Grant Agreement: 644047
INtegrated TOol chain for model-based design of CPSs

D1.2- Case Studies 2

Deliverable Number: D1.2
Version: 1.0
Date: 11 2016

Public Document

http://into-cps.au.dk

D1.2 - Case Studies 2 (Public)

Contributors:

Julien Ouy, CLE

Thierry Lecomte, CLE
Martin Peter Christiansen, Al
Andres Vill Henriksen, Al
Ole Green, Al

Stefan Hallerstede, AU

Peter Gorm Larsen, AU
Claes Jger, Al

Stylianos Basagiannis, UTRC
Luis Diogo Couto, UTRC
Alie El-din Mady, UTRC
Hassan Ridouanne, UTRC
Hector Moner Poy, UTRC
Juan Valverde Alcala, UTRC
Christian Konig, TWT
Natalia Balcu, TWT

Editors:

Julien Ouy, CLE

Reviewers:

Simon Foster, UY
Christian Kleijn, CLP
Stefan Hallerstede, AU

Consortium:
Aarhus University AU | Newcastle University | UNEW
University of York UY | Linkoping University | LIU
Verified Systems International GmbH | VSI | Controllab Products | CLP
ClearSy CLE | TWT GmbH TWT
Agro Intelligence Al United Technologies | UTRC
Softeam ST

D1.2 - Case Studies 2 (Public)

Document History

Ver | Date Author | Description

0.1 | 06-15-2016 | JO Initial document version

0.2 | 07-06-2016 | JO CPS aspects of the use cases

0.3 | 08-25-2016 | JO first version of the CLE use case

0.4 | 08-30-2016 | MPC addition of the Al use case

0.5 | 10-25-2016 | JO addition of the complementarity table
0.6 | 10-28-2016 | MPC update of the Al use case

0.7 | 10-31-2016 | CK addition of the TWT use case

0.8 | 11-04-2016 | SB addition of the UTRC use case

0.9 | 11-08-2016 | JO internal review version

1.0 | 11-30-2016 | JO corrections following internal review
1.0 | 12-16-2016 | JO final version

D1.2 - Case Studies 2 (Public)

This document shows the four industrial partners’ case studies. A case study
contains the description of the industrial case, the modelling and simulation of it
using INTO-CPS baseline tools and the assessment of the baseline tools accord-
ing to their requirements. The goal of this deliverable is to bring insights about

industrial benefits and weaknesses of using INTO-CPS baseline tools.

Contents

1 Intr 1

2 Cyber-Physical aspects of the Industrial Case Studies|
[2.1 Cyber-Physical aspects of the Railway case study|
[2.2 Cyber-Physical aspects of the Agriculture case study|
[2.3 Cyber-Physical aspects of the Building case study|
[2.4 Cyber-Physical aspects of the Automobile case study|
[2.5 Complementarity of the Industrial Case Studies|
2.6 Key Performance Indicators|

[3 Railway case study|
3.1 TheCasestudy|
[3.2 Contribution during Year 2|

[4 Agriculture Case Study]|
1 Intr 10 1

4.2 Agriculture casestudy|o Lo
4.3 Modelling
M4 Robotti Second Generation|
Industrial n n mentl L.
[Building Case Studyj|

1 Intr 10 1

[5.2 Building Case Study|
3.3 Modeling|
5.4 HVAC Co-simulation Results|
0.5 Industrial Needs and Assessmentl

[5.6 UTRC-Reqg-001: Stimulation Completeness|
[5.7 UTRC-Req-002: Stmulation Delays|
[5.8 UTRC-Req-003: Design Space Exploration|
[5.9 UTRC-Req-004: Simulation Accuracy and Precision|

11
11
15
23

D1.2 - Case Studies 2 (Public)

[5.10 UTRC-Reqg-005: Scalable Simulation| 71
[5.11T UTRC-Reqg-006: Code generation| 71
[5.12 UTRC-Req-007: Platform Independence and FMU support| 72
[5.13 Conclusion - Reporting Experiences| 72
[6 Automotive Case Study]| 74
[6.1 Specifications| 74
[6.2 Specification of the HiLL scenariof 76
6.3 Modell 78
6.4 Routemodule (CT)| 80
6.5 Alarm System (DE)| 0. 80
6.6 Simulationresults| L 80
6.7 Evaluation of INTO-CPS tools| 82
[6.8 Requirements and Assessments|. 85
69 Conclusionl 89

D1.2 - Case Studies 2 (Public)

1 Introduction

This document shows the four industrial partners case studies: the Railway case
study from CLE, the Agriculture case study from Al, the Building case study from
UTRC and the the Automative case study from TWT. Each case study contains
the public description of the industrial case, the modelling and simulation of it
using INTO-CPS baseline tools and the assessment of the baseline tools according
to their requirements. Prior to the descriptions of the case studies, a section is
dedicated to specific points addressed during the first year of the project, the cyber-
physical aspects of the case-studies.

2 Cyber-Physical aspects of the Industrial Case Stud-
ies

Each of the case-studies presents in a different angle the aspects of a Cyber-
physical system. Individually they only cover a fraction of the different features
that characterize a CPS but altogether the case studies of INTO-CPS demonstrate
all that can be modeled, checked, tested, simulated or generated using the tools
provided by INTO-CPS.

2.1 Cyber-Physical aspects of the Railway case study

The Interlocking case-study is intrinsically a safety-critical Cyber-Physical Sys-
tem (CPS). Conceptually speaking the core component is a logical system. The
traditional railway approach for this kind of system is to have a redundancy in the
logical component between software running on a computer, or in most cases an
industrial automaton, and wired electronic boards composed on large shelves. The
logic is essentially represented in software as a system of equations and registers,
while the hardware is made of circuits and electromagnetic relays. The fault-
tolerant design with those two redundant parts of the core monitor each other so
that a failure on one side is immediately detected and put the system in a safe
mode. The actuators are also monitored by the safety core so that the green light
for a tram is given not only when all the switches are set to the right position,
but also when sensors on the switches confirm this position. The direct conse-
quence of this self-awareness is the complexity and the cyber-physical aspect of
the equations treated in the logical component.

D1.2 - Case Studies 2 (Public)

The Interlocking case study focus on an innovation which add yet another cyber-
physical element: the distribution of the system over several simple modules,
which is considered a challenge for the traditional railway industry. Whereas
it can be simple to prove that each module has the same local safety level as a
centralized interlocking the fact that a module allows a route only when it is safe
to the knowledge of its own sensors is challenging to argue for. It is significantly
more difficult to demonstrate safety at the global level because protocols and net-
works intervene in the challenge. Yet an innovative distributed Interlocking would
have benefits for the industry with simpler hardware and the possibility to reach
new markets where the distance or the complexity of the geography would prevent
the use of a classical system.

The use of heterogeneous models with co-simulation and/or model checking would
also lower the time to market of such a product. In railways safety, systems are
rarely Commercial of the shelf, since a large part of adaptation and parameteriza-
tion are needed before it is possible to deliver the final product. Moreover, during
the installation, the system or the equipment interacting with it are not necessar-
ily available for testing purposes or not truely representative of the final system.
For those reasons, reasoning and testing with a model-based representation of the
system as carried out in the INTO-CPS project can be seen as a major cost saver
in being able to test in a virtual setting before one have to go into an expensive
series of physical tests.

2.2 Cyber-Physical aspects of the Agriculture case study

The agricultural robot platform is comprised of a network of interacting computer
units that operate with inputs from and provide outputs to its physical environ-
ment. The physical environment the agricultural robot platform is operating in
is influenced by geography, weather and terrain conditions. The robot platform
is a mobile CPS that needs to incorporate concepts from multiple engineering
disciplines such as agricultural, control, electrical, mechanical, signal processing
and software design. The robot needs to be able to operate autonomously with
minor levels of human surveillance, so it needs to have its own “intelligence”.
Thus, this system has a high degree of autonomy. Dramatic changes have been
made to the overall system engineering design of the Robotti platform, and thus
from a commercial perspective it is definitely advantageous to be able to carry
out initial investigations in a virtual setting instead of wasting too much time and
money on producing full-scale expensive physical prototypes. These aspects col-
lectively make the agricultural case study a good example of a CPS in the INTO-
CPS project.

D1.2 - Case Studies 2 (Public)

2.3 Cyber-Physical aspects of the Building case study

The building case study is considered to be a full CPS, composed by several cyber
and physical elements. The cyber part of the year 2 case study include compo-
nents such as the FCU controllers that will be embedded in the hardware devices,
the communication interfaces in order to handle communication locally between
the FCUs and globally between the FCUs and the supervisor. Communication
modules will also coexist within the same FCU hardware device and will han-
dle distributed communications exchanged between the FCUs and the supervi-
sor. Commands for both the controllers and communications modules will handle
switching mechanisms for certain FCU elements that include the device itself (e.g.
on), regulating the fan speed (e.g. medium speed), regulating the air-dumper po-
sition (e.g. 10% open), regulating the power of the coil (e.g. 20V) and regulating
the water valves position (e.g. 50% open). The aforementioned elements will be
targeted for code generation in order to proceed with Software-in-the-Loop and
Hardware-in-the-Loop simulations for the aforementioned case study. Finally the
communication medium used in the HVAC CPS scenario is also based on pro-
tocol message exchange between the supervisor and the FCU controllers (e.g.
through UART). The physical part of the year 2 case study will include compo-
nents that will be co-modeled with the cyber part in the multi-models evaluated in
the INTO-CPS platform. Those components include the thermal modeling of the
physical rooms and zones in order to study thermal affects of the areas including
wall insulation parameters and air-mass heat capacity. Air pipes connection and
air flow exchanged between the Air Handling Unit (AHU) and the FCUs is also
continuously described by air mass flow inside the pipes used in the building to
connect the AHU and the FCUs. Water pipes connection and water flow pressure
exchanged between the Heat Pump Unit the FCUs and the AHU, is also governed
by continuous equations describung fluid dynamics in the water pipes, pressurized
in the Heat Pump and heated or colling at the AHU towards the FCUs. Current
continuous models includes 21.000 variables with a total of 11.000 parameters,
while the number of differential equations used to describe the system dynamics
is close to 7000.

2.4 Cyber-Physical aspects of the Automobile case study

The automotive case study can be considered a Cyber-Physical-System (CPS) be-
cause it contains local intelligence and autonomy in the vehicle. This is assisted
by information about its environment typically derived from a cloud context (here,
information on weather and traffic / route) and the logic depends upon the physical
dynamics of the electric vehicle. In the most innovative scenario that is described

8

D1.2 - Case Studies 2 (Public)

in section a real driver is able to drive a simulated vehicle (using a virtual re-
ality environment). Here the characteristic curve of the accelerator (gas pedal) is
adapted based on the remaining range of the vehicle enabled by its battery. If the
range 1is too low for reaching the designated destination, the curve will be soft-
ened”, resulting in less acceleration at a given position of the accelerator. The
controller that changes this characteristic curve is inherently a cyber element (a
controller, running for example on a Raspberry Pi), which interacts with the phys-
ical world (the human driver and the vehicle’s dynamics, which is modeled). This
controller is developed using the INTO-CPS tool chain and its methodology, from
a systems engineering perspective. Thus, the different constituent elements of the
system can be analysed using the HiL capability, as well as features such as test-
ing and code generation that are covered by the INTO-CPS tool chain. Since the
Co-Simulation that is used to determine the remaining range of the electric vehi-
cle, also uses information from its environment (route and weather information),
it can be considered a smart connected system. At the time of writing, the HiL.
scenario is being designed, and its implementation is planned for year 3.

D1.2 - Case Studies 2 (Public)

2.5 Complementarity of the Industrial Case Studies

The table |1| summarises the different aspects of CPS and the related major indus-
trial needs covered by the case studies of INTO-CPS. Parenthesized yes means
that the feature is present in the case study but not completely implemented yet.
We see that except for size efficiency, all aspects appear in one or more case stud-
ies. Some of them, mainly formal verification, design test exploration and test
automation are to be explored in Y3.

Table 1: Complementarities of the industrial case studies at Y2

Application area Railways Agriculture | Buildings Automotive
Lead partner CLE Al UTRC TWT
Time Critical Yes (Yes) Yes No
Safety Critical Yes (Yes) No No
Autonomy Yes Yes Yes Yes
Power efficiency No No Yes

High Performance Yes (Yes) Yes Yes
Size Efficiency No No No No
Cost efficiency Yes Yes Yes No
Actuators modeling Yes Yes (Yes) Yes
Sensors modeling Yes Yes Yes Yes
Network modeling Yes (Yes) (Yes) (Yes)
Formal verification (Yes) No Yes No
SIL Co-simulation Yes Yes (Yes) (Yes)
HIL Co-Simulation Yes Yes No (Yes)
Design Space Explo- | No Yes (Yes) (Yes)
ration

Test-Automation (Yes) No No (Yes)

2.6 Key Performance Indicators

Key performance concerning WP1 relies on three indicators.

KPI-A, utility assessment We can affirm that this indicators has been reached,
all case studies in Y2 are developed following the methods and tools from Into-
CPS: development of SYS-ML models, CT and DE models of the different com-
ponents, generation of FMU from Overture, OpenModelica or 20-sim, execution
of co-simulation with the COE. This will be detailed in this document.

10

D1.2 - Case Studies 2 (Public)

KPI-B, Reduction of development time for CPS This indicator is evaluated
indirectly and has to be detailed for each case study. For CLE we can cite the
early evaluation of the safety properties of the system that saved a lot of time:
several propositions of distribution have been created and tested for safety prop-
erties as models, this phase could append before the choice of the hardware and
the development of drivers or communication layers (middleware). This saved the
time and money of developing several module prototypes. In the second phase,
when the prototype has been tested, no reason came for questioning the choice of
the distribution and requiring a second iteration. Automatic code generation of the
prototype also saved a lot of time for two reasons, first the manual development of
the code from the specification would have require roughly fifteen days whereas
generating code from the formal model was almost instantaneous and the code for
the middleware alone costed around five days. The time for the development of
the model itself is shared with the system specification phase. For the agriculture
case study, Al was able to work in parallel in the development of the SiL. (tablet
interface), which gave Al the opportunity to present results even before construct-
ing a physical prototype. This saved Al an estimated time of 5-6 months in the
development time, which would not have been possible without INTO-CPS.

KPI-C, Tool chain platform TRL This indicator can already be set above 4,
the tools permit to build operational prototypes, with directly exploitable simu-
lation and testing results. The integration of the different tools together is com-
plete.

3 Railway case study

3.1 The Case study

In railway signalling, an interlocking is an arrangement of signal apparatus that
prevents conflicting movements through an arrangement of tracks such as junc-
tions or crossings. Usually interlocking is in charge of a complete line, computing
the status of actuators (switches, signals) based on signalling safety rules that are
encoded as so-called “binary equations”. A typical interlocking is in charge of
managing ~ 180, 000 equations (see figure 2] for instance) that have to be com-
puted several times per second. These equations compute the commands to be
issued to track-side devices: they encode the safety behaviour that enable trains
to move from one position to another through routes that are allocated then re-
leased.

