laurent Voisin. Rodin:
an open toolset for modelling and reasoning in Event-B. In-
ternational Journal on Software Tools for Technology Transfer
(STTT), 12(6):447–466, 2010.

[Abr10] Jean-Raymond Abrial. Modeling in Event-B: system and soft-
ware engineering. Cambridge University Press, 2010.

[APC+15] Nuno Amálio, Richard Payne, Ana Cavalcanti, Etienne
Brosse, and Jim Woodcock. Foundations of the SysML pro-
file for CPS modelling. Technical Report D2.1a, INTO-CPS
project, 2015.

[BBG+13] David Broman, Christopher Brooks, Lev Greenberg, Ed-
ward A. Lee, Michael Masin, Stavros Tripakis, and Michael
Wetter. Determinate composition of FMUs for co-simulation.
In EMSOFT 2013. IEEE, 2013.

[BCWS11] Jens Bastian, Christoph Clauß, Susan Wolf, and Peter Schnei-
der. Master for co-simulation using FMI. In Modelica Confer-
ence, 2011.

[BGL+14] David Broman, Lev Greenberg, Edward A. Lee, Michael
Masin, Stavros Tripakis, and Michael Wetter. Requirements
for hybrid cosimulation. Technical Report UCB/EECS-2014-
157, EECS Department, University of California, Berkeley,
2014.

[BOA+11] Torsten Blochwitz, Martin Otter, M. Arnold, C. Bausch,
C. Clauß, Hilding Elmqvist, A. Junghanns, J. Mauss, M. Mon-
teiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz, and
S. Wolf. The functional mockup interface for tool independent
exchange of simulation models. In Modelica Conference, 2011.

[BOA+12] T. Blochwitz, M. Otter, J. Akesson, M. Arnold, C. Clauß,
H. Elmqvist, M. Friedrich, A. Junghanns, J. Mauss,
D. Neumerkel, H. Olsson, and A. Viel. Functional mockup
interface 2.0: The standard for tool independent exchange of
simulation models. In Modelica Conference, 2012.

54

D2.1d - Foundations for FMI Co-Modelling (Public)

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpreta-
tion: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, 1977.

[CW+96] Edmund Clarke, Jeannette Wing, et al. Formal methods:
State of the art and future directions. ACM Computing Sur-
veys, 28(4):626–643, 1996.

[DLV12] Patricia Derler, Edward A. Lee, and Alberto Sangiovanni Vin-
centelli. Modeling cyber-physical systems. Proceedings of
IEEE, 100(1), 2012.

[DMMV15] Joachim Denil, Bart Meyers, Paul De Meulenaere, and Hans
Vangheluwe. Explicit semantic adaptation of hybrid for-
malisms for FMI co-simulation. In Spring Simulation Multi-
Conference (SpringSim), 2015.

[FGP14] Yishai A. Feldman, Lev Greenberg, and Eldad Palachi. Simu-
lating rhapsody SysML blocks in hybrid models with FMI. In
Modelica Conference, 2014.

[FMI14] FMI development group. Functional mock-up interface
for model exchange and co-simulation, 2.0. https://www.

fmi-standard.org, 2014.

[GRABR14] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boul-
gakov, and A.W. Roscoe. FDR3 — A Modern Refinement
Checker for CSP. In Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 8413 of LNCS, pages
187–201, 2014.

[HJ89] Ian Hayes and Cliff Jones. Specifications are not (necessarily)
executable. Software Engineering Journal, 4(6):330–338, 1989.

[HJ98] C. A. R. Hoare and He Jifeng. Unifying Theories of Program-
ming. Prentice-Hall, 1998.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[KS00] R. Kübler and W. Schiehlen. Two methods of simulator cou-
pling. Mathematical and Computer Modelling of Dynamical
Systems, 6(2):93—113, 2000.

55

https://www.fmi-standard.org
https://www.fmi-standard.org

D2.1d - Foundations for FMI Co-Modelling (Public)

[MMP92] Oded Maler, Zohar Manna, and Amir Pnueli. From timed to
hybrid systems. In REX Workshop, pages 447–484. Springer,
1992.

[NK14] Tobias Nipkow and Gerwin Klein. Concrete Semantics: With
Isabelle/HOL. Springer, 2014.

[Par72] David Lodge Parnas. On the criteria to be used in decom-
posing systems into modules. Communications of the ACM,
15(12):1053–1058, 1972.

[PSR+12] Uwe Pohlmann, Wilhelm Schäfer, Hendrik Reddehase, Jens
Röckemann, and Robert Wagner. Generating functional
mockup units from software specifications. In Modelica Con-
ference, 2012.

[Ros10a] A. W. Roscoe. CSP is expressive enough for π. In Reflections
on the Work of C.A.R. Hoare. Springer, 2010.

[Ros10b] A. W. Roscoe. Understanding Concurrent Systems. Springer,
2010.

[SA12] Tom Schierz and Martin Arnold. Stabilized overlapping modu-
lar time integration of coupled differential-algebraic equations.
Applied Numerical Mathematics, 62:1491–1502, 2012.

[SAC12] Tom Schierz, Martin Arnold, and Christoph Clauß. Co-
simulation with communication step size control in an FMI
compatible master algorithm. In Modelica Conference, 2012.

[SBC14a] Vitaly Savicks, Michael Butler, and John Colley. Co-
simulating Event-B and continuous models via FMI. In Sum-
mer Simulation Multiconference, 2014.

[SBC14b] Vitaly Savicks, Michael Butler, and John Colley. Co-
simulation environment for rodin: Landing gear case study.
In ABZ, LNCS. Springer, 2014.

[Sch00] Steve Schneider. Concurrent and Real-Time Systems. Wiley,
2000.

[TB14] Stavros Tripakis and David Broman. Bridging the seman-
tic gap between heteregeneous modeling formalisms and FMI.
Technical Report UCB/EECS-2014-30, EECS Department,
University of California, Berkeley, 2014.

56

D2.1d - Foundations for FMI Co-Modelling (Public)

[TOHSMS99] Peri Tarr, Harold Ossher, William Harrison, and Jr Stanley
M. Sutton. N Degrees of Separation: Multi-Dimensional Sep-
aration of Concerns. In ICSE, 1999.

[Weg96] Peter Wegner. Interoperability. ACM Computing Surveys,
28(1):285–287, 1996.

A CSPm of FMI semantics

This appendix presents the CSPm definitions corresponding to an optimised
version of the CSP specification presented in section 4. The CSPm definitions
were the basis of a formal analysis with the FDR3 refinement-checker.

A.1 Base definitions

−− CSP semant ics o f FMI standard (ve r s i on 2 . 0)
−−
−− Module that prov ide s the base d e f i n i t i o n s o f semant ics
−−
−− Nuno Amalio
−− (from an i n i t i a l v e r s i o n o f Ana Cavalcant i and Jim Woodcock)

−− Constant time upper bound
TmUB = 3

−− Maximum number o f FMUs
MAXFMUs = 5

MAXVARs = 1

−− Type ’Time ’
nametype Time = { 0 . .TmUB} −−Int
nametype Var = { 1 . .MAXVARs} −− This r e p r e s e n t s v a r i a b l e s
nametype Val = {0 . . 1} −− This r e p r e s e n t s va lue s

datatype VarKind = input | output | s t a t e

−− Def ines o p t i o n a l s o f some given type
opt (X) = { s | s<− Set (X) , card (s) <= 1}

nametype Env = Map (Var , Val)

−− This ve r s i o n supports environments with inputs and outputs only .
−− A t h i rd environment would cover exposed s t a t e .