11

D1.2 - Case Studies 2 (Public)

Currently, there are attempts to find the right trade-off between efficiency of an
interlocking system (availability of routes, trains’ delays and cost of interlocking
system) and safety (collision avoidance, derailment prevention, availability and
efficiency of emergency system).

Figure 1: Partial scheme plan of a train line as seen from the sky, including track
circuits, switches and Traffic lights

3.1.1 Interlocking challenges

A central interlocking is able to deal with a complete line, all decisions are made
globally. However the distance between devices distributed along the tracks and
the interlocking system may lead to significant delays to update the status of the
devices. Moreover this architecture, well dimensioned for metro lines, is often
overkill for simpler infrastructures like tramway lines.

So there is room for an alternate solution: distributed interlocking. A line is then
divided into overlapping interlocked zones, each zone being controlled by an in-
terlocking. Such interlockings would be smaller as fewer local devices have to

12

D1.2 - Case Studies 2 (Public)

be taken into account and a local decision could be taken in a shorter amount of
time and would result in potentially quicker train transfers. However, overlapping
zones have to be carefully designed (a train cannot appear by magic in a zone
without prior notice) and some variable states have to be exchanged between in-
terlocking systems as the Boolean equations have to be distributed accordingly
over the interlocking systems.

This distribution implies several engineering problems. An “optimal distribution”
1.e. the decomposition of the line into overlapping areas such as to minimise de-
lays, availability and costs, requires a smart exploration of the design space (de-
composition is directly linked with railways signalling rules). It also implies that
one has to define what information has to be exchanged between interlocking
computers and how many equations have to run on any of them (20,000 equations
maximum for example).

Vi Interlocking ved
v3 v39
vl v49

V1 :=v2 Av3ivvl A5
v5

v6 V9 :=vl Avd vyl AvB

v50
va0
w4
v100

Sensors
Actuators

w7 ()
vB

computation

V100 = v91 A v67 v v7l A vB4

Figure 2: boolean equations that lead the signalling system

3.1.2 Accurate Train movement simulations and challenges

In order to have a realistic overview of the traffic of the trains and deal with safety
concerns, the train movements along the track map have to be simulated in a real-
istic way. The finer the movement is simulated, the more one can ensure an effi-
cient but safe interlocking system. Usually, a train receives/considers a Movement
Authority Limit (MAL) : a stop point that the train must never overshoot. Such
a MAL is updated in real-time by interlocking mechanisms and communication
facilities. For an automated train, Automatic Train Operation (ATO) computes
the best movement for reaching and stop at the MAL. In parallel, an Automatic
Train Protection (ATP) guards against a failure of the “normal” service mode (e.g.
service brakes failure, ATO software/sensor loss of train position). ATP checks
that in the worst case, the MAL will never be overshot. Exploring the behaviour
of a “manual mode” train (with possible rollback movement) and ensuring a safe
automatic protection is far from being clarified in the Railway community. Even

13

D1.2 - Case Studies 2 (Public)

ClearSy - which has used the ProB animator for years (a high level discrete mod-
elling language, similar to VDM-RT) for railway use cases animations- cannot
achieve, in a discrete way, a smart handling of continuous movement, of the max-
imal assessments of physical parameters or of the continuous time problems such
as differential equations, Zeno paradox or controlling precision results.

W l'llll,:l.l..\'
4 Runaway accelerate

. \ /’/f CASINE ER esablishment
Time between ATO \

;m] e pusr']lu) T Emergency brake rate

I A
_‘\ ————ATP Enforcement

ATO T T

Position Uncertainty

Disturh - -
Paimt .

/\\ \ |
Mormmal Service \ i

Brake Rate \\ \i
| | =

I -
saf Jistance
Safety Distance 7| Distance

N |

Salfety Braking Distance | |

Safe Train .\}cpur.-nicm i

Figure 3: Usual Safe Braking Model

Simulating together and in real time an efficient interlocking system with train
movement would enable to enhance train performance with respect to delay or
availability whilst keeping it safe. In order to get a higher level of confidence about
the safety of the case study the co-simulation conducted must be accompanied

with other techniques developed for the INTO-CPS tool chain such as the model
checking feature.

3.1.3 Design of a Distributed Interlocking

There can be several alternative solutions for the distribution challenge of this case
study, depending on the properties we want to protect or features we want to pro-
vide. The distribution of the interlocking system has been driven by geographical
distribution. The trackmap has been cut into five automatons/modules commu-
nicating via a ring network of UART. This solution is adapted to a large system

14

D1.2 - Case Studies 2 (Public)

because the compactness of the modules offers short distances between captors
or actuators and the automaton they belong to while the long distance between
modules can be covered by serial connections. The distribution of the equipment
can be seen in figure]

Figure 4: Distribution of the Interlocking system over the trackmap

3.2 Contribution during Year 2
3.2.1 Discrete Event Modeling (DE)

The DE model of the Interlocking is described using VDM-RT. The first cen-
tralised VDM-RT version of the interlocking system developed Year 1 was semi-
automatically derived from Ladder code for a PLC. Since we did not need a Lad-
der version for Automaton implementation, modelling directly in VDM-RT was
more efficient than reusing the version from Year 1. However, this distributed
model is conceptually derived from the centralised version. Most of the equations
are kept or duplicated between the different modules, a few have been created

15

D1.2 - Case Studies 2 (Public)

specifically for the distribution. So while the safety kernel of the centralised in-
terlocking model contained 180 equations, the distributed one has 250 equations
shared between the five modules (85 for ZV1, 49 for ZV2, 37 for ZQ2 and ZQ3
and 39 for ZP). The distribution of the model introduced a new and important fea-
ture to the system: message communication. The five interlocking modules need
to communicate over long distance and with different signals. For this purpose we
designed a ring network protocol and each module possesses a networking layer
able to transmit and treat messages. This network function is also a part of the
VDM-RT model and this gives benefits in the simulation.

Composition of a module

Each of the modules contains inputs, local and output variables. Inputs come from
sensors (track circuits, states of relays, and states of switches), commands from
the train and messages from other modules. Outputs are commands to relays (con-
struction and destruction), commands to switches (left and right) and commands
to light signals. Locals have two purposes: to compute intermediate variables and
to reflect the state of a distant module. Those variables form the system of boolean
equations.

3.2.2 Continuous Time Modeling (CT)

The CT model from Y1 has been reused and modified for use with the new INTO-
CPS Co-simulation Orchestration Engine (COE). It consists of a train in motion
over a changing track-map. The train starts or stops at a signal light, and advances
on the track-map given the track chaining. The length of the track, the chaining of
track and switches and the positions of the sensors and actuators are parameters
of the CT mode. They are stored in text files and read during the execution of
the simulation. The signal authorisation and the switche positions are granted by
the interlocking system. The maximum speed of the train at a certain position
is computed by the CT model, in accordance with the safe breaking methods.
During Y2, we modified the model by better separating the parts: parameters,
trains, Traffic_Light_ Manager, RelayBox, MIC_Manager and CommandPcc as can
be seen in figure 3

The blocks help to simulate hardware parts of the interlocking. Mainly, RelayBox
and Mic_Manager simulate the behaviour of the safety relays and the switches.
They are triggered by the commands of the DE model and provides delayed con-
trol variables for proofreading. CommandesPcc was a set of signals used for com-
mand or parametrisation of the DE system. It was later removed and its contents
were changed into parameters.

16

D1.2 - Case Studies 2 (Public)

Traffic_Light_Manager

Globals Traini RelayBox
Train2 MIC_Manager
CommandesPcc

Figure 5: Highest block level of the CT model

Then the model was reshaped for modularity. A higher level of abstraction was
added: figure [5|shows the simulation level which add the possibility to use differ-
ent refinements and thus different simulations. SIL simulation can be run in two
different tools: Crescendo or the new INTO-CPS COE. This abstraction model is
the starting point of both kind of simulations. The Crescendo_Interface block con-
tains the arrays of variables for the Crescendo co-simulation and both TrainFMU
and Relay Box can generate an FMU for COE co-simulation.

Globals Globals contains scenario parameters of the model

TrainFMU | TrainFMU is the main FMU, conntains 2 trains

Crescendo_Interface | Crescendo_interface is dedicated to communication with Crescendo,
Its not supposed to be exported has a FMU

RelayBox simulate the behavior of the Relays in SIL Simulation.
RelayBoX | 5 not simulated in HIL Simulation

Figure 6: Architecture of SIL setting

For Hardware in the loop (HIL) co-simulation, we fused the blocks Crescendo_-
Interface and RelayBox into one abstract interface block. The interface model is
basically a wrapper that communicates with the hardware outside of the computer,
which will be detailed in section The interface between both boxes is the
same for SIL and HIL co-simulation: RemoteCommand and TrackCircuit from
train to Interlocking and Switch positions and Traffic light from Interlocking to
train.

17

D1.2 - Case Studies 2 (Public)

Globals Globals contains scenario parameters of the model

TrainFMU TrainFMU is the main FMU, contains 2 trains
HIL_Interface HIL_interface is dedicated to communication with HIL

Figure 7: Architecture of HIL setting

Inside of the TrainFMU sub-model we added a way to manage a variable number
of trains. Inputs of the sub-model are distributed to the instances of trains and
outputs are computed from their outputs (boolean disjunctions or conjunctions
depending on the signal).

2D Interface

For the purpose of demonstration, simulation graphs are not enough. We need to
better represent the execution of the simulation. Therefore, we used the mecha-
tronic module in 20sim to build an animated representation of the trains and their
dashboards. This work is planed for Y2 but still in progress.

3.2.3 FMU Generation

CT model: Trains: Generating an FMU for the 20sim CT model of trains was
not straightforward. Unfortunately, three aspects of the model were not sup-
ported at the moment of the test: tables, events by the 20sim FMU generator
and arrays by the COE. Arrays have been flattened to scalars, tables were
replaced by statical arrays put directly in the model. This lowered the pos-
sibility of evolution of the model but does not change its meaning. Events
were a larger problem: the calculation of most equations of the model were
based on events and it has not been possible to remove the concept of event
without breaking the model. Thus instead we build a lighter version of the
model. It modelled movement of the train and activation of the sensors but
neither safe-breaking, derailment or slope management.

CT model: Relays: The FMU for Relays was generated without any problems.

DE model: VDM Interlocking: Generating an FMU from VDM required only
to adapt the interface for scalars like the CT model and use the dedicated
FMI library.

18

D1.2 - Case Studies 2 (Public)

CdvQ2

CdvQ3

Traffic_Light_Manager

LCdvil

Muxer
dvid
Cdvis Train1 o

Cdv20
CAG_MIC1_D MIC_Manager1 AT

dva?

CAG_MIC1TE i \ KRG_MIC1_G
Cuvae
CAG_MICZ D KAG_MICZ_D
& Cavas
TCZD TC3D = cacmit2c KAG_MIC2_G
2. Cdvig
- CAG_MIC2_D KAG_MIC2_D
cdvas
caG_MiC2_g haG_MICE_G
cag_Mics g KRG _MIC4_D
CAG_MIC4/G AG MIC4 G
cae_Micgn KA _MICE_D
cAG_Mics_G KAG_MICE_G

Figure 8: The TrainFMU Submodels

DE model: HIL wrapper: The HIL FMU wrapper is still in progress. The plan
is to generate the interface with 20sim or Modelio and manually write the
content of the FMU (message packing and sending through the network).
This will be done until the end of Year 2.

3.2.4 Co-simulation

Co-simulation using Crescendo was a great success during Year 1 and is still suc-
cesfull with the models of Y2. Achieving the same goal using FMU faced some
constraints on models (see before) and exploitation of the results but was also a
success.

Crescendo Co-simulation
Crescendo was for us a reference for co-simulation, therefore the new CT and
DE model needed to pass the test of Crescendo before going further in testing the

19

D1.2 - Case Studies 2 (Public)

Simulation Simulation | Crescendo COE
Name duration duration | duration
Q3V2_init 15 24 18
Q3V2_full 40 55 20
Q3V1-V1Q3 70 92 40

Table 2: Duration of simulations

new INTO-CPS tool chain. The co-simulation was progressing well and without
adjusting the model, mostly because those models were derived from a version
that was already able to co-simulate in Crescendo. The most noticeable problem
was the speed of the simulation. The full simulation of a single train passing (40
sec of simulated time) was taking 55 seconds on an average laptop (table[2)).

Figure 9: Co-simulation of the route Q3-V2 with Crescendo

COE Co-simulation

After correct generation of the FMUs, co-simulation with the INTO-CPS COE
was a very simple task. Setting the configuration and connecting the interfaces in
the application is very easy and there is very little room for user mistyping. The
simulation is fast and gives immediate results. Graph results may not be as easy
to read as in Crescendo but the raw Data can be read with external software.

FMU generation from 20sim and VDM and COE co-simulation is fast and reli-
able. The process of generating a new FMU for a modified model is very fast so
it’s possible to immediately test variants in co-simulation.

20

D1.2 - Case Studies 2 (Public)

3.2.5 Hardware In the Loop

Centralized Version

The centralised version of the interlocking has lead to the realisation of a ded-
icated Hardware in the Loop prototype. It consists of a micro-controller devel-
opment board running the interlocking automaton software. On this board, we
added LEDs and relays to reproduce the real interlocking system running on site.
This board has been connected to the simulator running on the PC and was used
to validate the accuracy of the simulation. The software running on the board
has been translated by hand, being too early in the project for code generation.
The co-simulation with centralised HIL was running only 20-sim on the PC: the
20-sim safe-breaking CT model and a 20-sim wrapper. This validated the contin-
uous CT model but lacked the use of the COE. This should be improved with the
distributed HIL prototype.

Figure 10: First Hardware in the Loop prototype

Distributed Version

The second version of the HIL prototype was for the distributed Interlocking. For
this prototype we needed six independent modules, one for Ethernet communi-
cation with the simulator and five for the parts of the interlocking. We choose
to design dedicated boards for the integration of the micro-controllers and their
equipments. Each board is able to lock three relays for route reservation, manip-
ulate two switches, three track circuits and one pair of signal lights. The central
module plays only the role of an interface, it sends and receives messages from
the computer running the simulation and converts them to TTL signals (Transistor-
Transistor Logic) for the Interlocking modules, simulating the actual sensors and

21

D1.2 - Case Studies 2 (Public)

actuators of the system.

The communication between the modules is handled by a ring network of RS-232
connections. Each message is sent to the left neighbour and forwarded until it
reaches its destination.

On each module, LEDs represent the state of the equipments, yellow for switches,
blue for routes and red/green for the authorisation light.

This work still needs to be completed, the demonstration will be satisfying when
we will be able to use the C code genereted from VDM-RT, embed it on the board
and run the distributed system along with the CT simulation on the PC.

Figure 11: The distributed Hardware in the Loop prototype

3.2.6 Improvement for Industrial Development

Year 2 was the occasion to produce a new product, the Distributed Interlocking
System, comparable to the one produced during Year 1, the Centralized Interlock-
ing System but with the tools provided by INTO-CPS. The main benefits from
using the INTO-CPS tools are in the verification and validation phases of the V-
cycle. The immediacy of the simulator tests reduces greatly the time between
successive versions. Moreover, most of the testing can be executed at a higher
level of abstraction using models which is sufficient for co-simulation. Of course
the implementation of the model via code generation will also be submitted to a
serie of tests later in the process, but the corrections during these tests will con-
cern only implementation problems (scheduling, I/Os, ...) that could be found

22

D1.2 - Case Studies 2 (Public)

and solved with simple unitary tests.

3.3

Industrial needs and assessments

Table |3| presents an overview of ClearSy’s need for the INTO-CPS tool chain. In
the following part, we detail each ClearSy’s (CLE) needs. Compared to Year 1,
fulfilment of the needs by the INTO-CPS tools has been added to compare with
the baseline tools.

3.3.1

Cle_1: ClearSy_time_Modelling

Description

The tool must enable to express delays of system’s actions/steps. The tool
must enable the description of delay and the duration of physical compo-
nents such as the commutation of relays and the state changes of the mo-
torised switches. Also, it must be possible to set the time cycle of a micro
controller.

Related Baseline Tools Requirements
[LPO™16] Requirements 0003-0005 are related because the modeling of
time step could be done at the co-simulation level.

Method of verification

While modeling the Railway signalling system using 20-Sim, the duration
of state changes of the relays and switches were modelled using the 20-
Sim operator “t delay” (Indicators: succeed: yes/no, rate of success over
cases). Cycle-time of interlocking software were also modelled using a
Clock operation that consumes a duration (using the VDM-RT operator ”du-
ration”).

Assessment:
In all our case studies, modeling delays and cycles times were achieved in

VDM-RT and 20-Sim. Indicator:

3.3.2 Cle_2: ClearSy_time _Simulation

Description

The tool should simulate delays/cycle time of system’s actions/steps. The
tool should enable the description of computational delays and duration of
commutation of relay in a signalling system.

23

D1.2 - Case Studies 2 (Public)

e Related Baseline Tools Requirements
[LPOT16] Requirements 0003-0005 is related because the simulation of
time could be done at the co-simulation level. Requirement 0024 - is im-
portant to be as precise as possible.

e Verification Method
ClearSy attempted to simulate the Railway signalling system using 20-Sim
and VDM-RT. The switching of the relays should be simulated. Cycle-
time should be simulated (Indicators: succeed: yes/no, rate of success over
cases).

e Assessment:
The PLC time cycle and the delays of state changes for relays and mo-
torised switches have been successfully simulated and also co-simulated
with Crescendo. Thus, the tdelay operator from 20-sim is not imple-
mented in FMU generation. The COE co-simulation required a modifica-
tion of the model that removed this aspect. Indicator:

3.3.3 Cle_3: ClearSy_time_Trigger Modelling

e Description
The tools must contain, at least in one of their languages, a trigger artifact
based on time or delay.

¢ Related Baseline Tools Requirements
[LPO™16] Requirements 0003-0005 is related because the simulation of
time could be done at the co-simulation level.

e Verification Method
VDM-RT was tested for the ability to code time based trigger.

e Assessment:

It has been possible to set the duration of a computation unit using the
VDM-RT CPU class. Cycle-time of interlocking software has also been
modelled using a Clock operation that consumes a duration (using the VDM-
RT operator ”duration”). The "TON” and "TOF” functions - from the LAD-
DER code that enable to handle delay before triggering a signal or to hold a
signal constant during a period of time- have been handled in VDM-RT by
computing explicitly at each micro-step duration, the total elapsed time. IN
function of the elapsed time the TON/TOF operators decide the triggering.
Indicator:

24

D1.2 - Case Studies 2 (Public)

3.3.4 Cle 4: ClearSy_time _Trigger _Simulation

Description

The tool should simulate the trigger based on time or delay. In order to
be able to synchronise with relays, and to express cycle time, it should be
possible to simulate in the software logic the clock or delay enabling to
postpone the triggering of operations.

Related Baseline Tools Requirements

[LPO™16] Requirements 0003-0005 are related because the simulation of
time could be done at the co-simulation level. Requirement 0024 is impor-
tant to be as precise as possible.

Verification Method
VDM-RT will be tested for simulating the code of time based trigger. (In-
dicators: succeed: yes/no, rate of yes over cases).

Assessment:

It has been possible to simulate the duration of a computation unit using
the VDM-RT CPU class. Cycle-time of interlocking software has also
been simulated using a Clock operation that consumes a duration (using the
VDM-RT operator “duration”). The "TON” and "TOF” functions - from
the LADDER code which enable to handle delay before triggering a signal
or to hold a signal constant during a period of time- have been simulated.
Indicator:

3.3.5 Cle_5: ClearSy_checking

e Description
The tool should enable to check logical consistency at the level of co-
simulation.

¢ Related Baseline Tools Requirements
[LPO™16] Requirements 00032 to 00035 are Model-checking based re-
quirements(discrete Model-checking, continuous Model-checking and global(co-
simulation) Model-checking). Their achievements are important for Cle_5
requirement industrial achievement.

e Verification Method
Non collision invariant or Overall delay should be checked. For instance the
duration of switching of relays which was missing in ClearSy’s first proto-
type and which caused an error at the testing phase on the industrial site,

25

D1.2 - Case Studies 2 (Public)

could be earlier found out with the help of the model checker.

Indicator: succeed yes/no, rate of yes over cases

This should be done by model-checking by VDM-RT/RT-Tester/20-Sim. (
Indicator: number logical of consistencies checked/ all logical consisten-
cies)

e Assessment: not achieved
At Y2, global Model-checking has not been tried yet. It has been possible
to check invariant at the level of VDM-RT, and to inject error warning in
the 20-Sim model when continuous invariant is falsified (detection of de-
railment). Indicator: 25%

3.3.6 Cle_6: ClearSy Simulation_Scalability 1

e Description
The tool could simulate real size Railway map evolution and trains move-
ments.

e Related Baseline Tools Requirements
[LPO™16] Requirement 0024, since it is important to control Simulator in
order to avoid side effects from computation latency.

e Verification Method
Indicator: Number of simulated tracks (and track circuits sensors), cross/joins
(and join sensors) and related equations of simulation of train movement
(20-Sim).

e Assessment:
The railway case study provided several csv files that store track map data
(joins, traffic light, track circuit...) . Modeling the data for FMU generation
is more complicated than for baseline tools. Data in csv files could not be
read by the CT FMU. CT model has been adapted for FMU generation and
csv import has been removed. Indicator:

3.3.7 Cle_7: ClearSy_Simulation_Scalability 2
e Description
The tool could simulate real size railway signalling variable evolutions.

e Related Baseline Tools Requirements
[LPO™16] Requirement 0024, since it is important to control Simulator in
order to avoid side effects from computation latency.

26

D1.2 - Case Studies 2 (Public)

o Verification Method
Indicator: number of signalling variables and logic that are simulated into
VDM-RT.

e Assessment:
During Y2, the number of variables of the VDM-RT model of interlocking
has increased due to the distribution. The simulation and co-simulation has
been successfully achieved. Indicator:

3.3.8 Cle_8: ClearSy_Simulation_Exploration_Scalability

e Description
The tools should integrate several heterogenous models seamlessly.

¢ Related Baseline Tools Requirements
[LPO™16] Requirements 0018-0020 could be necessary in order to assess
the maximal/minimal value from a range of parameters. The guidance re-
quirements 0073, 0076 would be welcome.

e Verification Method
Indicators: possibility to assess the maximal/minimal/optimal value of a
parameter from a range of test. Use case : rollback case maximal value
assessment, availability maximal value assessment, maximum duration as-
sessment of train movement.

e Assessment: not achieved
The INTO-CPS tools now allow to sweep a range of parameters at the level
of co-simulation, only the train speed parameter has been tested so far. In-
dicator: 25%

3.3.9 Cle9: ClearSy_Simulation_Accuracy_Confidence

e Description
The tool could make clear the mechanisms, the accuracy and confidence of
the simulation. It could be possible to handle and make clear the simulation
of ordinary differential equations, with discontinue acceleration. It could
be possible to model, explain and simulate multi-masses movement.

e Related Baseline Tools Requirements
[LPO™16] Requirements 0045, 0047, 0055, 0058, 0061, 0065 : Seman-
tics are necessary in order to keep accuracy and confidence. Quantifiable

27

D1.2 - Case Studies 2 (Public)

simulation tolerance at the INTO-CPS co simulation are necessary to keep
accuracy.

o Verification Method
-20-Sim discontinuity handling (yes/no, accuracy/explanations)
-20-Sim-Crescendo/COE maximal/minimal value assessment for a range of
test case at the co-simulation level, margin error (rollback, is there margin
error)

e Assessment: not achieved
The 20-Sim modeling successfully handles the discontinuity of the accel-
eration because of the change of the track map (and so because the slope
may change), or because of an emergency braking. However, discontinuity
is not supported for FMU generation. Indicator: 25%

3.3.10 Cle_10: ClearSy_Seamless_integration

e Description
The tool should easily enable integrating several heterogeneous models.
The co-modeling level should enable modeling a continuous train move-
ment, model the track map (with discrete information), model the interlock-
ing signalling software and model the electrical relays/switches.

¢ Related Baseline Tools Requirements
The [LPO™16] guidance requirements 0067, 0071, 0076 are concerned.
Help for modeling at the co-simulation level is concerned: Requirements
0049 and 0050, 0051, 0052.

e Verification Method
The Crescendo gluing/orchestration engine tool has been tested.
FMI based co-simulation has been tested.
Indicator: co-simulation: yes/no/partially achieved, rate
duration to “develop co-simulation”
Is it FMI compliant ?

e Assessment:

The FMI co-simulation of VDM-RT and 20-Sim has been successfully achieved
but with the use of a degraded CT model(see above part of co-simulation).
Indicator:

28

D1.2 - Case Studies 2 (Public)

3.3.11 Cle_11: ClearSy Distributed_Modelling

e Description
The tool should enable the modeling of distributed hardware, with commu-
nication delay.

¢ Related Baseline Tools Requirements
In [LPO™16] the requirement 0024, related to model communication delays
at the co-simulation level is concerned.

e Verification Method
The co simulation with 20-Sim, VDM-RT and the COE has be assessed
against the use case of distributed interlocking (distributed communicating
Hardware)

e Assessment:
During Y2 a distributed model of Interlocking has been produced and used
for co-simulation, using simulated communications. Indicator:

3.3.12 Cle_12: ClearSy_Code_generation

e Description
The tool should easily enable generating code (C) or binary (HEX) with
compatible facilities, complying with safety critical standards without too
much need for manual patch.

e Related Baseline Tools Requirements
[LPO™16] requirements 0037, 0042, 0044

e Verification Method
VDM-RT Interlocking software generation (for code execution) on Pic 32
micro controllers for simulating interlocking.
Indicator: achieved or not, duration to set the generation

e Assessment: not achieved
At M22 code generation is still in progress. Early prototypes have been
tested and look promising. Indicator: 50%

3.3.13 Cle_13: ClearSy _certification_Safety

e Description
The INTO-CPS tool chain should provide quality arguments for a possible

29

D1.2 - Case Studies 2 (Public)

certification kit (or any means to ease safety case) or redundant validation
chain.

- what is the global level of confidence ? what elements are available to
be used for safety case ? For each formalised modeling language (such as
OpenModelica and VDM-RT) the language provider should also provide
evidence that the corresponding simulator adhere to the formal semantic of
their language.

¢ Related Baseline Tools Requirements
The requirements 091 and 092 from [LPO™16] are critical for justification
of well-foundedness and safety handling. [LPO™16] Requirements 0045,
0047, 0055, 0058, 0061, 0065 : Semantics are necessary in order to keep
accuracy and confidence. Quantifiable simulation tolerance at the INTO-
CPS co simulation are necessary to keep accuracy.

e Verification Method
Indicator: Safety certification kit/method: yes/no

e Assessment: not achieved
At the first year, there is no available clear (formal) semantic of VDM-RT,
20-Sim or OpenModelica and Crescendo. Moreover, there is no certifica-
tion that the baseline tools behave as their specified semantic. Neither the
co-simulation engine, or simulation engine, provide tolerance margin of the
resulted simulations. There is no redundant validation chain for safety pur-
pose. There is no certification kit. Indicator: 0%

3.3.14 Cle_14: CLearSy Failure Modelling

e Description
The tool could enable modeling degraded mode at the co-simulation level.

¢ Related Baseline Tools Requirements
[LPO™16] guidance requirement 0082 is critical. The interrupts mecha-
nisms are also important at requirement 0056.

o Verification Method
VDM-RT/20-Sim. Model Emergency braking phase. Indicator: yes achieved
/no/ partially

e Assessment: not achieved
It hat not yet been tested to model faulty behaviour in our CT model at the
co-simulation level. Indicator: 0%

30

D1.2 - Case Studies 2 (Public)

3.3.15 Cle_15: ClearSy_Traceability

e Description
The tool should enable to coherently organise requirements and system-
atically to warn the user about missing checking of requirements against
simulation or automatic checking tools.

¢ Related Baseline Tools Requirements
From the deliverable [LPO™ 16], the requirements 0089 and 0090 are critical
for traceability and impact analysis. [LPO™16] guidance requirement 0074
is welcome. Requirements 0012-0017 are important.

e Verification Method
Modelio testing of requirements handling (Indicator: duration to set a re-
quirement),
traceability (indicator : yes/no)
easy checking (indicator duration to Set/launch checking)
dealing with versions , indicator : yes /no

e Assessment:
Duration to set a requirement w.r.t. internal ClearSy tools: writing a few
Excel requirements: 10 min, writing the same Modelio requirements: 12
min.
There is traceability facility, but not between a requirement and a piece of
code (some area in the code), or a document (system, Hardware) and not
documented in the INTO-CPS project yet.
An easy checking is possible in theory but not documented in the INTO-
CPS project yet.
Indicator:

3.3.16 Cle_16: ClearSy_3D animation

e Description
In the baseline tool 20-Sim it is possible to have a 3D animation of the
progress while being simulated. It would be essential to keep this kind of
functionality in the multi-model FMI based co-simulation as well. A 3d
animation would be useful for better co-simulation understanding, with an
increasing number of variables, it becomes difficult to follow the progres-
sion of a simulation.

e Related Baseline Tools Requirements
From the deliverable [LPO™ 16], the requirements 0093 is critical.