57

D2.1d - Foundations for FMI Co-Modelling (Public)

nametype St = Env . Env

emptySt = emptyMap . emptyMap

−− Gets the element o f a s i n g l e t o n
the ({x}) = x

−− n i l constant to stand f o r an empty s e t
n i l = {}

MAXSTP = 2
Step = { 1 . .MAXSTP}

−− Set o f i n d i c e s cor re spond ing to FMUs
FMUIdx = { 1 . .MAXFMUs}

−− A co−s imu la t i on i n t e r v a l with a s t a r t and an end time
nametype CosimInt = {(st , e t) | s t <− Time , e t <− Time , s t <= et }

−− Functions ’ f s t ’ and ’ snd ’
f s t ((st , e t)) = s t
snd ((st , e t)) = et

−− Channel to i n s t a n t i a t e FMU
channel i n s t a n t i a t e : FMUIdx . St

−− Channel to s e t up experiment
channel setup : FMUIdx . CosimInt

−− Channel to s e t the s t a t e o f a FMU
channel s e t : FMUIdx . VarKind . Var . Val

−− Channel to get the s t a t e o f a FMU
channel get : FMUIdx.{ output , s t a t e } . Var . opt (Val)

−− Channel to inform FMU that i n i t i a l i s a t i o n has f i n i s h e d
channel end In i t : FMUIdx

−− The FMU does a step
channel doStep : FMUIdx . Time . Step

−− The FMU terminate s
channel terminate : FMUIdx

−− Represents outcome o f a ’ doStep ’ event
datatype DoStepOutcome = stepOk | pending | d i s ca rd | f a i l

−− What the ’ doStep ’ event r e tu rn s to the environment
channel doStepOutcome : FMUIdx . DoStepOutcome

58

D2.1d - Foundations for FMI Co-Modelling (Public)

−− When c a l l to ’ doStep ’ i s asynchronous (outcome ’ pending ’) ,
−− MA may cance l s tep or FMU may say that s tep has f i n i s h e d
channel stepCancel , s t epF in i shed : FMUIdx
channel getState , s e t S t a t e : FMUIdx . Time . St

−− The FMI extens i on proposed by Broman et a l 2013
−− The n u l l s t ep means i n f i n i t y
channel getMaxStepSize : FMUIdx . opt (Step)

−−
−− Keeps execut ing a proce s s
I t e r (P) = P; I t e r (P)

−−
−− I t e r a t e s a proce s s through a sequence
IterPSeq (P, elems) =

i f n u l l (elems)
then SKIP
e l s e P(head (elems)) ; I terPSeq (P, t a i l (elems))

−−
−− Updates v a r i a b l e ’x ’ with value ’v ’ in a environment
updEnv (x , v , e) =

i f mapMember(e , x) then mapUpdate (e , x , v)
e l s e e

−−
−− Function that updates the s t a t e
updSt (i n s . outs , input , x , v) =

updEnv(x , v , i n s) . outs
updSt (i n s . outs , output , x , v) =

i n s . updEnv(x , v , outs)
updSt (i n s . outs , s ta te , x , v) =

i n s . outs

−− Gets value o f a map . I f i t e x i s t s r e tu rn s s i ng l e t on ,
−− otherwi se r e tu rn s empty s e t
getVarVal (x , map) =

i f mapMember(map , x)
then {mapLookup(map, x)}
e l s e {}

−−
−− Function that ge t s the value o f a v a r i a b l e in a FMU s t a t e
getValInFMUSt (i n s . outs , input , x) = getVarVal (x , i n s)
getValInFMUSt (i n s . outs , output , x) = getVarVal (x , outs)
−− opt imised ve r s i o n does not support s t a t e v a r i a b l e s
getValInFMUSt (i n s . outs , s ta te , x) = {}

59

D2.1d - Foundations for FMI Co-Modelling (Public)

−− Pred i ca te say ing i f g iven ct i s with in a cos imu la t i on i n t e r v a l
withinCosimInt (ct , (st , e t)) = s t <= ct and ct <= et

−− I s s u e s next communication time po int f o r s imu la t i on
−− given cur rent ct , a s tep and cos imu la t i on i n t e r v a l
−− I t i s s u e s next time po int (ct ’) only when ct i s v a l i d
nextCurrentTm (ct , stp , c i n t) =

i f withinCosimInt (ct , c i n t)
then ct+stp
e l s e ct

−− Process that te rminates a FMU
TerminateFMU(i) = terminate . i −> SKIP

A.2 FMU Process

−− CSP semant ics o f FMI standard (ve r s i on 2 . 0)
−−
−− Module that d e f i n e s p roce s s FMU d e s c r i b i n g FMI’ s API
−− f o r co s imu la t i on
−−
−− Nuno Amalio
−− (from an i n i t i a l v e r s i o n o f Ana Cavalcant i and Jim Woodcock)

in c lude ” fmi base . csp ”

−− Process ’FMU’
−− FMU i n t e r f a c e de f ined by FMI API f o r co s imu la t i on
FMU(i) =

l e t
Simulate =

l e t
−− FMU i s s e t up with the g iven co−s imu la t i on i n t e r v a l
−− and then proceeds with the i n i t i a l i s a t i o n
Setup (s t) = setup . i ? c i n t −> InitAndCarrySteps (st , c i n t)
−− The FMU i n t i t i a l i s e s and s t ep s
InitAndCarrySteps (st , c i n t) =

l e t
−− ’ c int ’ parameter because o f bug in FDR
CarrySteps (st , ct , c i n t) =

l e t
DoStep (s t) =

l e t
DoStepOk (ct ’) =

doStepOutcome . i ! stepOk
−> Fin i shStep (st , ct ’)

F in i shStep (i n s . outs , ct ’) =

60

D2.1d - Foundations for FMI Co-Modelling (Public)

l e t
F in i shStep0 (s t) =

get . i ?k?x ! getValInFMUSt (st , k , x)
−> Fin i shStep0 (s t)

[] CarrySteps (st , ct ’ , c i n t)
with in
| ˜ | outs ’ : Env @

Fin i shStep0 (i n s . outs ’)
DoStepPending (ct ’) =

l e t
DoStepPending0 =

stepF in i shed . i −> Fin i shStep (st , ct ’)
[] s tepCance l . i −> TerminateFMU(i)

with in
doStepOutcome . i ! pending −> DoStepPending0

DoStepDiscard =
l e t

DoStepDiscard0 =
TerminateFMU(i)
[] s e t S t a t e . i ? ct ’ ? st ’ −>

(ct ’ <= ct & CarrySteps (st ’ , ct ’ , c i n t)
[] ct ’ > ct & DoStepDiscard0)

with in
doStepOutcome . i ! d i s ca rd −> DoStepDiscard0

DoStepError =
doStepOutcome . i ! f a i l −> TerminateFMU(i)

with in
doStep . i ?mct? stp−>

l e t
ct ’ = nextCurrentTm (ct , stp , c i n t)

with in
i f mct == ct
then DoStepOk(ct ’)
| ˜ | DoStepPending (ct ’)
| ˜ | DoStepDiscard
| ˜ | DoStepError

e l s e DoStepError
CarrySteps0 (s t) =

s e t . i . input ?x?v
−> CarrySteps0 (updSt (st , input , x , v))

[] DoStep (s t)
[] g e tS ta t e . i ! c t ! s t −> CarrySteps0 (s t)
[] s e t S t a t e . i ? ct ’ ? st ’ −>

(ct ’ <= ct & CarrySteps (st ’ , ct ’ , c i n t)
[] ct ’ > ct & CarrySteps0 (s t))

with in
i f withinCosimInt (ct , c i n t)

then CarrySteps0 (s t)
e l s e SKIP

61

D2.1d - Foundations for FMI Co-Modelling (Public)

with in
s e t . i ?k?x?v −>

InitAndCarrySteps (updSt (st , k , x , v) , c i n t)
[] end In i t . i −> CarrySteps (st , f s t (c i n t) , c i n t)

with in
−− A FMU i s i n s t a n t i a t e d when i t i s g iven a s t a t e
i n s t a n t i a t e . i ? s t −> Setup (s t)

with in
−− The FMU s imu la t e s and i s i n t e r rup t ed when terminated
Simulate /\ TerminateFMU(i)

−−Checks that FMU does not engage in i n f i n i t e i n t e r n a l work
a s s e r t FMU(1) : [d ive rgence f r e e]

−− Checks that cont inuous ly running a FMU does not deadlock
a s s e r t I t e r (FMU(1)) : [deadlock f r e e]

A.3 Common Definitions to support Master Algorithms

−− The CSP semant ics o f the FMI standard (ve r s i on 2 . 0)
−−
−− Common part o f CSP s p e c i f i c a t i o n s o f master a lgor i thms (MAs)
−−
−− Nuno Amalio