31

D1.2 - Case Studies 2 (Public)

e Verification Method
Existence of such available 3D-animator using FMU

e Assessment:
The 3D animator embedded in 20-Sim has been made compatible with FMI.
A model is being designed for the Railway Use-case but has not been tested
in cosimulation yet.
Indicator:

32

D1.2 - Case Studies 2 (Public)

%01+ %09 %08 [Teax S uonesIensiA (¢ 9179[D
%0+ %0S %08 T Ieax S 'sbar azruesdiQ SI oD
POASIOY JION %0+ %0 %0 T Ie9X 0) spow papeisa(q v1731D
POASIYOY JION %0+ %0 %0 ¢ T8 S D] UoNRIYNIS) €I oD
%ST+ %08 %ST € T S (XoH 10 D) eroudy Z[9[D
%001+ %001 %0 [Teax S SwaIsAS panquusiq [
%01+ BSL %S9 [Jeax S S[OPOIAl JO ANIqerSuy O 9[D
©®>®M£o< JON §O+ Q& mN Q&WN m Jeo X U %omhsoo/& Hoamﬁsaﬁwm @\20
POARIYOB JON 9%G7+ %GT %0 7 TBax 9 uoneio[dxe aoedg Aseg 879D
%0+ %001 %001 [Teax o) o130[[eusIs ore[AWIS £ 79[D
%ST- BSL %001 [TBoX 0) dew yoen de[nuwig 979D
POASIYOY JON %0+ %ST %ST T Teax S 'sbax [eor3or Sunppayy GO
%0+ %001 %001 [Jeag S owm 19331 e[t)
%0+ %001 %001 [Teax W owm JOZ3LN [OPON €910
ST BSL %001 [Teax S sKe[op de[nuig axle
%0+ %001 %001 [Teag N sAefop ssardxy 191D
1dadoy P IPUIZX DIPUI X dARR[qO KAorg W Sisuy "SPIIN

SPIN S.ASIBa[D ¢ 9[qeL

33

D1.2 - Case Studies 2 (Public)

4 Agriculture Case Study

This is the public version of the agricultural case study which provides a general
overview. A more detailed version of the same document can be found in the
confidential version.

4.1 Introduction

This case study is provided by the Danish company Agro Intelligence (Al) and it
is focused on the evaluation and development of an agricultural robotic platform.
This document also builds on the work submitted in the D1.1c deliverable after
the first year of the INTO-CPS project [EGH15].

Figure12]illustrates the three different generations of the robot over time, until the
writing of this deliverable. The work presented in this deliverable will primarily
be focused on the current version under development and secondly provides an
update on the modelling of version 2 of the robot. The reason why the main
focus is on the new version of the robotic platform is to evaluate how the INTO-
CPS tool chain can be used to support rapid development of such an agricultural
system.

4.2 Agriculture case study

This case study is focused on the agricultural robotic platform Robotti. An early
version of this robot can be seen in Figure Robotti is designed as a low cost,
semi-autonomous machine to apply different kinds of soil and crop treatments
through agricultural tools called implements. Examples of implements could be
sowing, weeding, spraying or row cleaning tools.

4.2.1 Description

The robot was initially conceived to be deployed and operated in fields structured
in rows. An overview of the working environment is shown in Figure [I3] This
figure shows the start position where the robot is normally deployed and it repre-
sents with arrows the trajectory it follows. The robot transits from one row to the
adjacent one in the turning areas. The field in which the robot is deployed is not
necessarily flat and it could present different kinds of slope changes. In addition
to the plants and the soil that have to be treated, there are other external elements

34

D1.2 - Case Studies 2 (Public)

(a) Front view of the first generation (b) Presentation of the second gen-
Robotti. eration Robotti

(c) CAD drawing of the third genera-
tion Robotti

Figure 12: Pictures of three generations of Robotti as of first of August 2016.

in the environment that can hamper the normal operation of the robot. These are
obstacles of different sizes, such as animals or humans in the way, that require
different kinds of actions. Small obstacles can be dealt with autonomously by
the robot by handling the height of the implement, while big obstacles demand a
machine full stop.

Figure [14] shows a specific kind of implement operated by the robot is in the
field. In the agricultural domain there are many different kinds of implements
for different purposes. The ones considered in this case study are row cleaning
implements.

35

D1.2 - Case Studies 2 (Public)

Figure 13: Example of a field where Robotti could be deployed.

Figure 14: Two different row cleaning implements mounted on Robotti and tilling
the soil.

36

D1.2 - Case Studies 2 (Public)

4.2.2 Requirement and Specification

The industrial project Robotti is composed of a number of requirements and sce-
narios. In order to present an approachable case for the INTO-CPS research
project a subset of eight functional requirements has been formulated as Use Cases
(UC). An overview of these use cases is provided in Figure [I5]

The overall use case is R1 and it is decomposed into additional seven use cases.

Figure 15: SysML use case diagram giving an overview of the services the robot
controller has to provide.

The requirements specified in this section are related to robot navigation and im-
plements safety control. Most of the requirements presented in Agro Intelligence
(AI) are functional requirements and are specified as UC. More detailed descrip-
tions of the use cases are provided in the sub-sections below.

Requirement 1: UC Control Robotti (Top Level UC)

e Description: The user should be able to control Robotti so it is possible
to work the crop-fields. This is a top level use case that is refined in more
concrete services offered by the system in the following UC descriptions.

37

D1.2 - Case Studies 2 (Public)

e Method of Verification: Model simulation and system testing.

Requirement 2: UC Operate Manually (Free Drive)

e Description: The human operator should be able to operate manually Robotti
in the crop-fields, being able to steer it and control its speed. The manual
mode is denoted as Free Drive, since it allows the human operator to control
the robot externally.

e Method of Verification: Model simulation and HiL system testing.

Requirement 3: UC Operate Automatically

e Description: Robotti should be able to navigate a field independently with-
out requiring the constant input of a user.

e Method of Verification: Model simulation and system testing.

Requirement 4: UC Control Implement

e Description: It should be possible to activate the implement and control
its height if needed. When Robotti operates automatically the implement
height can be changed depending on the robot’s position in the field.

e Method of Verification: Model simulation and system testing.

Requirement 5: UC Drive Row

e Description: Robotti should drive along the crop-rows of the field in which
it is deployed and stay within them.

e Method of Verification: The model of the robot will be simulated taking
the effect of disturbances and irregularities of the crop and soil into consid-
eration.

Requirement 6: UC Move to Next Row

e Description: Robotti should be able to transit between rows through a turn-
ing area. Implements should be lifted/deactivated before starting the turn
and lowered/activated when the turn is completed. Dependent on the imple-
ment, the robot might need to be paused in its steering and driving, until the
operation is completed.

38

D1.2 - Case Studies 2 (Public)

e Method of Verification: The model of the robot will be simulated having
the robot deployed close to the end of a row.

Requirement 7: UC Handle Obstacle

e Description: Robotti should be able to detect obstacles in the row in which
it is operating. Examples of obstacles can be a bird nest, a person or a deer.

e Method of Verification: The model of the robot will be simulated in dif-
ferent scenarios with obstacles of different sizes placed in different parts of
the field.

Requirement 8: UC Emergency Stop

e Description: Robotti should be able to perform an emergency stop and
execute a predictable stop behaviour. Supply to the motor (current/diesel)
will be cut via hardware and a human operator notified. The controllers will
stop their current operation and move back to idle mode.

e Method of Verification: The model will be simulated through different
safety/critical scenarios.

Requirement 9: NF Platform usage

e Description: The solution modelled and considered in this case study should
target the controller platforms intended to be used on Robotti. These are
Linux platform running with the Robot Operating System (ROS) [QCGT09]
and B&R Programmable Logic Controllers (PLCﬂ

e Method of Verification: Does not apply.

4.3 Modelling

This section describes the modelling that has been done using the INTO-CPS tools
during this second year of the project. The modelling tools that have been used for
this chapter are, Overture, 20-sim, OpenModelica and Gazebo/ROS. The main fo-
cus is the third generation of the Robotti vehicle platform and the different aspect

'B&R is a company producing industrial automation controllershttp: //www.
br-automation.com/en/

39

http://www.br-automation.com/en/
http://www.br-automation.com/en/

D1.2 - Case Studies 2 (Public)

of the on-board sensors and actuators. The reason why Agro Intelligence has cho-
sen to extend the chain with Gazebo/ROS [QCG™09] is explained below.

4.3.1 Gazebo and ROS

Simulation and 3D-visualisation make it possible to rapidly test algorithms, de-
sign robots, and perform experimentation and testing using realistically modelled
scenarios. Figure |16|illustrates one of the first versions of the next generation of
Robotti before the CAD models were made.

Figure 16: Visualisation of the upcoming third generation of the Robotti platform
in Gazebo.

Gazebo offers the ability to accurately and efficiently simulate and visualise robots
in indoor and outdoor environments. In this case study, we mainly use Gazebo for
visualisation of the simulation result from COE, made with the models from 20-
sim, Overture and OpenModelica. This kind of Gazebo visualisation of approach
allows our development team to get early feedback from end users with a lesser
understanding of all the utilised CPS technologies. Feedback from end users like
an onion or cabbage farmer can provide valuable product feedback early in the
development process, to ensure the development meets their demands.

Gazebo is mainly used for visualisation as stated in the description above, with
the exception of visual sensing and the field environment. Visual sensing can be a

40

D1.2 - Case Studies 2 (Public)

camera or a laser-range scanner sensor, which is intended to be used on Robotti.
To model a camera system, it needs an actual input of a crop field and obstacles
to provide the correct output. By using the already created visualisation from
Gazebo, a simulated image can be generated. To connect the INTO-CPS tools
with Gazebo, ROS is used to delegate communication back and forth.

In some of AI’s other research projects, the Gazebo/ROS combination is also be-
ing used by the academic and industrial partners. We have chosen to also follow
this path in this case-study, to allow for better inter-collaboration with the other
projects.

Creating crop-fields for Robotti The different field scenarios Robotti must op-
erate in is an important part of the case study. The crop type and field structure
have a significant impact on how Robotti should perform its task in the field. In
Figure|l7| examples are found of such crop-fields generated for Robotti to operate
in. The simulated fields allow us to evaluate the results from the simulations, and
are used as input for the visual sensor as objects in the environment.

(a) Cabbage Field (b) Corn Field

(c) Apple Orchard (d) Onion Field

Figure 17: Generated crop field examples

41

D1.2 - Case Studies 2 (Public)

4.3.2 Robotti Third Generation

The third generation of the robotti platform comes in two different versions, a
version with four-wheel steering and one with two-wheel steering as illustrated
in Figure[I8] Regarding industrial production, the first version currently intended
to be put into production is the two-wheel steered version. In both versions each
steered wheel can be operated individually to provide a high degree of freedom in
driving.

Figure 18: Planned steering freedom in the third generation of Robotti.

The two-wheel steered version is designed to be similar to a tractor and is intended
to provide similar functionality with and without a human operator driving the
robot. The main difference is that the implement (examples could be cultivator or
sprayer) will be mounted inside the frame and not behind.

A vehicle CT model have been made for the third generation of Robotti.
The main reason for the different models is to account for the two types of robots
and the progress of exporting capabilities from 20-sim this year. To export the
more complex vehicle models, it requires variable step-size solver for FMU to
work.

Actuators To steer the wheels on Robotti a hydraulic actuator is used for each
wheel as illustrated in Figure The actuator drives the wheel using a rack and
pinion gearing system that translates linear motion into rotation.

This steering system has been modelled as a first order transfer function in 20-sim.
The limiting block ensures that the response is within the boundaries of the actual
actuator. Each wheel is steered individually with a setup as illustrated in figure

42

D1.2 - Case Studies 2 (Public)

delta_fl_w——s] 7|C—p- L —
57 +1

Limif_jeff TransferFuncfion

Figure 19: Modelling of the left front steering actuator.

for the front left wheel. This allows us to model the intended time-behavior of the
actuator response.

Figure 20: Actuator system used to on the Third generation of Robotti.

Second or higher order systems will be used to model the actuator response in the
future in order to provide more realistic responses. Sample data from the actual
Robotti will be needed to improve the modelling.

Wheels - Kinematic model The kinematic model is used as a simple first model
to describe the transfer from wheel rotation speed (angular velocity) to linear ve-
locity. This model takes the estimated radius of the wheel R.. and converts the
rotational speed (w,,) of the wheel xx into linear velocity V... Conversion is
performed as illustrated in figure 21]and calculated as:

sz:v = wawRee (1)

Vehicle Body Dynamics - Bicycle model The CT-model defining the vehicle
is a non-linear model with three Degrees of freedom (DOF), i.e., the longitu-
dinal, lateral, and yaw directions, irrespective of the suspension and described
in [CLJ15]]. The model of the vehicle utilises the bicycle approach, meaning that

43

D1.2 - Case Studies 2 (Public)

Figure 21: Concepts in the kinematic tyre model

the lateral forces on the left and right wheels are assumed to be equal and summed
together. This assumption holds for typical agricultural vehicle operation veloci-
ties (<7.5 m/s) [KS10]. The bicycle structure is also known as a half-vehicle (Fig-
ure 22)). The model allows for yaw and lateral motion through adjustment of the
front wheel angle ;.

i

y

X

ooy
i

Figure 22: Dynamic bicycle model of the body of the Third Generation of Robotti.

The velocities u, v are at the Center of gravity (CG) of the vehicle. L is the
wheelbase, where a is the longitudinal distance to the front wheel, and b is the
longitudinal distance to the rear wheel. For a constant forward velocity, the vehicle
motion is given by

m(v +w)) = Fycos(0f) + Fry (2)

44

D1.2 - Case Studies 2 (Public)

where 7 is the angular rate about the yaw axis. Similarly, the vehicle yaw motion
is expressed by)
L.J = aF;, — OF,, (3)

where [, is the moment of inertia along the yaw axis.

Implements In agriculture, implements are the tools that are mounted onto a
tractor, e.g. a cultivator or a sprayer. On the current version of Robotti the im-
plement is attached to the vehicle by a three-point linkage, which is the standard
way utilised by tractors. How this three-point linkage operates differ from vehi-
cle to vehicle, but the general mechanical design is the same. A first three-point
linkage model was created, as illustrated in Figure [23a] to mount different types
of implements.

(a) Cultivator modelling - first attempt (b) Sprayer modelling - first attempt

Figure 23: First attempts in adding implements to the Robotti tool career.

A revision of this first CT-model of the connector will be needed when the final
version of Robotti has been made. In this second year of INTO-CPS, a sprayer
system has been the main focus of Robotti’s implements, illustrated in Figure 23b]
since it can be used for multiple applications. In its current version, the model of
the sprayer assumes all nozzles are driven using the same valve. In later versions,
the intention is to make a model where each nozzle can be activated individually,
in order to allow spot spraying.

4.4 Robotti Second Generation

The movement of the robot has been studied from the CT side by creating a kine-
matics model of the vehicle. The 20-sim representation of the system is shown
in Figure 24] This model takes the radius of the wheels R.. and the separation
between them 7. into consideration, to describe the robot movement. Based on

45

D1.2 - Case Studies 2 (Public)

these parameters and on the distances travelled by the wheels, it is possible to
determine how the robot moves and what orientation it has.

Figure 24: 20-sim model of the Robotti second generation.

The model is symmetric since the construction of the robot is as well, meaning
that the mechanics of the left side of the robot are identical to the ones used on the
right side.

The robot movement is described through a number of equations. The speed of
the robot V. is considered from the center of the robot, and described in terms of

the rotational speeds of the right (w,) and left wheels (w;), as shown in equation [4]

and based on

(WTR + wl Rlee)

2

€ee

Ve= 4)
Considering the separation between the wheels 7, it is also possible to determine
the yaw rate of the robot (¢), as shown in equation |5} v is an angle defined with
respect to the XY frame. X and Y are defined with respect to the field.