−−
−− Channels to s t a r t and terminate the MA
channel startMA , terminateMA

−− Channels used by Timer (asynchronous s imu la t i on s t ep s)
channel tock , t imeout

−−
−− ’ Timer ’ p roce s s i s s u e s event ’ timeout ’ when time has e lapsed
Timer (t) =

t == 0 & timeout −> SKIP
[] t > 0 & tock −> Timer (t−1)

−− Process that wai ts f o r a g iven time u n t i l some event o f
−− a s e t happens (s e t ’ evs ’) .
−−
−− I f i t doesn ’ t happen i t t r i g g e r s events a s s o c i a t e d with ’ timeout ’
WaitUnti lOrTrigger (t , evsB , evsT) =

l e t
WaitUntil =

t == 0 & Timer (t)
[] t > 0 & Timer (t) /\ ([] e : evsB @ e −> SKIP)

62

D2.1d - Foundations for FMI Co-Modelling (Public)

WaitUnti lOrTrigger0 =
WaitUntil [| { | t imeout | } |> (; e : evsT @ e−>SKIP)

with in
WaitUnti lOrTrigger0 \{ | t imeout | }

−− Process that enab l e s a MA to s e t FMU s t a t e s v a r i a b l e s
−− ’ SetVarsFMU ’ ge t s FMU index and a s e t o f v a r i a b l e k inds
−− (VK, input , output or s t a t e)
SetVarsFMU (i , VK) =

(| ˜ | k : VK, x : Var , v : Val @ s e t . i ! k ! x ! v
−> SetVarsFMU(i , VK))
| ˜ | SKIP

−− Sets inputs o f a a g iven FMU (i i s FMU index)
MASetStepInputs (i) = SetVarsFMU (i , { input })

−− Gets the outputs o f a g iven FMU (i i s FMU index)
MAGetStepOutputs (i) =

l e t
Get (i) =
| ˜ | k : {output , s t a t e } , x : Var @

get . i ! k ! x? va l −> Get (i)
| ˜ | SKIP

with in
Get (i)

−− s t a r t s up FMUs: i n s t a n t i a t e s them , s e t s exper iments
−− and i n i t i a l i s e s them
−− Non−opt imised ve r s i o n with i n t e r l e a v i n g (r i g h t way o f doing i t)
StartupFMUs (ifmus , c i n t) =

l e t
StartupFMU(i) =

l e t
I n s t a n t i a t e = | ˜ | s t : St @ i n s t a n t i a t e . i ! s t −> SKIP
I n i t = SetVarsFMU (i , VarKind) ; end In i t . i −> SKIP
Setup = setup . i ! c i n t −> SKIP

with in
I n s t a n t i a t e ; Setup ; I n i t

with in
| | | i : i fmus @ StartupFMU(i)

−−
−− E f f i c i e n t v e r s i on o f ’ StartupFMUs ’ (above) without i n t e r l e a v i n g
−− Optmised v e r s i o n to take the most out o f FDR3
StartupFMUsE (ifmus , c i n t) =

l e t
StartupFMU(i) =

l e t
I n s t a n t i a t e = | ˜ | s t : St @ i n s t a n t i a t e . i ! s t −> SKIP

63

D2.1d - Foundations for FMI Co-Modelling (Public)

I n i t = SetVarsFMU (i , VarKind) ; end In i t . i −> SKIP
SetUp = setup . i ! c i n t −> SKIP

with in
I n s t a n t i a t e ; SetUp ; I n i t

with in
IterPSeq (StartupFMU , seq (i fmus))

−− MA terminates , t e l l i n g FMUs to terminate a l s o
−− This i s the non−opt imised ve r s i o n (the r i g h t way o f doing i t)
MATerminate (i fmus) =

l e t
TerminateFMUs =
| | | i : i fmus @ terminate . i −> SKIP

with in
terminateMA−>TerminateFMUs

−− Optmised MA terminate (without i n t e r l e a v i n g) , t e l l i n g FMUs
−− to terminate a l s o .
−− Imposes o rde r ing on te rminat i ons to get most out o f FDR3
MATerminateE(i fmus) =

l e t
TerminateFMUs =

l e t
TerminateFMU(i) =

terminate . i −> SKIP
with in

IterPSeq (TerminateFMU , seq (i fmus))
with in

terminateMA−>TerminateFMUs

−− This takes care o f the asynchronous p r o c e s s i n g o f a do−s tep
−− I t wai t s f o r some time u n t i l s t epF in i shed happens .
−− I f i t doesn ’ t happen then step i s c a n c e l l e d upon timeout
StepMAPending (i , to) =

WaitUnti lOrTrigger (to , { | s t epF in i shed . i | } , <stepCance l . i >)

StepPendingNoWait (i) = stepCance l . i −> SKIP

−− Bui lds a l l p o s s i b l e events o f c o l l e c t i o n o f indexed FMUs,
−− from a s e t o f i n d i v i d u a l FMU events
consFMIEvs (ifmus , fmuEvs) = Union ({ fmuEvs (i) | i <− i fmus })

−− Relevant events o f a co−s imu la t i on o f FMUs
FMUEvs (i) = { | i n s t a n t i a t e . i , setup . i , s e t . i , end In i t . i , doStep . i ,

get . i , t erminate . i , doStepOutcome . i , s tepCance l . i , s t epF in i shed . i ,
g e tS ta t e . i , s e t S t a t e . i | }

−− Bui lds s e t o f a l l events that a FMU may engage in
CosimEvs (i fmus) = consFMIEvs (ifmus , FMUEvs)

64

D2.1d - Foundations for FMI Co-Modelling (Public)

−−Represent g e n e r i c i n s t a n t i a t e and setup events
SetupEvs (c i n t) (i) = { | i n s t a n t i a t e . i , setup . i . c int , s e t . i ,

end In i t . i | }
StepEvs (ct , s tp) (i) = { | s e t . i , get . i , doStep . i . c t . stp ,

doStepOutcome . i , s tepCance l . i , s t epF in i shed . i | }

−− Allowed communication time po in t s in a cos imu la t i on i n t e r v a l
Valcts (c i n t) = { ct | ct<−Time , c t >= f s t (c i n t) , c t <= snd (c i n t)}

−− The Wait v e r s i o n o f the s tep pending
StepPendingWait (i , to) = StepMAPending (i , to)

StepPendingCancel (i , to) = to == 0 & StepPendingNoWait (i)

−− Tr igge r s te rminat ion o f MA
TriggerMATerminate = terminateMA−>SKIP

−−
−− A Generic MA that i s used to check that the s imu la t i on s
−− produce the expected events and no othe r s .
GenMA(ifmus , c int , termEvs , d i scEvs) =

l e t
Terminate = MATerminateE(i fmus)
Execute =

l e t
CarrySteps (ct) =

l e t
DoSteps (ct , s tp) =

l e t
GetStates =

l e t
GetState (i) =
| ˜ | s t : St @ getSta t e . i . c t . s t −> SKIP

with in
IterPSeq (GetState , seq (i fmus)) | ˜ | SKIP

SetS ta t e s =
l e t

SetState (i) =
| ˜ | s t : St @ s e t S t a t e . i . c t . s t −> SKIP

with in
IterPSeq (SetState , seq (i fmus)) | ˜ | SKIP

CarryStep =
l e t

HandlePending (i) =
l e t

Tocks = tock−>Tocks | ˜ | SKIP
FinishPendingStep =

stepCance l . i−>SKIP

65

D2.1d - Foundations for FMI Co-Modelling (Public)

| ˜ | s t epF in i shed . i−>SKIP
with in

Tocks ; FinishPendingStep
DoStep (i) =

doStep . i . c t . stp−>
(doStepOutcome . i . stepOk −> SKIP
| ˜ | doStepOutcome . i . pending
−> HandlePending (i)
| ˜ | doStepOutcome . i . d i s ca rd −> SKIP
| ˜ | doStepOutcome . i . f a i l −> SKIP)

Ful lStep (i) =
MASetStepInputs (i) ; DoStep (i) ;

MAGetStepOutputs (i)
with in
−− The more e f f i c i e n t v e r s i on . The r i g h t way
−− o f doing i t would r e s o r t to i n t e r l e a v i n g
IterPSeq (Ful lStep , seq (i fmus))

CarryAnother =
l e t

ct ’ = nextCurrentTm (ct , stp , c i n t)
with in

i f c t != ct ’
then DoSteps (ct ’ , s tp)
e l s e TriggerMATerminate

CarryOrRollbackStep =
CarryStep

[| consFMIEvs (ifmus , d i scEvs) |> Se tS ta t e s
NextSimAction = CarrySteps (ct) | ˜ | CarryAnother

with in
i f withinCosimInt (ct , c i n t)

then GetStates ; CarryOrRollbackStep ; NextSimAction
e l s e TriggerMATerminate

with in
| ˜ | stp : Step @ DoSteps (ct , s tp)

itermEvs = consFMIEvs (ifmus , termEvs)
Simulate =

CarrySteps (f s t (c i n t)) [| itermEvs |> TriggerMATerminate
Startup = StartupFMUsE (ifmus , c i n t)

with in
startMA −> Startup ; Simulate

with in
(Execute /\ Terminate) \{ | terminateMA | }

−− Complete g e n e r i c MA
GenMAC(ifmus , c int , termEvs , d i scEvs) =

GenMA(ifmus , c int , termEvs , d i scEvs)

−− Optimised g e n e r i c MA
GenMAO(ifmus , c int , termEvs , d i scEvs) =

66

D2.1d - Foundations for FMI Co-Modelling (Public)

GenMA(ifmus , c int , termEvs , d i scEvs)

A.4 Simple Fixed Step Master Algorithm

−− The CSP semant ics o f the FMI standard (ve r s i on 2 . 0)
−−
−− This cover s a f i x e d step master a lgor i thm
−−
−− Nuno Amalio

in c lude ”fmi ma common . csp ”
inc lude ” fmi fmu . csp ”

−− Termination events o f f i xed−s tep MA with no support f o r r o l l b a c k
−− Algorithm terminate s i f FMU i s s u e s a ’ d i scard ’
fsmaTermEvs (i) = { | doStepOutcome . i . f a i l , doStepOutcome . i . d i scard ,

stepCance l . i | }

−− A simple f i x e d step master a lgor i thm (FSMA) .
−− I t takes a number o f FMUs to coord inate (i fmus) ,
−− a cos imu la t i on i n t e r v a l (c i n t) , a s tep (stp)
−− and a timeout (to) to proce s s asynchronous s t ep s
FSMA (ifmus , c int , stp , to , StepPending) =

l e t
Simulate =

l e t
CarrySteps (ct) =

l e t
CarryStep =

l e t
Step (i) =

l e t
Step0 =

doStepOutcome . i . stepOk −> SKIP
[] doStepOutcome . i . pending−>

StepPending (i , to)
[] doStepOutcome . i . f a i l −> SKIP
[] doStepOutcome . i . d i s ca rd −> SKIP

with in
doStep . i ! c t ! s tp −> Step0

CarryStep0 (i) =
MASetStepInputs (i) ; Step (i) ; MAGetStepOutputs (i)

with in
−− Does a l l the s t ep s in an opt imised fo rmulat ion
−− without i n t e r l e a v i n g
IterPSeq (CarryStep0 , seq (i fmus))

ct ’ = nextCurrentTm (ct , stp , c i n t)

67

D2.1d - Foundations for FMI Co-Modelling (Public)

with in
i f withinCosimInt (ct , c i n t)

then CarryStep ; CarrySteps (ct ’)
e l s e SKIP

with in
CarrySteps (f s t (c i n t)) [| termEvs |> SKIP

Startup = StartupFMUsE (ifmus , c i n t)
Execute = startMA−> Startup ; Simulate
Terminate = MATerminateE(i fmus)
termEvs = consFMIEvs (ifmus , fsmaTermEvs)

with in
(Execute ; Terminate) \ { | terminateMA | }

−− Complete FSMA
FSMAC(ifmus , c int , stp , to) =

FSMA(ifmus , c int , stp , to , StepPendingWait)

−− Optimal FSMA (without support f o r pending)
FSMAO(ifmus , c int , s tp) =

FSMA(ifmus , c int , stp , 0 , StepPendingCancel)

−− Def ines what a cos imu la t i on with a FSMA i s
CosimFSMA (ifmus , c int , stp , to) =

FSMAC (ifmus , c int , stp , to)
[| CosimEvs (i fmus) |] (| | | i : i fmus @ FMU(i))

−− Def ines what a cos imu la t i on with opt imised FSMA
−− I t a l l ows more normal s t a t e s non−opt imised ve r s i o n
CosimFSMAO(ifmus , c int , s tp) =

FSMAO (ifmus , c int , s tp)
[| CosimEvs (i fmus) |] (| | | i : i fmus @ FMU(i))

A.5 Checks of the Fixed Step Master Algorithm

−− Tests o f the f ixed−s tep master a lgor i thm (FSMA)

inc lude ” fmi fsma . csp ”

−− STEP used to perform checks on FSMA
FSTP = 1
discEvs (i) = { | | }

−−Checks that g e n e r i c MAs are l i v e l o c k and deadlock f r e e
a s s e r t

GenMAC({ 1 . . 5 } , (0 , 2) , fsmaTermEvs , d i scEvs) : [l i v e l o c k f r e e]
a s s e r t

I t e r (GenMAC({ 1 . . 5 } , (0 , 2) , fsmaTermEvs , d i scEvs)) : [deadlock f r e e]

68

D2.1d - Foundations for FMI Co-Modelling (Public)

t ransparent sbis im , diamond

FSMA1 = sbi s im (diamond (FSMAC({ 1 . . 5 } , (0 , 2) , FSTP, 0)))

−− Checks whether some cont inuous ly execut ing FSMA i s deadlock f r e e
−− that does not support asynchronous ’ doStep ’ s
a s s e r t FSMA1 : [d ive rgence f r e e]
a s s e r t I t e r (FSMA1) : [deadlock f r e e]

a s s e r t
GenMAC({ 1 . . 5 } , (0 , 2) , fsmaTermEvs , d i scEvs) [T= FSMA1

−− Checks whether some cont inuous ly execut ing proce s s i s deadlock f r e e
−− that supports asynchronous ’ doStep ’ s
a s s e r t FSMAC({ 1 . . 3 } , (0 , 2) , FSTP, 3) : [d ive rgence f r e e]
a s s e r t I t e r (FSMAC({ 1 . . 3 } , (0 , 2) , FSTP, 3)) : [deadlock f r e e]

a s s e r t GenMAC({ 1 . . 3 } , (0 , 2) , fsmaTermEvs , d i scEvs)
[T= FSMAC({ 1 . . 3 } , (0 , 2) , FSTP, 3)

a s s e r t CosimFSMA ({1} , (0 , 2) , FSTP, 0) : [l i v e l o c k f r e e]
a s s e r t I t e r (CosimFSMA ({1} , (0 , 2) , FSTP, 0)) : [deadlock f r e e]

a s s e r t CosimFSMA ({1 , 2} , (0 , 2) , FSTP, 0) : [l i v e l o c k f r e e]
a s s e r t I t e r (CosimFSMA ({1 , 2} , (0 , 2) , FSTP, 0)) : [deadlock f r e e]
−− Checks that only expected events are observed from co−s imu la t i on
a s s e r t GenMAC({1 , 2} , (0 , 2) , fsmaTermEvs , d i scEvs)

[T= CosimFSMA ({1 , 2} , (0 , 2) , FSTP, 0)

a s s e r t CosimFSMA ({1 , 2} , (0 , 2) , FSTP, 3) : [l i v e l o c k f r e e]
a s s e r t I t e r (CosimFSMA ({1 , 2} , (0 , 2) , FSTP, 3)) : [deadlock f r e e]

−− Checks that only expected events are observed from co−s imu la t i on
a s s e r t GenMAC({1 , 2} , (0 , 2) , fsmaTermEvs , d iscEvs)