_ (wr —wi)
%U—T (5)

46

D1.2 - Case Studies 2 (Public)

Finally, based on these calculations it is possible to determine the location of a
robot using the equation [6| for the X and Y coordinate axes respectively.

T cos(1))
i) =L ©
4.4.1 Sensors

Camera row-tracking For the camera sensor, we have two model versions for
the crop-row detection, one for using Gazebo and a simpler version using 20-sim.

(a) Basler camera intended to be used for (b) Output from the tracking algorithm
row-tracking on Robotti. with the Gazebo image.

Figure 25: Camera and simulated output.

The detection of the crop-row is done to ensure that Robotti can move safely in the
field without harming the individual plants. The Gazebo version utilises a camera
image for the crop-row tracking algorithm, which provides an offset and an angle
of the rows, as it is illustrated in Figure[25] The 20-sim version provides an output
similar to the tracking algorithm, but without the use of an image, as it is based on
a map aware of the current robot and crop positions. The intention behind the 20-
sim version is to imitate what the actual tracking algorithm would provide, and
allow it to run with configurations that are not possible with the algorithm. An
example of these configuration parameters could be higher real-time update rates,
or improved or degraded detection results.

47

D1.2 - Case Studies 2 (Public)

4.4.2 Encoders

The rotary encoders for the Third Generation Robotti are based on the NovoTech-
nic RFC-4800 with a CANopen interface. The encoders are used for measuring
both speed and wheel angle, and they provide regular updates at each CANopen
sync message. Figure [26]illustrates the current version of the model of the rotary
encoders.

Figure 26: 20-sim encoder model.

The encoder model provides measurements in both speed and angle in absolute
terms. When generated, the FMU is currently unable to address the CANopen
part of the system, and this part is therefore added when the HIL testing is needed.
In the HIL CANopen cases, the back conversion from bit value will not be per-
formed, and the bit values are considered as outputs directly. Since the the en-
coder model contains both CT and DE elements, it can be categorised as a hybrid
model.

4.4.3 Emulated sensor fusion

In most cases where mobile robots are navigating in an environment, informa-
tion from different sensor sources are combined (fused). This is known as sensor
fusion. This approach of localisation by a robot is used to ensure the robot can
navigate in an outdoor environment since no single sensor source can provide the
necessary measurements.

48

D1.2 - Case Studies 2 (Public)

Making a complete sensor-fusion setup can seem a bit extreme in a modelling
context, when it is wanted, for example, to test a navigation algorithm. To simplify
the process, a model has been made that emulates the expected behaviour of sensor
fusion algorithm using 20-sim. The model can currently be in three different
states:

1. Provides no data about the robot’s localisation
2. Provides current position but not the direction of the robot
3. Provides current position and the direction of the robot (pose)

For both case 2 and 3, the localisation data comes with an uncertainty estimate.

4.4.4 Controllers

The controllers documented here are designed for the third generation of Robotti,
but should in theory also be applicable to the second generation of Robotti, with
some minor modifications.

4.4.5 High-level control structure

The state diagram in Figure [27|is used to represent how the robot reacts to dif-
ferent external events, toggling between different operational modes. The manual
mode is used for the operational setup, like mounting the implement, testing actu-
ator functionality and driving the robot by wire. For high-level control, the robot
always starts in idle mode with all actuators in passive, but all sensors are booted
up. Currently, it is only possible to switch to FreeDrive directly, since to robot
needs a heading in order to go into AutomaticOperation. The heading determines
which way the robot is turned globally, and is used to guide the robot correctly
into the field, since both position and heading need to be known. The Emergency
Stop occurs when a bumper action, safety button press or an unhandled situation
occurs.

4.5 Industrial needs and assessment

The industrial needs have been updated to match the current needs of Agro In-
telligence. The description has been focused, and no new industrial needs have
been added. An overview of Al industrial needs after year two is presented in
Table 4l

49

UOTJESI[ENSIA pUB

I'c S uonewIue (¢ S[00L [euonoung (484
1'C S uoneisajur 0qazen) s[oof., [euonoung 1171V
[013UOD UOISIdA pue
1'C o) 1oysdeus sjnsor uoneWIS S[ooL, [euonoung 01 1V
[013UOD UOISIdA pue
1'C 0) joysdeus [SpOIA S[00L, [euonoung 61V
K3o[0poyIdIN
1T S juowdopaaa(§SQ001d [euomoUNJ-uoN IV
uonenwIs
I'c N T'S pue TIH S[00L [euonoung ¢V
wis-()g Wolj
07C N uoneIauas opos-) S[ooL [euonoung IV
LId-INAA woly
1T N uoneIdUag 9pod ++) s[oog, [euonoung 'V
RETN snye)s Luiorg uondrisa(q %) qnS £1039e) ‘boy

D1.2 - Case Studies 2 (Public)

"SpaaU [eLIISNPUI QOUASI[[IU] 0ITY JO Arewrwing 4 9[qel,

50

D1.2 - Case Studies 2 (Public)

b

Initialisation ToSetup
Toldle
Toldle ——>

/7 Idle ﬁ

ToFreeDrive Toldle

ToAutomatic
. Automatic
ToFreeDrive

EmergencyStop EmergencyStop

Emergency
Stop

Stopped

g/)e OperationCompleted

Figure 27: Overal Control statemachine structure in SysML form

The following sections provide a description of the industrial needs for the agri-
cultural case study. These industrial needs are formulated as requirements.

4.5.1 Al 1: Code generation from VDM-RT

e Description: The tool must facilitate code generation from VDM-RT mod-
els to C++. The target platform for this is embedded Linux and it must run
either as a standalone executable or within a ROS node.

e Method of Verification: Code generation from models of different control
logic of varying complexity. Testing of the generated code in a controlled
setup and comparison with expected results based on models. Measure-
ment: percentage of VDM-RT modules translated; suitability as control
software.

e Assessment:

51

D1.2 - Case Studies 2 (Public)

The code generation support from VDM-RT is close to fully developed for
C-code, according to the baseline tool requirements. However, due to pri-
oritisation of the developers of the VDM code generator to support C-code
generation in the first place, its functionality is not fully suitable for Agro
Intelligence since we need code generation to C++, and C++ code cannot
run in C-code environment. As Al has a different development time sched-
ule than in the INTO-CPS requirements, i.e. before the code generator was
required to be ready, we had to code in both C++ and VDM manually. Al
has provided an example VDM-RT project for our target platform (embed-
ded Linux with ROS) that can be used as a first step to validate when a C++
code generator is ready for testing.

¢ Related baseline tools requirements: 0038

e Degree of achievement: 75%

4.5.2 Al 2: Code generation from 20-sim

e Description: The tool must facilitate code generation from 20-sim to C/C++
software. The target platform for this is embedded Linux, and it must run
either as a standalone executable or within a ROS node.

e Method of Verification: Code generation from models of different control
logic of varying complexity. Testing of the generated code in a controlled
setup and comparison with expected results based on models. Measure-
ment: percentage of 20-sim moduls translated; suitability as plant and con-
trol software.

e Assessment: .

20-sim models can be exported into C-code and FMU units for fixed step-
size ODE solvers (Euler, Runge-Kutta 2, Runge-Kutta 4), that can be exe-
cuted on Windows- and Linux-based computer units. The variable step-size
solve has been implemented to allow the C-code generation to match the
response in 20-sim. The Backward differentiation formula (BDF) solver is
currently the only tool able to support some of the more vehicle models.
This functionality is still needed to be implemented for code generation.

e Related baseline tools requirements: 0038, 0039, 0040

e Degree of achievement: 65%

52

D1.2 - Case Studies 2 (Public)

4.5.3 Al 3: HiL and SiL simulation

e Description: The tool must facilitate Hardware-in-the-Loop and Software-
in-the-Loop simulation of 20-Sim and VDM models.

e Method of Verification: Co-execution of different models of increasing
complexity with Hardware and Software realisations. Measurement: Yes/No
for HiLL and SiL; Percentage of simulated cases (from total of “pure” model
simulations).

e Assessment: .
At the writing of this chapter, only 20-sim and OpenModelica can provide
export of code that can be used for HiL and SiL testing. HiL is done via the
FMUs and implemented manually on the particular Operating system and
controller.

e Related baseline tools requirements: 0042, 0043, 0084, 0086, 0087, 0088

e Degree of achievement: 30%

4.5.4 Al 8: Methodology for the development of embedded real-time sys-
tems.

e Description: The project must provide methodological guidelines to apply
a model-based engineering approach using the tools from INTO-CPS to the
development of embedded real-time systems that constitute Cyber-Physical
Systems.

e Method of Verification: Provided/Not provided. Applicability assessed by
using the tools in the case study. Measurement: Weighed percentage of
activities not applicable and activities missing in proposed methodology.

e Assessment:

The methodological guidelines for the development of embedded real-time
systems are in general terms achieved, but are lacking some specific exam-
ples, which are relevant for mobile robots, such as the Robotti case study.
We think these should be included in requirement 0084 with deadline in
Y3. It has been challenging to adapt them to our setup on Linux/ROS plat-
form, and specific guidelines for mobile robots and their interaction with
the environment. For example, we would have liked to have more spe-
cific guidelines for data exchange for GIS, and for sensor data transmission

53

D1.2 - Case Studies 2 (Public)

of GNSS, Camera, IMU or Laser-range scanner, which are important for a
CPS technology like a mobile robot. A different development time schedule
between Al and the INTO-CPS requirements, caused the mismatch between
our needs and the available guidelines.

e Related baseline tools requirements: 0070 - 0076, 0084

e Degree of achievement: 60%

4.5.5 Al 9: Model snapshot and version control

e Description: The tool-chain should provide a way to keep track of the dif-
ferent versions of the models that compose a co-model.

e Method of Verification: Provided/Not provided. Applicability assessed by
using the tools in the case study. Measurement: Yes/No. Degree of support
in multi-simulation setup.

e Assessment: .
The way the INTO-CPS COE operates allows the FMU models to be dis-
tributed in sub-folders, that allow for tools like git and svn the ability to
version control multi-models for the case studies. The same goes for the
models made within the tools 20-sim, Overture and OpenModelica. A chal-
lenge still is to do version control directly on 20-sim *.emx files, since they
can represent visual blocks.

¢ Related baseline tools requirements: none.

e Degree of achievement: 99%

4.5.6 Al _10: Simulation results snapshot and version control

e Description: The tool should provide a way to keep track of the different
simulation results of a co-model. This could enable that at any point of time
a certain set of simulation results can be linked to a concrete version of the
models as well as the parameters used for the simulation.

e Method of Verification: Provided/Not provided. Applicability assessed by
using the tools in the case study. Measurement: Yes/No. Degree of support
in multi-simulation setup.

e Assessment: .
When a simulation is executed via the COE, the exchange variables are

54

D1.2 - Case Studies 2 (Public)

4.5.7

4.5.8

stored in a time-stamp log file. A challenge that is still present is the ability
to match git/svn version with the simulation result.

Related baseline tools requirements: none.

Degree of achievement: 50%

AI_11: Gazebo integration

Description: The project could enable the co-simulation of high-level con-
trol models with Robot models running in the Gazebo environment.

Method of Verification: Co-simulation of models of different complexity.
Reading of sensors and control of actuators that are deployed in Gazebo. In-
teraction with the Gazebo simulated world. Measurement: Yes/No. Degree
of support in simulation/multi-simulation setup.

Assessment: .

It is possible to interface with Gazebo using the interface Agro Intelligence
has made A direct Gazebo FMU interface to the COE is still missing
for full completion.

Related baseline tools requirements: 0001 - 0006

Degree of achievement: 50%

AI_12: 3D animation/visualisation

Description: The project should enable the visualisation of Robotti models.
This will help to understand complex behaviour expressed in the model and
facilitate communication in multi-disciplinary engineering teams.

Method of Verification: Provided/Not provided. Visualisation of co-simulation
models. Ease of use. Quality of visualisation. Measurement: Yes/No.
Weighed: Degree of support in simulation/multi-simulation setup; Time to
create visualisation compared to “conventional” tool; Acceptance by engi-
neers.

Assessment:
Related baseline tools requirements: 0093

Degree of achievement: 75%

55

D1.2 - Case Studies 2 (Public)

5 Building Case Study

In this section we provide the public version of the building case which provides
a generic overview of the Year 2 case study of an HVAC Cyber-Physical System.
A more detailed description can be found in the confidential version.

5.1 Introduction

The Year 2 case study contains a description of the public the building scenario
developed by UTRC, the design of the HVAC infrastructure the modeling of
the involved Cyber-physical components and the results generated after the co-
simulation using the INTO-CPS platform. The HVAC scenarios studied, will in-
clude a Cyber-physical system surrounding a building area of a floor, consisting
of two rooms and one zone composed by two areas. Each room temperature will
be controller by a Fan Coil Unit (FCU). The zone temperature will be controlled
by two collaborated FCUs, each one for one of the two areas of the zone. The
FCU will consist of several vital elements that will control the fresh air temper-
ature provided by the Air Handling Unit (AHU) to the room using air dumper,
fan, coil and valves. The water that will heat or cool the air will be pressurized
and provided to each FCU by the Heat Pump Unit (HPU), currently not included
in the CT model. The described scenario will be modeled using the INTO-CPS
baseline tools as well as state-of-the-practice commercial tools and evaluated en-
tirely in the INTO-CPS platform. After descriptions of SysML modeling, CT and
DE models developed, we discuss the co-simulation results taken from the current
version of the INTO-CPS engine for a series of controller scenarios. Finally we
conclude with FMI co-simulation experiences and next steps towards year 3 use
case.

5.2 Building Case Study

The building case study will focus on modeling and analysis of energy and com-
fort systems that control the temperature of connected rooms or areas inside a
building premise as shown in figure [28 This Year 2 case study models encapsu-
late several modules including a) Physical rooms and air flow modeling, b) Fan
Coil Units, c¢) Supervision of the FCUs d) Communication interfaces between
master-slave FCUs, e) Communication between FCUs and Supervisor, f) Air-pipe
connections between FCUs and AHU, g) Water-pipe connections between FCUs
and HPU, h) Air-Handling Unit controller and i) Heat Pump Unit load. Results

56

D1.2 - Case Studies 2 (Public)

have been generated from the newly developed Continuous and Discrete models
for Year 2 that are based on commercial HVAC products and control require-
ments.

The current control strategy will compose a multi-model that will regulate FCU
operation, Supervision of FCUs, AHU operation and overall HVAC functionality.
User inputs will be taken into account from rooms or zone thermostats and will
compared with current Room Air Temperature (RAT) sensed by the FCUs, trig-
gering certain actions to the FCU(s). The FCU(s) having a direct connection with
a supervisor device, will take a series of actions to reach the desired temperature
by a) regulating the air flow using its fan and the air-dumper, b) power up the
coil to heat the air if necessary, c) regulate the water pipe valves to control the
cooled or heated air originated by the AHU, d) regulate the water pressure inside
the water pipes originated by the HPU, e) synchronize with the supervisor to co-
ordinate with the rest of the FCUs and respectively -if needed- with the AHU and
the HPU.