[T= CosimFSMA ({1 , 2} , (0 , 2) , FSTP, 3)

−− Tests o f the f ixed−s tep master a lgor i thm (FSMA)

inc lude ” fmi fsma . csp ”

−− Some sample FMU s t a t e s to enable FDR model check ing
i n i t s t 1 = (| 1=>0 |) . (| 1=>1 |)
i n i t s t 2 = (| 1=>0 |) . (| 1=>1 |)

−− A MA run that does three s u c e s s f u l s t ep s with one FMU
FST1 = startMA−>i n s t a n t i a t e . 1 ! i n i t s t 1−>setup . 1 ! (0 , 2)
−>s e t . 1 . input .1.1−> endIn i t . 1
−>doStep .1.0.1−>doStepOutcome . 1 . stepOk−>get . 1 . output . 1 .{1}
−>doStep .1.1.1−>doStepOutcome . 1 . stepOk

69

D2.1d - Foundations for FMI Co-Modelling (Public)

−>doStep .1.2.1−>doStepOutcome . 1 . stepOk
−>terminate .1−>SKIP

−− MA run that does two s u c e s s u l and
−− one u n s u c e s s f u l s tep with one FMU
FST2 = startMA−>i n s t a n t i a t e . 1 . i n i t s t 1−>setup . 1 ! (0 , 2)
−>s e t . 1 . input .1.1−> endIn i t .1−>doStep . 1 . 0 . 1
−>doStepOutcome . 1 . stepOk−>doStep . 1 . 1 . 1
−>doStepOutcome . 1 . stepOk−>doStep . 1 . 2 . 1
−>doStepOutcome . 1 . f a i l
−>terminate .1−>SKIP

−− A MA run with 2 FMUs that does three s u c e s s f u l s t ep s
FST3 = startMA−>i n s t a n t i a t e . 1 ! i n i t s t 1−>setup . 1 ! (0 , 2)

−>endIn i t . 1
−> i n s t a n t i a t e . 2 ! i n i t s t 2−>setup . 2 ! (0 , 2)
−>endIn i t . 2
−>doStep .1.0.1−>doStepOutcome . 1 . stepOk−>get . 1 . output . 1 .{1}
−>doStep .2.0.1−>doStepOutcome . 2 . stepOk
−>doStep .1.1.1−>doStepOutcome . 1 . stepOk−>get . 1 . output . 1 .{1}
−>doStep .2.1.1−>doStepOutcome . 2 . stepOk
−>doStep .1.2.1−>doStepOutcome . 1 . stepOk−>get . 1 . output . 1 .{1}
−>doStep .2.2.1−>doStepOutcome . 2 . stepOk
−>terminate .1−> terminate .2−>SKIP

−− A MA run with two FMUs where l a s t s tep can be okay , f a i l or d i s ca rd
FST4 = startMA−>i n s t a n t i a t e . 1 . i n i t s t 1
−>setup .1!(0 ,2)−> s e t . 1 . input .1.1−> endIn i t . 1
−> i n s t a n t i a t e . 2 . i n i t s t 2
−>setup .2!(0 ,2)−> endIn i t . 2
−>doStep .1.0.1−>doStepOutcome . 1 . stepOk−>get . 1 . output .1?{ v}
−>s e t . 2 . input . 1 . v−>doStep .2.0.1−>doStepOutcome . 2 . stepOk
−>doStep .1.1.1−>doStepOutcome . 1 . stepOk−>get . 1 . output .1?{ v}
−>s e t . 2 . input . 1 . v−>doStep .2.1.1−>doStepOutcome . 2 . stepOk
−>doStep .1.2.1−>doStepOutcome . 1 . stepOk−>get . 1 . output .1?{ v}
−>s e t . 2 . input . 1 . v−>doStep .2.2.1−>

(doStepOutcome . 2 . stepOk−>SKIP [] doStepOutcome . 2 . f a i l −>SKIP) ;
terminate .1−> terminate .2−>SKIP

−− A MA run where the l a s t s tep i s asynchronous and i s c a n c e l l e d
FST5 = startMA−>i n s t a n t i a t e . 1 . i n i t s t 1
−>setup .1!(0 ,2)−> s e t . 1 . input .1.1−> endIn i t . 1
−> i n s t a n t i a t e . 2 . i n i t s t 2
−>setup .2!(0 ,2)−> endIn i t . 2
−>doStep .1.0.1−>doStepOutcome . 1 . stepOk−>get . 1 . output .1?{ v}
−>s e t . 2 . input . 1 . v−>doStep .2.0.1−>doStepOutcome . 2 . stepOk
−>doStep .1.1.1−>doStepOutcome . 1 . stepOk−>get . 1 . output .1?{ v}
−>s e t . 2 . input . 1 . v−>doStep .2.1.1−>doStepOutcome . 2 . stepOk
−>doStep .1.2.1−>doStepOutcome . 1 . stepOk−>get . 1 . output .1?{ v}

70

D2.1d - Foundations for FMI Co-Modelling (Public)

−>s e t . 2 . input . 1 . v−>doStep . 2 . 2 . 1
−>doStepOutcome . 2 . pending−>tock−>tock−>tock−>stepCance l . 2
−>terminate .1−> terminate .2−>SKIP

−− MA run with FS .
−− Three s t ep s o f FMU2 are asynchronous but s u c e s s f u l (no timeout)
FST6 = startMA−> i n s t a n t i a t e . 1 . i n i t s t 1
−>setup .1!(0 ,2)−> s e t . 1 . input .1.1−> endIn i t . 1
−> i n s t a n t i a t e . 2 . i n i t s t 2−>setup .2!(0 ,2)−> endIn i t . 2
−>doStep .1.0.1−>doStepOutcome . 1 . stepOk−>get . 1 . output .1?{ v}
−>s e t . 2 . input . 1 . v−>doStep .2.0.1−>doStepOutcome . 2 . pending
−>s t epF in i shed . 2
−>doStep .1.1.1−>doStepOutcome . 1 . stepOk−>get . 1 . output .1?{ v}
−>s e t . 2 . input . 1 . v−>doStep .2.1.1−>doStepOutcome . 2 . pending
−>tock−>s t epF in i shed . 2
−>doStep .1.2.1−>doStepOutcome . 1 . stepOk−>get . 1 . output .1?{ v}
−>s e t . 2 . input . 1 . v−>doStep .2.2.1−>doStepOutcome . 2 . pending
−>tock−>tock−>s t epF in i shed . 2
−>terminate .1−> terminate .2−>SKIP

−− STEP used to perform checks on FSMA
FSTP = 1
discEvs (i) = { | | }

−− Checks that t e s t s i s t r a c e s re f inement o f ’FSMA’
a s s e r t FSMAC({1} , (0 , 2) , FSTP, 0) [T= FST1

−− Checks that t e s t s i s t r a c e s re f inement o f ’FSMA’
a s s e r t FSMAC({1} , (0 , 2) , FSTP, 0) [T= FST2

−− Checks that t e s t s i s t r a c e s re f inement o f ’FSMA’
a s s e r t FSMAC({1 , 2} , (0 , 2) , FSTP, 0) [T= FST3

−− Checks that t e s t s i s t r a c e s re f inement o f ’FSMA’
a s s e r t FSMAC({1 , 2} , (0 , 2) , FSTP, 0) [T= FST4

−− Checks that t e s t s i s t r a c e s re f inement o f ’FSMA’
a s s e r t FSMAC({1 , 2} , (0 , 2) , FSTP, 3) [T= FST5

−− Checks that t e s t s i s t r a c e s re f inement o f ’FSMA’
a s s e r t FSMAC({1 , 2} , (0 , 2) , FSTP, 3) [T= FST6

−− Checks t e s t s i s a t r a c e s re f inement o f
−− a ’FSMA’ based cos imu la t i on
a s s e r t CosimFSMA({1} , (0 , 2) , FSTP, 0) [T= FST1

−− Checks t e s t i s t r a c e s re f inement o f
−− a ’FSMA’ based cos imu la t i on
a s s e r t CosimFSMA({1} , (0 , 2) , FSTP, 0) [T= FST2