Figure 28: Rooms and Zone level schematic for the Year 2 building case study

The main objective for the Year 2 case study is to respect high level requirements
that span from temperature control of rooms and the zone , energy consumption
and safe operation of all of the devices that are involved in the HVAC system.
One of the main reasons why the aforementioned fact remains a challenge, is the
product line engineering approach currently followed by building automation in-
dustries. In the current work-flow, different types of engineers contributing to
the creation of the same device are involved and affecting respectively the system
design. Verification of the generated models or code is enabled in stages of the
product life-cycle that leave the system open to delays due to late error discov-
ery. To this end, INTO-CPS and co-simulation solutions will not only bridge the
identified gap between engineers but also, enable verification of the output mod-

57

D1.2 - Case Studies 2 (Public)

els early in the design phase, thus, rapidly increasing the product life-cycle while
respecting system requirements.

5.3 Modeling

Bridging between logical and physical models is performed through the control
model, where a control strategy should be developed to regulate HVAC equipment
according to the indoor temperature response, the user selected settings and the
current operation of the devices. The control model optimizes the building perfor-
mance through maximizing user comfort, while minimizing energy consumption.
User comfort maintains the comfort characteristics (e.g. indoor temperature, C'Os,
humidity) in the standardized comfort band.

Figure 29: Cyber-Physical schematic of Year 2 building case study including
FCUs, communications with supervisor, air exchange between FCUs and AHU,
and water exchange between HPU, AHU and FCUs

For example, if a user selects a specific room temperature that differs from the
sensed RAT that an FCU reads, FCU will try to meet the selected temperature by
switching on its coil. But if the neighbor the FCU had requested a temperature

58

D1.2 - Case Studies 2 (Public)

point that required additional water pressure from the Heat Pump Unit to heat the
air, then the initial FCU could avoid switching the coil on as it can regulate water
valves to allow more (already heated) water to be driven inside it while closing
valves in the second FCU through the supervisor. Such a decision will increase
energy savings, as the the coil will not be switched on and the Heat Pump will not
require to be activated through a water rerouting solution.

Design Modeling

In this section initial requirements are described according to core functionality
described for the FCUs unit, the supervisor and communication network, the AHU
unit and the system as a whole. At the current level of the building use case, we
focus on the assessment of a subset of those requirements, as our main interest for
the Year 2 is to evaluate INTO-CPS platform usage.

The SysML design model defines the architecture of the CPS at a high level.
From this high level description, we derive the specifications for the FMUs that
compose the multi-model of the system and the connections between them. The
FMU specifications are satisfied by the constituent models elaborated using the
Overture VDM and Dymola Modelica technologies.

The structural view of the building case study system is shown in The
system model is decomposed into a CT plant and a DE controller. These two
entities form the primary FMUs of the system. In our work, we have discovered
that centralising all DE control in a single FMU is beneficial since it enables the
use of powerful VDM-RT communication abstractions. Otherwise, communica-
tion would have to be done through manual encoding and decoding of strings sent
across FMU ports. On the CT side, we have also realised that usage of a single
Dymola model improves performance and makes the simulation less vulnerable to
step size issues. We could have partitioned the Dymola model into some arbitrary
set of FMUs but that would not provide any benefit at this time.

The plant and controller are further decomposed into their most relevant com-
ponents. While this decomposition is not necessary to construct the constituent
models and run co-simulations, it is important to properly document all the rele-
vant entities in the system to ensure consistent use of terminology and to facilitate
team coordination and communication. Of these components, we draw attention
to the FCU, which is shared between the Plant and the Controller. Indeed, the
FCU lies at the boundary between the CT and DE worlds — the system is inher-
ently a hybrid system. As such, part of the FCU is modeled in Dymola and part is
modeled in Overture — the two models will be connected via FMI. Finally, since
the system must interact with human users, we also include an FMU to abstractly
represent the behaviour of a system user, although it is primarily used for the

59

D1.2 - Case Studies 2 (Public)

<<System>

MultiModel

Tw

+plant |4 +user| gy + controller | 4

<<Systems> e <<System==
Plant User Controller

[¥ Tw 1 [}

+fcu | 4 +fcu | 4

=ystem>

FCU

+ahu | 4 +room | 2 +zone | 1 +supenisor | q

<<POC <=POC <<Cyber>>
<<POComponents> <<Physical>> =<Physical>> <<POComponent=>
AirHandlingUnit SingleRoom Zone Qﬂ Supervisor

+fan |4 +coil |4 +contraller |4

<<POComponent-> <<FOComponent=> <<FOComponent=>
=<Physical>> <<Physical>> <<Cyber=>

Fan Coil FcuController

Figure 30: Structural view of the building case study model, realised as a SysML
INTO-CPS Architectural Structure diagram.

purpose of simulating different scenarios.

The connections between the FMUSs in the multi-model are displayed in
As the diagram implies, the topology of the system is static. Indeed, this is already
hinted at in where the cardinality of all associations is a fixed number.
This is because the INTO-CPS tool chain does not support dynamic specification
of FMU connections — all connections between all FMU instances have to be
explicitly specified a priori.

The building case study model contains 4 FCUs, therefore the connections dia-
gram contains 4 instances of the same set of connections. The connections are as
follows:

ValveOpening enables the controller to set the opening of the FCU valve in the
plant model.

FanSpeed enables the controller to set the operating speed of the FCU fan in the
plant model. Together with the valve opening, this connection enables the
controller to affect the physical world.

RoomTemp enables the plant model to communicate current temperature in the
room to the controller. This signal provides an abstract model of a tempera-

60

D1.2 - Case Studies 2 (Public)

Figure 31: FMU Connections in the building case study , realised as a SysML
INTO-CPS Connections diagram.

ture sensor — it can be further refined inside one or both constituent models.

SetPoint enables an outside entity to define the set point to be targeted by the PI
controller of the FCU. This allows a building occupant to control the desired
temperature of the system.

Discrete Event Modelling with VDM

The VDM model represents the discrete behaviour of the system. It represents
the individual FCU Controllers, the overall Supervisor and the communication
between them.

The primary task of the FCU controller is to run a PI loop to enable the FCU to
control the room temperature. The PI controller was originally designed and tuned
in Dymola and was then discretised and inserted in the VDM model. PI controller
implementation with imperative languages is well established so our approach
here was straightforward. In addition to running the PI loop, the FCU controllers
support a Master/Slave behaviour. Broadly speaking, the Master overrides the set
point and measured temperature of its slaves to ensure more consistent control
over a zone.

We model the Master overrides by using indirection on the data acquisition steps
of the PI loop. The Master itself has an additional loop over its slaves that it
uses to override the aforementioned values. The Master override loop occurs less
frequently than the main PI loop (which a Master FCU also carries out) so some
time tracking is necessary. The relevant operations for Master and Slave, shown
in [Listing 1 are:

61

D1.2 - Case Studies 2 (Public)

-
public acquireMeasuredTemp : () ==> real

acquireMeasuredTemp () == (
if role=<MASTER> then
return getTempValue ()
else
return masterMV;

)

public acquireSetPoint : () ==> real
acquireSetPoint () == (
if role=<SLAVE> then
return masterSP;
if superSP <> nil then
return superSP;
return setpoint.getValue();
)i

public updateSlaves : () ==> ()
updateSlaves () == (
for all s in set slaves do(
s.setMasterMV (temp.getValue());
s.setMasterSP (setpoint.getValue());

)

\. Y

Listing 1: FCU Controller operations that encode Master and Slave behavior.

To enable the Supervisor activity, the FCU Controllers expose an API for the
Supervisor so that it may control them using a higher level set of instructions.
Part of this behaviour is also encoded directly in the FCU Controllers as can be
seen in the acquireSetPoint operation. The API exposed to the supervisor
is shown in [Listing 2

62

D1.2 - Case Studies 2 (Public)

-
public setSuperSetPoint : real ==> ();

public promoteToMaster : set of Controller ==> ();

public demoteToSlave : () ==> ();

public turnOff : () ==> ();

public getRole : () ==> Role

public getSlaves : () ==> set of Controller
public getSPValue : () ==> real

Listing 2: FCU Controller operations that form the API exposed to the Supervisor.

CT Model of Building and HVAC System The building and HVAC model im-
plemented for the year 2 case study describes a 140m? floor in an office building
supplied by a hydronic system in heating mode. The HVAC system is made of a
HP providing hot water to the FCUs in the occupied space and to the AHU respon-
sible for maintaining fresh air requirements in the zones. The floor is supplied by
four FCUs; one for each individual room and two complementing each other to
serve a large zone. The thermal performance of the building is reasonable leading
to a thermal demand of about 50 kWh/m?/year. This performance is based on
typical northern Europe climate conditions.

Modeling the complexity of the integrated system was not possible in OpenMod-
elica (OM). Fluid flow and heat transfer phenomena induced by the system com-
ponents are not currently supported by OM. Instead the project team used Dymola
2016, which supports FMI 2.0. Dymola is commercial tool, based on Modelica,
for modeling and simulation of integrated and complex systems. It is a multi-
engineering tool widely used in automotive, energy systems, and aerospace appli-
cations. A schematic overview of the CT model is illustrated in Figure ??. These
are complex models that take into account solar radiation and occupancy levels in
the building and maintain acceptable levels of water and air pressures as per man-
ufacturer specifications. The model has 8 inputs being the fan speed and valve
opening position of each of the four FCUs and 4 outputs being the actual room
temperature of each room and area measured at the FCU level.

The indoor temperature in each room is controlled using an FCU device, where
the FCU uses a water coil and fans to heat or cool the circulated air inside each
room. The air Handling Unit (AHU) supplies fresh air to each FCU, while the
Heat Pump (HP) supplies hot or cold water to the water coils in the FCU. The

63

D1.2 - Case Studies 2 (Public)

Table 5: Statistics of CT FMU generated from Dymola

Item Statistics
Constant 7373 scalars
Free Parameters 6101 scalars
Parameters depending | 5738 scalars
Inputs 8 scalars
Outputs 4 scalars
Continuous time-states | 300 scalars
Time-varying variables | 4635 scalars

water that flows into the coil is pressurized by the HP, whereas a Fan blows the
circulated room air through the coil to regulate the indoor air temperature. An
FCU PI-controller regulates the fan speed and the rate of the water flow from the
heat pump to the coil in order to maintain a set temperature in the room in which
the FCU is located.

The model is based on mass and energy balances in a given room/zone. Two major
assumptions were used to simplify the model for a given zone:

e The zone air is well mixed at all times
e Long wave radiation exchange between surfaces is ignored

The model is compiled in Dymola 2016 using FMI export and selecting the fol-
lowing options: model exchange including source code and 64-bit binaries. This
is the only export option that is currently compatible with the INTO-CPS COE.
The complexity of the generated FMU is summarized in Table[5]

Code Generation Proceeding to code generation, after incorporating the neces-
sary tools required for the targeted hardware platform (e.g. the distributed FCU
units and the supervisor), the code will be generated based upon the developed
models as described in the previous sections. Those will describe the overall be-
havior of the FCUs, communications and supervision of them. For the targeted
3 FCUs mainly, for the 2 areas in the zone and room 2, the embedded device
will be based on a 16-bit PIC24FJ embedded micro-controller. In order to excite
advanced controller and prognostics capabilities for several FCU operations (e.g.
controlling the Fan motor), we incorporate the Zynq Platform motor controller for
room 1. Zynq 7000 consists of 2 A9 ARM processors and a XilinX FPGA. Fi-
nally the supervisor will be flashed to the Zybo platform (similar to Zynq) which
for now is handling FCU set points provided to the rooms. Connections from the 3
PICs and the Zynq platform with the Zybo Supervisor are being handled through
UART cable. The year 2 current hardware setup is shown in Figure

64

D1.2 - Case Studies 2 (Public)

Figure 32: Hardware Setup for Year 2 case study towards code generation

We have extracted a proof of concept version of the PI controller regulating the fan
and valve modules of the FCU, based on the sensed room air temperature. For the
room 2 instance, as shown in Figure [32|a proof of concept PI controller modeled
in Overture using VDM (example taken from year 1 use case) has generated the C
code for the 16-bit PIC embedded micro-controller. Code has been refined in order
to meet hardware platform characteristics of the PIC architecture. Compilation
and flashing of the C code to the micro-controller was successful, executing basic
controller commands. Currently automated code generation for the distributed

65

D1.2 - Case Studies 2 (Public)

case is not supported. Results from the code compilation and flashing to the PIC
micro-controller have accumulated an 8.6% (706 bytes) usage of data memory
utilized by the PID controller, while the program data used to realize the controller
operations is accumulated at 38.1% (50049 bytes).

5.4 HVAC Co-simulation Results

In this section we describe co-simulation results for several HVAC scenarios for
the building case study, based on the INTO-CPS platform. Our focus will be on
the design and evaluation of the control algorithms deployed both on the Fan Coil
Units (FCUs), the Supervisor and the Air Handling Unit (AHU) for the Year 2 case
study. Co-simulation will based on FMUs generated from the models described
in the previous sections; we define different scenarios for which we configure our
co-simulation parameters in order to evaluate control functionality of the HVAC
system as a whole. Table [0] outlines the co-simulation experimental setup for the
different scenarios evaluated within our Year 2 models.

Table 6: Scenario Experimental Setup: Control Operation in Variable Tempera-
ture conditions

FMUs 2 FMUs with 4 connections (1 encrypted) INTO-CPS

Connections inputs, outputs JSON file created by Modelio
DE 1 FMU describing functionality of 4 FCUs and Supervisor | Overture

CT 1 FMU describing functionality of rooms and AHU DYMOLA

Total Experiment | Variable Step Size [0.5 - 60]: 4000 sec INTO-CPS

Scenario 1 Environmental conditions (OAT) remain unchanged

Scenario 2 Outside Air Temperature (OAT) Decreases

Scenario 3 Outside Air Temperature (OAT) Increases

Scenario 1: Evaluate Controls Operation in normal conditions

For scenario 1 the CT and DE FMUs are co-simulated in normal temperature
conditions. In this case, the thermal effects of room materials, air-mass flow char-
acteristics and external environmental conditions are mapped by the CT and DE
representations as described in previous sections.

Figure @ shows the behavior of different controlled variables of the model, such
as room air temperature (RAT), of all the 4 rooms defined in our use case. The
room air temperature set point is considered constant at 294.5K (21.5 °C’) and
communicated by the CT model to each FCU controller. Each FCU controller
regulates the valve position and fan speed to manipulate the Entering Water Tem-
perature (EWT) and Supplied Air Temperature (SAT), respectively for each room.
We observe the controls operation leading to the steady temperature increase from

66

D1.2 - Case Studies 2 (Public)

Room 1: Temperature Room 2: Temperature

2936

g 2982 / = 294 TL
s x
52028 g 2933 /
E / B 203
Eog2s g /
E / E 2025
= 292 & /
e 292
2916 2915 T : T :
o 1000 2000 3000 4000 1000 2000 3000 4000
Time (sec) Time (sec)
295
Zone Temperature
294.5

= 204 e

e ‘_—-'—-—_

g e

52935 ——

4

g 293 —

£ /

8 2925 /

T
2515 T T T T T T T T |
] 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (sec)
= Area 1 Temperature Area 2 Temperature

Figure 33: Scenario 1 INTO-CPS Co-simulation Results for Room 1, Room 2 and
Zone (Area 1 and Area 2): Normal Operation

the initial value. Both rooms and the zone temperatures set-points are not reached

justifying the continuous increase of the temperature for the whole duration of the
co-simulation, shown in Figure[33]

Scenario 2: Evaluate Control Robustness when temperature values radically
decrease due to environmental changes

The co-simulation results allow for visualization and post processing of various
parameters of interest in building applications such as room air temperature, wall
temperature, FCU valve opening, FCU fan speed, and controller output. These
parameters can be used to calculate a number of indexing quantities to evaluate
building performance that for this normal scenario, are comfort and energy con-
sumption. That is the reason why the PI controller — modeled in VDM-RT - tries
to reduce the distance between the initial room temperature set point and the real
temperature (RAT) by regulating valves (for heated/cooled water flow) and Fan
(warm/cold air), until the distance between them equals zero.

67

D1.2 - Case Studies 2 (Public)

Room 1 Temperature Variation (OAT l} Room 2 Temperature Variation (OAT l)
2945
™,
293 AN 204
z 2928 I = —
g 2926 i E 2935 /
E 2024 E 203
g | g /
£ 2922] E 2025
& 202 2 /
2918 22 ¢
2916 T T T T 1 2915 T T T T 1
o 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Time [sec) Time (sec)

Room 1 Valve Opening [FCU water Flow Control) Room 2 Valce Opening (FCU water Flow Control)

o
s

T .. 01
g E w g
= -
g & 005 = # 0.05
O = g0
23z S
E ‘._"] T T T T d 23 o T
= 0 1000 2000 3000 4000 5000 g4 0 1000 2000 3000 4000 5000
Axis Title e Aaxis Title

2845

Zone Temperature Variation (OAT |)
294

2835

2825

Temperature (K)
&
| l

292

2915

Axis Title

= Area 1 Temperature Area 2 Temperature

Figure 34: Scenario 2 INTO-CPS Co-simulation Results for Room 1, Room 2 and
Zone (Area 1 and Area 2): OAT decreases

Figure [34]shows the temperature when outside air temperature is radically changed
(OAT |) for Scenario 2. We evaluate the controller robustness when the building
is exposed to sudden changes in the outside air temperature (OAT). In particular
the OAT was subject to a step function decrease of 20 °C' from its normal value
of 5 °C'. Figure [34]depicts the building response to this sudden change. Presented
variables are the room air temperatures and valve openings.

5.5 Industrial Needs and Assessment

In this section we proceed with the second assessment of the requirements as
shown in Table [/| evaluating the INTO-CPS platform as described above. Ini-
tial requirements are defined according to core functionality for the Year 2 use
case.

68

D1.2 - Case Studies 2 (Public)

5.6 UTRC-Req-001: Simulation Completeness

5.7

Description

INTO-CPS baseline tools must offer simulation completeness (for continu-
ous, discrete and co-models) based on the allowable modeling parameters
selected by the end-user. Completeness will be assessed with respect to
co-simulation platform functionality (crashes, logging and run-time errors)
during execution of co-simulations.

Related to Baseline Tools Requirements
Requirements 0003-0005 are related because the modeling of the time step
could be done at discrete, continuous and co-simulation level

Method of Verification

For all co-simulations executed by UTRC stuff, we successfully co-simulated
thermal, air and physical components through FMUs extracted by Dymola.
Discrete FCU controllers were modeled in Overture from which FMUs also
have been extracted. Co-simulation results are considered to be complete.

Assessment: Achieved
In all of our models in the Year 2 case study, the simulation completeness
was shown using the INTO-CPS platform. Indicator: 100%

UTRC-Req-002: Simulation Delays

Description

INTO-CPS platform should execute simulations by providing extra time de-
lays at minimum. With extra time delays we describe simulation executions
where simulation solvers might exhibit various delays into acquiring results.

Related to Baseline Tools Requirements
Requirements 0003-0005 are related because the modeling of time step
could be done at discrete, continuous and co-simulation level

Method of Verification

For the Year 2 case study and the CT and DE models, simulation delays
were negligible for all the co-simulations performed. Some delays occurred
when selecting a fixed point co-simulation step size which has been reported
to the project consortium

Assessment: Achieved
In all of our models in the building case study, no simulation delays were

69

D1.2 - Case Studies 2 (Public)

5.8

5.9

encountered when executing co-simulations using FMUs from both Dymola
and Overture. Indicator:95%

UTRC-Req-003: Design Space Exploration

Description
Design space exploration techniques should be applied to both continuous
and discrete models when executing a series of simulations

Related Baseline Tools Requirements
Requirements 0018-0020 could be necessary in order to assess the maxi-
mal/minimal value from a range of parameters.

Method of Verification

This requirement should be verified using simulations and functional test-
ing. Currently there is not support for design space exploration within the
baseline tools. Early design state exploration experiments have been applied
offline in the building case study independently from the tools evaluated in
this report.

Assessment: not achieved Currently the design space exploration (DSE) is
not supported within the INTO-CPS toochain. CT and DE model evaluation
started but not completed. Indicator:25%

UTRC-Req-004: Simulation Accuracy and Precision

Description

INTO-CPS should be able to provide a varied level of simulation accuracy
with a user-selected variable precision. This will increase confidence in
results from co-simulation executions

Related Baseline Tools Requirements

Requirements 0045, 0047, 0055, 0058, 0061, 0065 : Semantics are nec-
essary in order to keep accuracy and confidence. Quantifiable simulation
tolerance of the INTO-CPS co simulation are necessary to keep accuracy.

Method of Verification

Having in place formal semantics for INTO-CPS baseline tools is of paramount

importance in order to enable simulation accuracy and precision. Currently
INTO-CPS tools have a limited support with respect to simulation and co-

70

D1.2 - Case Studies 2 (Public)

simulation manipulation (e.g. rollback or test case evaluation) with accurate
results.

e Assessment:
In the current evaluation study, tools have depicted certain levels of preci-
sion in the simulation experiments. This includes variable step co-simulation
artifacts (e.g. raw cosimulation data, graphs) generated by the orchestration
engine and the INTO-CPS application. We expect to increase simulation re-
sults accuracy (using time-tags, debugging log files, memory consumption)
in co-simulation in the next year of the INTO-CPS project. Indicator:40%

5.10 UTRC-Req-005: Scalable Simulation

e Description
INTO-CPS platform should adequately produce simulation results in large
continuous, discrete or co-models where complexity is significantly high.

e Method of Verification
Although this requirement is often bound to the available resources, from
the co-simulation engine point of view, the INTO-CPS toolchain should be
able to produce simulation and co-simulation results for a certain level of
model complexity. As this verification will depend on the model complex-
ity we argue that the specific requirement will be re-evaluated in year 3 of
INTO-CPS project.

e Assessment:
In the current Year 2 evaluation, INTO-CPS platform has exhibited certain
levels of simulation efficiency when tackle a certain level of model com-
plexity, particularly for our CT model. This may include solver evaluation
and assessment during fixed or variable step co-simulations, from the INTO-
CPS toolchain. Indicator:60% achieved

5.11 UTRC-Req-006: Code generation

e Description
INTO-CPS platform should allow code generation with respect to selected
hardware in certain programming languages (e.g. C) automatically from
the models.

¢ Related Baseline Tools Requirements
Related to requirements 0037, 0042, 0044.

71

D1.2 - Case Studies 2 (Public)

e Method of Verification
Code generation from the VDM-RT model on PIC micro-controllers (UTRC
FCUs) for executing FCU PI commands

e Assessment:
INTO-CPS code generation support is not yet mature particularly for the
Overture tool where we model our supervisor and the PI controllers. Proof
of concept results have been shown for basic PI FCU controller in the se-
lected hardware platform but not configured for the distributed case. Indi-
cator:30%

5.12 UTRC-Req-007: Platform Independence and FMU sup-
port

e Description
INTO-CPS platform should be independent from external tool dependencies
and support FMI-based cosimulation (version 2.0) for both encrypted and
plain FMUs.

¢ Related Baseline Tools Requirements
New requirements.

e Method of Verification
Evaluate both encrypted and non-encrypted FMUs’ cosimulations;

e Assessment:
Major contribution of the INTO-CPS platform being used from the web-
app. Still there is a certain level of matureness that can be achieved in year
3. Indicator:70%

5.13 Conclusion - Reporting Experiences

The goal of this deliverable was to bring insights about industry benefits and weak-
nesses of using INTO-CPS platform, and to plan for the next technological ad-
vances of INTO-CPS features according to the project planning for Year 3. By
evaluating our HVAC controllers through different co-simulation scenarios, we
are in the position to adjust and refine INTO-CPS tools requirements, providing
valuable feedback to the consortium. We discuss below and reflect our experi-
ences of working with FMI-based tool chains for the design and development of
CPSs.

72

D1.2 - Case Studies 2 (Public)

%0L ‘Parayoe Afrented I I Teax S yoddns NN pue oouepuadopu] wIojjeld — 2Iem1JOS [euonoung L00-boy-DM.LN

%0€ ‘Alented I [Teax S UONEIAUID 9pO) Liqeress sjooL, 900-bo¥-DYLN

%09 ‘ATrented I I Teax S uonenuirg 9[qeress S[ooL, [euondung-uoN - §00-boy-DdLN

%0¥ ‘Alrened I I Teax 9) UOISIOAI] pue AorINddY Uone[nwIS S[ooL, [euonound-uoN +00-bay-DULN

9,67 ‘PeAdIYOR JoU I [JBax D uoneiodxg aoeds u3isoq Kouaroyjg [euondung-uoN €00-boy-OMLN

9%G6 ¢ poAdIYOR I I Teax S SAe[9(] uonR[NWIS waIsAS [euonoung-uoN Z00-boy-DULN

%001 ¢ paAdIyor I I Teax W ssauayo[dwio) uonenuIrg waIsAS [euonoung-uoN [100-boy-DULN
SSISSY uoISIA smels Lol g3Isuy ‘1) qnS £1039€)H ‘bay

syjuowaanbar s DY I,N :L 2qeL

73

D1.2 - Case Studies 2 (Public)

e Itis important for a project to have a common CPS design description that is
central and shared by all project members. This design should evolve over
time but these evolutions should be visible and agreed upon by all members.
Ideally, this design should be enforced through distribution and adherence
to constituent model specifications through FMI model descriptions. Where
the tools do not mandate this, it should be project policy to do so nonethe-
less. Tools that do not support importing of FMI model descriptions should
not be avoided if at all possible.

e To combat undocumented assumptions slipping through the FMI tool chain,
all restrictions, units and other kinds of assumptions must be properly docu-
mented. Ideally, this should be done in the main design document or SysML
model. If this is not possible, an independent document containing the as-
sumption should be created. This document must be shared and accessible
by all partners. From a tooling perspective, such assumptions should be
encoded in the constituent models and the FMI interface.

An important aspect was as well the need for specific INTO-CPS features such
as design space exploration and code generation which will elevate the platform
efficiency towards scalability and SiLL/HiL simulations respectively. As next steps
in Year 3 of the INTO-CPS we anticipate to apply INTO-CPS technologies in or-
der to analyze more complex HVAC cases in order to evaluate scalability of the
orchestration engine. Having in mind current state-of-the-practice commercial
co-simulation platforms we aim to evaluate new HVAC industrial needs through
INTO-CPS features including mature code generation for Sil. and HiLL simula-
tions, design space exploration and model checking.

6 Automotive Case Study

6.1 Specifications

The main goal for the automotive case study in INTO-CPS is to create a tool for
range prediction of electric vehicles. This shall be done by simulating the drive
train of the electric vehicle and other relevant electric auxiliary loads such as the
air conditioning, while integrating information from weather, topography or traf-
fic. The range optimization assistant shall enable the driver of an electric vehicle
to select a route which offers the maximum range of the vehicle with the given
electric battery, in order to alleviate the drawbacks of the limited range.

For the initial case study (see also deliverable D1.1a [HLB™15]), we distinguish

74

D1.2 - Case Studies 2 (Public)

between two scenarios :

e Offline: A user gives as input a desired start and end destination. A specific

route is simulated and the energy consumption is calculated.

e Online: The online mode is activated as soon as a route was chosen and
the car starts moving in a certain direction. In this situation, real-time data
coming from the vehicle like torque requirements, current speed, available
battery power (state of charge) etc can be accessed.

Here the following factors play an important role in the work flow:

1. The state of the car (state of charge of the battery) is updated period-

ically . If the energy level deviates from the prediction (done in the
off-line mode) and the energy level isn’t enough to reach the destina-
tion another route is simulated. If no route is found under the energy
constrains the user is alerted. If a new route was found the user is
alerted and has to choose whether the route should be updated.

. The environment (weather or traffic situation has changed) is seen as a
trigger that causes a new simulation to start and generate another route.
The user has to actively agree upon the old route being overwritten by
the newly generated route.

. The driver deviates to another route and thus triggers a new route that
needs to be generated. Automatically, the old route is overwritten by
the new route .

An illustration of the triggers inside the system is shown in figure 35| below.

Alert-> Mew Calculatian

Input: Alert J

Dectinatian
Result: Input:

. i Traffic, Route
Cptimal raut Driving raute o
HHma’raue Calculatian = and Weather

i

Ltart
Ucer Enter Destination

Figure 35: Alert system of the case study.

Checks

Ma Alert

To demonstrate the alert system the following situation will be shown in the case
study. The driver starts the application and enters a destination. The system re-

turns the optimal route. Now there are three possible scenarios:

1. The weather situation changed and a new Route A is the better one.

75

D1.2 - Case Studies 2 (Public)

2. Nothing happens and the driver arrives at the destination.
3. The traffic situation has changed and a new Route C is the better one.

These scenarios are depicted in the following figure

Foute A

| | Weather —_
- Alart
c Foute B
Input: L 3
Destinati
=]

Start: Us er Input Foute B 1
Destination ¥ia GUI

Traffic
Alert Route C

=Alert CI = chosen Route CI = optimal Route

Figure 36: Scenarios for selection of different routes depending on the different
alerts.

The alarm system is described in more detail below, and was implemented as a
prototype by the end of year 2.

6.2 Specification of the HiL scenario

In order to increase the level of complexity of the automotive case study, a HiL.
scenario is proposed that goes beyond the originally planned scenario. The goal
of this is to better evaluate the INTO-CPS tools, by developing and optimizing the
gas pedal controller (see below) with the help of the INTO-CPS tools.

This setup contains the following components that will be described below. It par-
tially builds on top of a setup for a driving simulator that was used in the HoliDes
research project (see forexample http: //www.holides.eu/content/adapted-automatic

Driver: A person interacting with the driving simulator by means of pedals (brake
and accelerator) and steering wheel. As we only consider the longitudinal dy-
namics in the case study, only the gas and brake pedal are relevant for this sce-
nario.