71

D2.1d - Foundations for FMI Co-Modelling (Public)

t ransparent sbis im , diamond

−− Checks that t e s t i s a t r a c e s re f inement o f
−− a ’FSMA’ based cos imu la t i on
CosimFSMA1 = sbi s im (diamond (CosimFSMA({1 , 2} , (0 , 2) , FSTP, 0)))
a s s e r t CosimFSMA1 [T= FST3

−− Checks that t e s t i s t r a c e s re f inement o f
−− a ’FSMA’ based cos imu la t i on
CosimFSMA2 = sbi s im (diamond (CosimFSMA({1 , 2} , (0 , 2) , FSTP, 3)))
a s s e r t CosimFSMA2 [T= FST4

−− Checks that t e s t i s a t r a c e s re f inement o f
−− a ’FSMA’ based cos imu la t i on
a s s e r t CosimFSMA2 [T= FST5

−− Checks that t e s t i s a t r a c e s re f inement o f
−− a ’FSMA’ based cos imu la t i on
a s s e r t CosimFSMA2 [T= FST6

−− Checks that t e s t i s a t r a c e s re f inement o f
−− a ’FSMA’ based cos imu la t i on
CosimFSMA3 = sbi s im (diamond (CosimFSMA ({ 1 . . 3 } , (0 , 2) , FSTP, 0)))

−− Checks deadlock f o r p r o c e s s e s that keep execut ing cos imu la t i on .
a s s e r t CosimFSMA3 : [l i v e l o c k f r e e]
a s s e r t I t e r (CosimFSMA3) : [deadlock f r e e]

a s s e r t GenMAC({ 1 . . 3 } , (0 , 2) , fsmaTermEvs , d i scEvs) [T= CosimFSMA3

−− This check r e q u i r e s 4 FMUs in the opt imised v e r s i o n
CosimFSMA4 = sbi s im (diamond (CosimFSMAO({ 1 . . 4 } , (0 , 2) , FSTP)))

−− Checks deadlock f o r p r o c e s s e s that keep execut ing cos imu la t i on .
a s s e r t CosimFSMA4 : [l i v e l o c k f r e e]
a s s e r t I t e r (CosimFSMA4) : [deadlock f r e e]

GenFMI1 =
sb i s im (diamond (GenMAO({ 1 . . 4 } , (0 , 2) , fsmaTermEvs , d i scEvs)))

a s s e r t GenFMI1 [T= CosimFSMA4

−− Checks i f we can handle more FMUs with optmised v e r s i o n without
−− asynchonous c a l l s . This i s done f o r 5 FMUs
CoSimFSMA5 = sbi s im (diamond (CosimFSMAO ({ 1 . . 5 } , (0 , 2) , FSTP)))
a s s e r t CoSimFSMA5 : [l i v e l o c k f r e e]
a s s e r t I t e r (CoSimFSMA5) : [deadlock f r e e]

GenFMI2 =

72

D2.1d - Foundations for FMI Co-Modelling (Public)

sb i s im (diamond (GenMAO({ 1 . . 5 } , (0 , 2) , fsmaTermEvs , d i scEvs)))
a s s e r t GenFMI2 [T= CoSimFSMA5

A.6 Rollback Master Algorithm

−− The CSP semant ics o f the FMI standard (ve r s i on 2 . 0)
−−
−− This cover s a MA with support f o r r o l l b a c k as de f ined
−− in paper Broman−et−a l13
−−
−− Nuno Amalio

in c lude ”fmi ma common . csp ”
inc lude ” fmi fmu . csp ”

−− The terminat ion events o f the r o l l b a c k MA
rbTermEvs (i) = { | doStepOutcome . i . f a i l , s tepCance l . i ,

doStepOutcome . i . pending | }

discEvs (i) = { | doStepOutcome . i . d i s ca rd | }

decStep (stp , inc) =
i f (stp−i n c) >= 1

then { stp−i n c }
e l s e {}

−− Channel to update the s t a t e o f FMUs kept by MA
channel s to reSt , readSt : FMUIdx . Time . St
channel r e s e t

FMUStStoreEvs = { | s to reSt , readSt , r e s e t | }

channel ro l l back , f in i shedDoStep

−−
−− The Rol lback MA of Broman13
RBMA (ifmus , c int , maxStp , s tp Inc) =

l e t
FMUSts =

l e t
NotFMUSt (i , ct , s t) =

s t o r e S t . i . c t . s t −> IsFMUSt(i , ct , s t)
[] r e s e t −> NotFMUSt (i , ct , s t)

IsFMUSt (i , ct , s t) =
readSt . i ! c t ! s t −> IsFMUSt (i , ct , s t)
[] r e s e t −> NotFMUSt (i , ct , s t)

with in

73

D2.1d - Foundations for FMI Co-Modelling (Public)

[| { r e s e t } |] i : i fmus , c t : Time , s t : St @
NotFMUSt (i , ct , s t)

CarrySteps (ct , s tp) =
l e t

SaveFMUSts =
l e t

SaveFMUSts0 (s i fmus) =
i f n u l l (s i fmus)

then SKIP
e l s e

ge tS ta t e . head (s i fmus)? ct ? s t
−> s t o r e S t . head (s i fmus) ! c t ! s t
−> SaveFMUSts0 (t a i l (s i fmus))

with in
r e s e t−>SaveFMUSts0 (seq (i fmus))

CarryStep (stp) =
l e t

DoStepOk =
l e t

DoStepFMUs = IterPSeq (DoStepFMU, seq (i fmus))
DoStepFMU(i) = MASetStepInputs (i) ; Step (i)
Step (i) =

l e t
Step0 =

doStepOutcome . i . stepOk −> MAGetStepOutputs (i)
[] doStepOutcome . i . pending −> SKIP
[] doStepOutcome . i . f a i l −> SKIP
[] doStepOutcome . i . d i s ca rd −> SKIP

with in
doStep . i ! c t ! s tp −> Step0

with in
DoStepFMUs ; f in i shedDoStep−>SKIP

DoStepDiscard =
l e t

SetFMUStates =
l e t

SetFMUState (i) =
readSt . i ? ct ’ ? st ’−>

s e t S t a t e . i ! ct ’ ! st ’ −> SKIP
with in

IterPSeq (SetFMUState , seq (i fmus))
with in

(SetFMUStates | ˜ | TriggerMATerminate) ; r o l l back−>SKIP
DoNextStep =

l e t
o s t = decStep (stp , s tp Inc)

with in
f in i shedDoStep−>

CarrySteps (nextCurrentTm (ct , stp , c i n t) , s tp)

74

D2.1d - Foundations for FMI Co-Modelling (Public)

[] r o l l b a c k −>
i f not empty (os t)

then CarryStep (the (o s t))
e l s e TriggerMATerminate

DoStep =
l e t

discEvsFMUs = consFMIEvs (ifmus , d iscEvs)
with in

DoStepOk [| discEvsFMUs |> DoStepDiscard
evsDoStep = { | f in i shedDoStep , r o l l b a c k | }

with in
(DoStep [| evsDoStep |] DoNextStep) \ evsDoStep

with in
i f withinCosimInt (ct , c i n t)

then SaveFMUSts ; CarryStep (stp)
e l s e TriggerMATerminate

Simulate =
l e t

termEvs = consFMIEvs (ifmus , rbTermEvs)
Simulate0 =

CarrySteps (f s t (c i n t) , maxStp)
[| termEvs |> TriggerMATerminate

with in
(FMUSts [| FMUStStoreEvs |] S imulate0) \ FMUStStoreEvs

Terminate = MATerminateE(i fmus)
Startup = StartupFMUsE (ifmus , c i n t)
Execute = startMA−> Startup ; Simulate

with in
(Execute /\ Terminate) \{ | terminateMA | }

RBMA1 = sbi s im (diamond (RBMA({ 1 . . 3 } , (0 , 2) , MAXSTP, 1)))

a s s e r t RBMA1 : [d ive rgence f r e e]
a s s e r t I t e r (RBMA1) : [deadlock f r e e]

i n i t s t 1 = (| 1=>0 |) . (| 1=>0 |)
i n i t s t 2 = (| 1=>0 |) . (| 1=>1 |)

−− A MA run that does i s not capable o f ag r ee ing on a step
RBT1 = startMA−>i n s t a n t i a t e . 1 ! i n i t s t 1−>setup . 1 ! (0 , 2)
−>s e t . 1 . input .1.1−> endIn i t . 1
−>ge tSta t e . 1 . 0 . (| 1=>1 |) . (| 1=>0 |)
−>doStep .1.0.2−>doStepOutcome . 1 . d i s ca rd
−>s e t S t a t e . 1 . 0 . (| 1=>1 |) . (| 1=>0 |)
−>doStep .1.0.1−>doStepOutcome . 1 . d i s ca rd
−>terminate .1−>SKIP

−− A MA run that does two s u c e s s f u l s t ep s with support f o r r o l l b a c k
RBT2 = startMA−>i n s t a n t i a t e . 1 ! i n i t s t 1−>setup . 1 ! (0 , 2)

75

D2.1d - Foundations for FMI Co-Modelling (Public)

−>s e t . 1 . input .1.1−> endIn i t . 1
−>ge tSta t e . 1 . 0 . (| 1=>1 |) . (| 1=>0 |)
−>doStep .1.0.2−>doStepOutcome . 1 . stepOk
−>get . 1 . output . 1 .{1}
−>ge tSta t e . 1 . 2 . (| 1=>1 |) . (| 1=>1 |)
−>doStep .1.2.2−>doStepOutcome . 1 . stepOk
−>get . 1 . output .1.{1}−> terminate .1−>SKIP

−− A MA run where the f i r s t proposed step i s r e j e c t e d
RBT3 = startMA−>i n s t a n t i a t e . 1 ! i n i t s t 1−>setup . 1 ! (0 , 2)
−>s e t . 1 . input .1.1−> endIn i t . 1
−>ge tSta t e . 1 . 0 . (| 1=>1 |) . (| 1=>0 |)
−>doStep .1.0.2−>doStepOutcome . 1 . d i s ca rd
−>s e t S t a t e . 1 . 0 . (| 1=>1 |) . (| 1=>0 |)
−>doStep .1.0.1−>doStepOutcome . 1 . stepOk
−>get . 1 . output . 1 .{1}
−>ge tSta t e . 1 . 1 . (| 1=>1 |) . (| 1=>1 |)
−>doStep .1.1.1−>doStepOutcome . 1 . stepOk
−>get . 1 . output . 1 .{1}
−>ge tSta t e . 1 . 2 . (| 1=>1 |) . (| 1=>1 |)
−>doStep .1.2.1−>doStepOutcome . 1 . stepOk
−>get . 1 . output .1.{1}−> terminate .1−>SKIP

−− A MA run with two FMUs
−− F i r s t proposed step on 2nd FMU i s r e j e c t e d
RBT4 = startMA−>i n s t a n t i a t e . 1 ! i n i t s t 1−>setup . 1 ! (0 , 2)
−>s e t . 1 . input .1.1−> endIn i t . 1
−> i n s t a n t i a t e . 2 ! i n i t s t 2−>setup . 2 ! (0 , 2)
−>endIn i t . 2
−>ge tSta t e . 1 . 0 . (| 1=>1 |) . (| 1=>0 |)
−>ge tSta t e . 2 . 0 . i n i t s t 2
−>doStep .1.0.2−>doStepOutcome . 1 . stepOk
−− 2nd FMU Discards
−>doStep .2.0.2−>doStepOutcome . 2 . d i s ca rd
−>s e t S t a t e . 1 . 0 . (| 1=>1 |) . (| 1=>0 |)
−>s e t S t a t e . 2 . 0 . i n i t s t 2
−>doStep .1.0.1−>doStepOutcome . 1 . stepOk
−>get . 1 . output . 1 .{1}
−>s e t . 2 . input .1.1−>doStep . 2 . 0 . 1
−>doStepOutcome . 2 . stepOk
−>ge tSta t e . 1 . 1 . (| 1=>1 |) . (| 1=>1 |)
−>ge tSta t e . 2 . 1 . (| 1=>1 |) . (| 1=>1 |)
−>doStep .1.1.1−>doStepOutcome . 1 . stepOk
−>get . 1 . output .1?{0}
−>s e t . 2 . input .1.0−>doStep . 2 . 1 . 1
−>doStepOutcome . 2 . stepOk
−>ge tSta t e . 1 . 2 . (| 1=>1 |) . (| 1=>0 |)
−>ge tSta t e . 2 . 2 . i n i t s t 2
−>doStep .1.2.1−>doStepOutcome . 1 . stepOk

76

D2.1d - Foundations for FMI Co-Modelling (Public)

−>get . 1 . output .1?{1}
−>s e t . 2 . input .1.1−>doStep . 2 . 2 . 1
−>doStepOutcome . 2 . stepOk
−>terminate .1−> terminate .2−>SKIP

RBMA2 = sbi s im (diamond (RBMA({1} , (0 , 2) , MAXSTP, 1)))

RBMA3 = sbi s im (diamond (RBMA({1 , 2} , (0 , 2) , MAXSTP, 1)))

t ransparent sbis im , diamond

−− Checks i f RBT1, RBT2 and RBT3 are t r a c e s r e f inement s o f ’RBMA’
a s s e r t RBMA2 [T= RBT1
a s s e r t RBMA2 [T= RBT2
a s s e r t RBMA2 [T= RBT3

a s s e r t RBMA3 [T= RBT4

−−Def ines what a co−s imu la t i on with a RBMA i s
CoSimRBMA (ifmus , c int , maxStp , s tp Inc) =

RBMA (ifmus , c int , maxStp , s tp Inc)
[| CosimEvs (i fmus) |] (| | | i : i fmus @ FMU(i))

a s s e r t
CoSimRBMA ({1} , (0 , 2) , MAXSTP, 1) : [d ive rgence f r e e]

a s s e r t
I t e r (CoSimRBMA ({1} , (0 , 2) , MAXSTP, 1)) : [deadlock f r e e]

a s s e r t
GenMAC({ 1 . . 3 } , (0 , 2) , rbTermEvs , d i scEvs) : [d ive rgence f r e e]

a s s e r t
I t e r (GenMAC({ 1 . . 3 } , (0 , 2) , rbTermEvs , d i scEvs)) : [deadlock f r e e]

−− Checks whether RBT1, RBT2 and RBT3 are t r a c e s r e f inement s o f ’RBMA’
a s s e r t CoSimRBMA ({1} , (0 , 2) , MAXSTP, 1) [T= RBT1
a s s e r t CoSimRBMA ({1} , (0 , 2) , MAXSTP, 1) [T= RBT2
a s s e r t CoSimRBMA ({1} , (0 , 2) , MAXSTP, 1) [T= RBT3

CoSimRBMA2 = sbi s im (diamond (CoSimRBMA ({ 1 . . 2} , (0 , 2) , MAXSTP, 1)))
a s s e r t CoSimRBMA2 : [d ive rgence f r e e]
a s s e r t I t e r (CoSimRBMA2) : [deadlock f r e e]

a s s e r t CoSimRBMA2 [T= RBT4

CoSimRBMA3 = sbi s im (diamond (CoSimRBMA ({ 1 . . 3} , (0 , 2) , MAXSTP, 1)))
a s s e r t CoSimRBMA3 : [d ive rgence f r e e]
a s s e r t I t e r (CoSimRBMA3) : [deadlock f r e e]

GenSim3 =

77

D2.1d - Foundations for FMI Co-Modelling (Public)

sb i s im (diamond (GenMAC({1 . . 3} , (0 , 2) , rbTermEvs , d i scEvs)))
a s s e r t GenSim3 [T= CoSimRBMA3

A.7 3 Water Tanks

−− The 3 water Tanks example o f D21 . a in the FMI
−−
−− Simulated us ing a f i x e d step MA. We abs t r a c t away from data .
−− Connection between FMI and more abs t r a c t SysML semant ics i s
−− to be e x p l o i t e d in year 2 .
−−
−− Nuno Amalio

in c lude ” fmi fsma . csp ”

−− This w i l l i nvo lv e three FMIs : ’ TanksControl1 ’ , ’ TanksControl2 ’ ,
−− ’ Cont ro l l e r ’ .

−− State o f the ’ Cont ro l l e r ’ with one output (va lve)
C o n t ro l l e r S t = (| |) . (| 1=>0 |)

−− State o f the ’ TanksControl1 ’ with one input (s t a t e o f va lve) and
−− one output (water out f low)
TanksControl1St = (| 1=>0 |) . (| 1=>0 |)

−− State o f the ’ TanksControl2 ’ with one input (water i n f l ow) and
−− one output (water out f low)
TanksControl2St = (| 1=>0 |) . (| 1=>0 |)

−− Run o f a lgor i thm that s imu la t e s the 3 water tanks System
WTsSimulation =

l e t
WTsSimulation0 (ct) =

doStep . 1 . c t .1−> doStepOutcome . 1 . stepOk
−> get . 1 . output .1?{ v} −> s e t . 2 . input . 1 . v
−> doStep . 2 . c t .1−> doStepOutcome . 2 . stepOk
−> get . 2 . output .1?{w} −> s e t . 3 . input . 1 .w
−> doStep . 3 . c t .1−> doStepOutcome . 3 . stepOk
−> get . 3 . output .1?{w2}−>SKIP

with in
startMA −> i n s t a n t i a t e . 1 ! C o n t r o l l e r S t −> setup . 1 ! (0 , 2)
−>s e t . 1 . output . 1 . 1 −> endIn i t . 1
−> i n s t a n t i a t e . 2 ! TanksControl1St −> setup . 2 ! (0 , 2) −> endIn i t . 2
−> i n s t a n t i a t e . 3 ! TanksControl2St −> setup . 3 ! (0 , 2)
−> endIn i t . 3
−> (WTsSimulation0 (0) ; WTsSimulation0 (1) ; WTsSimulation0 (2)) ;

terminate .1−> terminate .2−> terminate .3−>SKIP

78

D2.1d - Foundations for FMI Co-Modelling (Public)

−− Checks whether 3WTsRun i s a t r a c e s re f inement o f ’FSMA’
a s s e r t FSMAC({ 1 . . 3 } , (0 , 2) , FSTP, 0) [T= WTsSimulation

t ransparent sbis im , diamond

−− This check r e q u i r e s 3 FMUs
CosimFSMA1 = sbi s im (diamond (CosimFSMA ({ 1 . . 3 } , (0 , 2) , FSTP, 0)))

−− Checks whether WTsSimulation i s t r a c e s re f inement o f ’CoSimFSMA’
a s s e r t CosimFSMA1 [T= WTsSimulation

A.8 Periodic Discrete Signal Generator

−− The per idoc d i s c r e t e s i g n a l generator (PDSG) example
−− o f paper Broman et a l 2014 (Requirements f o r Hybrid Cosimulat ion)
−−
−− This i s based on an e a r l y ve r s i o n o f Jim Woodcock and Ana Cavalcant i
−− The 4 FMUs are model led as black boxes
−−
−− Nuno Amalio

in c lude ” fmi fsma . csp ”

−− This w i l l i nvo lv e four FMUs: ’PDSG1’ , ’PDSG2’ , ’ Sampler ’ and
−− ’ CheckEquality ’ .

−− State o f the ’PDSG1’
PDSG1St = (| |) . (| 1=>0 |)

−− State o f the ’PDSG2’
PDSG2St = (| |) . (| 1=>1 |)

−− State o f ’ Sampler ’
SamplerSt = (| 1 => 0 , 2= >0 |) . (| 1=>1 |)

−− State o f the ’ CheckEqualitySt ’ component
CheckEqualitySt = (| 1 => 0 , 2= >0 |) . (| 1=> 0 |)

−− The run o f the a lgor i thm that s imu la t e s the PDSG system
PDSGSimulate =

startMA−>i n s t a n t i a t e . 1 ! PDSG1St−> setup . 1 ! (0 , 2)
−> endIn i t . 1
−> i n s t a n t i a t e . 2 ! PDSG2St −> setup . 2 ! (0 , 2)
−> endIn i t . 2
−> i n s t a n t i a t e . 3 ! SamplerSt −> setup . 3 ! (0 , 2)
−> endIn i t . 3
−> i n s t a n t i a t e . 4 ! CheckEqualitySt −> setup . 4 ! (0 , 2)

79

D2.1d - Foundations for FMI Co-Modelling (Public)

−> endIn i t . 4
−− F i r s t Run g i v e s equal
−> doStep .1.0.1−> doStepOutcome . 1 . stepOk
−> get . 1 . output .1?{ v}
−> doStep .2.0.1−> doStepOutcome . 2 . stepOk
−> get . 2 . output .1?{w}
−> s e t . 3 . input . 1 . v −> s e t . 3 . input . 2 .w
−> doStep .3.0.1−> doStepOutcome . 3 . stepOk
−> get . 3 . output .1?{w}
−> s e t . 4 . input . 1 .w
−> s e t . 4 . input . 2 .w
−> doStep .4.0.1−> doStepOutcome . 4 . stepOk
−> get . 4 . output .1?{1}
−− Second Run g i v e s not equal
−> doStep .1.1.1−> doStepOutcome . 1 . stepOk
−> get . 1 . output .1?{ v}
−> doStep .2.1.1−> doStepOutcome . 2 . stepOk
−> get . 2 . output .1?{w}
−> s e t . 3 . input . 1 . v −> s e t . 3 . input . 2 .w
−> doStep .3.1.1−> doStepOutcome . 3 . stepOk
−> get . 3 . output .1?{ v2}−> s e t . 4 . input . 2 . v2
−> s e t . 4 . input . 1 .w
−> doStep .4.1.1−> doStepOutcome . 4 . stepOk
−> get . 4 . output .1?{0}
−− Third Run g i v e s equal
−> doStep .1.2.1−> doStepOutcome . 1 . stepOk
−> get . 1 . output .1?{ v}
−> doStep .2.2.1−> doStepOutcome . 2 . stepOk
−> get . 2 . output .1?{w}
−> s e t . 3 . input . 1 . v −> s e t . 3 . input . 2 .w
−> doStep .3.2.1−> doStepOutcome . 3 . stepOk
−> get . 3 . output .1?{ v}
−>s e t . 4 . input . 2 . w−> s e t . 4 . input . 1 .w
−> doStep .4.2.1−> doStepOutcome . 4 . stepOk
−> get . 4 . output .1?{1}
−− The terminat ion phase
−> terminate .1−> terminate .2−> terminate . 3
−> terminate .4−> SKIP

−− Checks whether ’PDSGRun’ i s a t r a c e s re f inement o f ’FSMA’ s
a s s e r t FSMAO ({ 1 . . 4 } , (0 , 2) , FSTP) [T= PDSGSimulate

a s s e r t FSMAC ({ 1 . . 4 } , (0 , 2) , FSTP, 0) [T= PDSGSimulate

t ransparent sbis im , diamond , wbisim

CosimFSMA1 = sbi s im (diamond (CosimFSMAO ({ 1 . . 4 } , (0 , 2) , FSTP)))

80

D2.1d - Foundations for FMI Co-Modelling (Public)

−− Checks whether PDSGRun i s a t r a c e s re f inement o f ’CoSimFSMA’
a s s e r t CosimFSMA1 [T= PDSGSimulate

81

	Introduction
	Background
	FMI co-simulation
	CSP

	FMI Formally: state of the art
	FMI Trends
	A Formal Treatment of FMI

	Semantics of FMI
	Base definitions
	The FMI API in CSP
	FMI co-simulation
	The modus operandi of an FMU
	Master Algorithms

	FDR3 Formal Analysis of FMI Semantics
	FDR3 in a nutshell
	The FDR3 Optmised Version of the Semantics
	Verification
	Validation
	Experimental Results

	Conclusions
	CSPm of FMI semantics
	Base definitions
	FMU Process
	Common Definitions to support Master Algorithms
	Simple Fixed Step Master Algorithm
	Checks of the Fixed Step Master Algorithm
	Rollback Master Algorithm
	3 Water Tanks
	Periodic Discrete Signal Generator