76

http://www.holides.eu/content/adapted-automation-adcos-video-dlr-twt-ibeo

D1.2 - Case Studies 2 (Public)

Figure 37: Schematic scenario for the automotive case study with a HiL setting.

Steering Wheel and pedals: The Human-Machine-Interface consists of a physi-
cal steering wheel and a gas and braking pedal (Logitec G27 Racing Wheel).

Controller: A controller (here to be implemented on a Raspberry Pi micro-
controller) that uses as input the gas pedal signal and modifies this signal for
the output, based on parameters provided by vehicle simulation. The controller
implements an algorithm that calculates the parameters for modification of the gas
pedal signal. Based on the remaining range or the SoC level, the output level of
the gas pedal is reduced. This controller, and in particular its function for adapting
the gas pedal curve, has to be developed from scratch. This will be done using the
INTO-CPS tools. An initial proposal for this function can be seen below in Figure
There, the output of the controller is initially equal to the input. Depending
on the state of the vehicle, this curve can be modified by the controller, such that
the output is lower than the input and the gas pedal is ’softened”. When the input
is at its maximum (i.e. the driver requests full acceleration), the output must also
reach the maximum, since it can be crucial for the driver’s safety.

Virtual reality simulator: A complete setup for a driving simulator is based on
the OpenDS simulation (see www . opends . eu).

Vehicle simulation: The bulk of the simulation that has been developed so far
in INTO-CPS (see [HLB™15]]). The input signals for the vehicle simulation are

77

www.opends.eu

D1.2 - Case Studies 2 (Public)

generated by the VR simulator in form of velocity, position of the car, or acceler-
ation. Input signals such as temperature or atmospheric pressure are generated by
the weather module based on the current car position.

Feedback: A visual signal, in form of a simple LED that changes its color is given
to the driver in the attempt to influence his driving behavior to improve range and
power efficiency. The LED turns green every time the driver accelerates slowly
and in case of a kick-down or a sudden push of the gas pedal the LED will turn
red.

Figure 38: Output of the gas pedal controller, as a function of the input. Ini-
tially the output is equal to the input (black diagonal line), but depending on the
remaining range of the vehicle, the curve can be ’softened” (gray lines).

Of these components, mainly the feedback and the controller need to be devel-
oped, using the INTO-CPS tools. The other components already exist, but need to
be adapted.

6.3 Model

The system model consist of the following parts:

78

D1.2 - Case Studies 2 (Public)

e Longitudinal dynamics of an electric vehicle, including the battery and air
conditioning

e Route planning including traffic information
e Ambient conditions
e Alarm System

These models are coupled with the INTO-CPS Co-Simulation Orchestration En-
gine (COE). Most of these models are described in detail in the previous deliv-
erable [HLB™15]], and their description will not be repeated here, for the sake of
clarity. Since the CT models of the automotive case study are written in Matlab,
a Matlab-FMU wrapper had to be developed by TWT, that allows coupling of the
models to the COE (see also Deliverable D6.2 [KFP™16]).

The SysML connections diagram for the multi-model, consisting of the route
module, the weather module and the longitudinal dynamics module (internally
called ”ArtSim”) is shown in Figure [39] below.

Figure 39: SysML Connections diagram including the longitudinal dynamics, the
weather module and route module.

79

D1.2 - Case Studies 2 (Public)

6.4 Route module (CT)

During year 2, the route module that was previously described in Deliverable
D1.2e [KB15]] was improved. Now, it takes the current position and velocity (cal-
culated from the longitudinal dynamics) as input for the next section of the route
(this is also shown in the connections diagram in Figure [39). This in turn makes
the whole simulation more realistic, as it smoothes the acceleration curve.

6.5 Alarm System (DE)

We consider a controller, which we call an alarm system, with the function to
monitor the state of the vehicle, in terms that are relevant for the route assistant
that is developed in this case study. It consists of four functions which monitor the
state of the battery (i.e. the SoC), the traffic, the weather and the route. If any of
these changes, the simulation is reset, to take the changed conditions into account.
It is foreseen to use real data in the long run, but for developing this alarm system,
simulated data can be used. The state diagram of this alarm system is displayed
in figure

The default state is SignalMonitoring, in which the alarm system continuously
checks the vehicle parameters. If any of these is out of its boundaries, the Co-
Simulation is re-started. If the driver decides to take a different route than the
proposed one, the route needs to be calculated before these values then are handed
over to the weather module, for delivering the weather values to the Co-Simulation.
A sudden change in weather conditions also triggers the restart of the weather
module, and in consequence of the Co-Simulation. If the measured velocity of
the vehicle is on average significantly lower than the planned velocity, a traffic
jam is assumed, which requires a re-start of the Co-Simulation as well. Finally,
if certain vehicle parameters (such as the battery SoC) suddenly change, the new
values need to be taken into account.

The alarm system is being implemented in VDM and coupled to the COE as an
FMU. At the time of writing this deliverable, this is still work in progress.

6.6 Simulation results
To simulate the range-prediction, a route in the vicinity of Stuttgart (Germany) is

selected. The route has a length of approximately 34km and is largely on country
road. The height profile is depicted below in Figure 41} Initially, the road has a

80

D1.2 - Case Studies 2 (Public)

Figure 40: State diagram of the alarm system.

rather steep ascent, until it reaches an height of approximately 750m above sea
level. After several ascents and descents, the route shows an overall downwards
slope until it ends at 650m above sea level.

The simulation results for the vehicle state are plotted below in Figure[d2] Initially,
the vehicle speed is around 25 km per hour, since the route is on an inner city road.
After the first kilometer, the route leads onto a country road for the remainder of
the trip. The figure also shows that the vehicle is able to follow the set velocity
closely, despite the slope of the road shown in the previous Figure As there
is no gearbox considered in this electric vehicle, the motor speed follows exactly
the vehicle speed. The battery voltage starts at around 330 V and drops finally
to around 310 V. Along the trip, the voltage oscillates within a range of about 10
V, due to the acceleration and recuperation that is required by the profile of the
road. As expected, the battery SoC (State of Charge) drops from initially 100 %
to approximately 70 % at the end of the trip.

Results for motor torque, battery current and the slope of the route are displayed in
Figure 43| All three values show very similar behavior, which is closely coupled
with the battery voltage. The motor generates a torque of up to 150 Nm in the

81

D1.2 - Case Studies 2 (Public)

height profile
850 Ig P T

800 r

750

700

650

altitude [m]

600

550

500

450 ' ' ' ' ' '
0 5 10 15 20 25 30 35
distance [km]

Figure 41: Height profile of the selected route.

steep sections of the road. Accordingly, a current of up to 200 A is drawn from
the battery, in particular in those sections that have a slope of up to 20 %.

The temperatures that are calculated from the air conditioning module (for a more
detailed description of this model, see Deliverable D1.1e [KB135]) are displayed
in Figure 4] Initially, the temperature of the air inside the vehicle is 20 C, while
the temperature outside is 5 C (e.g. when the vehicle was parked in a garage in
winter). The setpoint for the temperature controller is 23 C. While the temperature
of the air inside the vehicle quickly rises, the fixtures (e.g. the seats) only heat up
slowly. At the same time, the temperature at the windows and at the vehicle case
drops quickly and reaches a steady state at 7 C.

6.7 Evaluation of INTO-CPS tools

In this section, the evaluation of the emerging INTO-CPS tools from the autmo-
tive’s case study’s perspective is given.

e Modelio

The SysML diagrams for describing the system model that were generated

82

D1.2 - Case Studies 2 (Public)

—
o
o

vehicle speed

o

required

real | l

o
&)

10 15

vehicle speed [km/h]
9]
S

20 25 30 35

distance [km]

—_ motor speed
= 10000
£
= 5000&
3]
8] L
8_ 0 1 1 1 1 1 1]
0 5 10 15 20 25 30 35
distance [km]
battery voltage
— 340 v 9
e
(1]
o
g
©
= 300 1 1 1 1 1 1 |

0 5 10 15

20 25 30 35

distance [km]

SOC

5 10 15

20 25 30 35

distance [km]

Figure 42: Simulation results for vehicle speed, motor speed, battery voltage and

SoC.

in Modelio in year 1 were transferred to Architectural diagrams and Con-
nection diagrams, to make use of the INTO-CPS extensions of Modelio.
Exporting a COE configuration from this Connections diagram (see for ex-
ample Figure [39) makes the process easier than manual configuration of the

COE, and less error prone.

83

D1.2 - Case Studies 2 (Public)

motor torque
e 200
<
]
3
=4
_9 _200 1 I 1 1 1 I |
0 5 10 15 20 25 30 35
distance [km]
battery current
— 200
<
I=
o
5
Q _200 I I I I 1
0 5 10 15 20 25 30 35
distance [km]
slope

20

0 5 10 15 20 25 30 35
distance [km]

Figure 43: Simulation results for motor torque, battery current and slope of the
route.

Figure 44: Simulation results for temperatures inside and outside the vehicle.

e VDM / Overture

A simple version of the Alarm system (see section [6.5) was implemented

84

D1.2 - Case Studies 2 (Public)

in Overture. Using the new FMU export option, this model was exported
to an FMU and connection to the COE (i.e. coupling the alarm system
to the remainder of the models) is being performed at the time of writing
of this deliverable. The new FMU export option in Overture significantly
simplifies the process. In combination with the import of the MODELDE-
SCRIPTION.XML from Modelio, the whole workflow is integrated further,
and errors (e.g. due to different naming of signals) are reduced.

e Co-Simulation Orchestration Engine / INTO-CPS application

The different simulation models were coupled with the COE, using the
INTO-CPS application. The configuration of the multi-models was created
from Modelio, and the Co-simulation was configured in the INTO-CPS ap-
plication. The INTO-CPS application is user-friendly and rather simple to
use, which makes the shift to this tool quite simple. Throughout year 2 of
INTO-CPS, the COE has become more stable, which improved usability.

Im summary, the core parts of the emerging INTO-CPS tools and workflows were
used and evaluated in the automotive case study. The integrated tool-chain of-
fers many benefits for a smooth workflow. The fact that the tool-chain is open to
other tools that support the FMI standard (such as Matlab) allows re-using exist-
ing know-how, and is therefore a great advantage for potential users. Feedback
was given from the automotive case study to the tool developers regarding user-
experience, requirements and potential bugs.

6.8 Requirements and Assessments
6.8.1 TWT_1: Validity checking

e Description: The validity of system models, i.e. the correctness of the con-
nected input and output signals to and from the different models is checked
by the tools.

e Method of Verification: Manual variation of input and output signals to
check if the tools detect the changes. If the tools notify the user of a mis-
match, this requirement is fulfilled.

e Assessment: Complete. The INTO-CPS application detects if the name of
a input / output signal is false, and gives a warning to the user.

¢ Related baseline tools requirements: 0035 - 0036

e Degree of achievement: 100%

85

D1.2 - Case Studies 2 (Public)

6.8.2 TWT_2: System structure

6.8.3

6.8.4

Description: A system structure, describing the connections between the
different models and their hierarchy, is created and saved by the tools, in
order to re-import and modify later. This simplifies the generation, distribu-
tion and modification of the whole system architecture.

Method of Verification: Manual generation of a system model to import

into the tools. If the system structure is correctly imported, this requirement
is fulfilled.

Assessment: Complete. The INTO-CPS application allows saving of com-
plete projects, including their hierarchy. SysML diagrams, describing the
architecture of the system, can also be exported.

Related baseline tools requirements: 0001, 0005, 0012

Degree of achievement: 100%

TWT_3: Results tracing

Description: Simulation results are traced to the requirements and the mod-
els where the results originated from. This makes testing of the require-
ments easier and thus increases trust in the simulation results.

Method of Verification: Comparison of results and requirements in simple
models. For a measurement, the number of requirements that are linked to
simulation results can be compared to the total number of requirements.

Assessment: Not started. The INTO-CPS tools do not yet support trace-
ability functions.

Related baseline tools requirements: 0015 - 0017

Degree of achievement: 0%

TWT_4: Requirements assessment

Description: An indicator is provided to determine how well a requirement
has been met, not just yes/no.

Method of Verification: Requirements can be varied systematically to as-
sess if the resulting indicator / ranking function reacts accordingly.

86

D1.2 - Case Studies 2 (Public)

6.8.5

6.8.6

Assessment: Not started. The INTO-CPS tools do not yet provide the trace-
abilty between requirements and results.

Related baseline tools requirements: 0021

Degree of achievement: 0%

TWT_S: System creation from SysML

Description: Starting from a SysML model of the system, a skeleton sys-
tem model (in FMI) is created. This will simplify the workflow by connect-
ing the different tools for system modelling and simulation.

Method of Verification: Comparison of an automatically generated skele-
ton system model with its SysML model.

Assessment: Complete. The INTO-CPS profile for Modelio offers export
of FMI modelDescription.xml files.

Related baseline tools requirements: 0049

Degree of achievement: 100%

TWT _6: Version checking

Description: The tools should be able to check if the interfaces between
different models have changed due to different versions. This is relevant for
the development process of modelling, especially when different parties are
responsible for different models.

Method of Verification: Selection of different model versions with dif-
ferent inputs and outputs. If different versions of the same model can be
selected, or the user is notified of differences between model versions, this
requirement is fulfilled.

Assessment: Ongoing. The INTO-CPS application detects if input / out-
put signals do not match the corresponding names. However, versioning
support is not yet implemented.

Related baseline tools requirements: 0090

Degree of achievement: 80%

87

D1.2 - Case Studies 2 (Public)

6.8.7

6.8.8

6.8.9

TWT_7: Version selection
Description: The user selects different versions of the same model (either
single model or system model).
Method of Verification: Provided / not provided.
Assessment: Not started.

Related baseline tools requirements: It remains to be discussed if this
requirement will be incorporated in the general requirements document, de-
liverable D7.5 [LPO™16].

Degree of achievement: 0%

TWT_8: Parameter variation
Description: Model parameters are systematically and automatically varied
within defined limits. This allows systematic optimization of the models.
Method of Verification: Provided / not provided.

Assessment: Not started. Design Space exploration functions are still under
development and have not yet been tested with this case study.

Related baseline tools requirements: 0020

Degree of achievement: 0%

TWT_9: Parameter selection

Description: If the user wants to parametrize a whole model at once, pa-
rameter sets for models are selected from a parameter file. This can be
helpful if relatively complex models have large parameter sets, describing
for instance different variants of a product.

Method of Verification: Provided / not provided.
Assessment: Not started.

Related baseline tools requirements: It remains to be discussed if this

requirement will be incorporated in the general requirements document, de-
liverable D7.5 [LPO™16].

Degree of achievement: 0%

88

D1.2 - Case Studies 2 (Public)

6.9 Conclusion

In this part, the progress of the automotive case study that was made during year 2
is presented. Based on the know-how that was already available, TWT has created
a co-simulation using CT models and have started with DE modeling, to create a
cruising range prediction tool for electric vehicles. This tool takes into account
a model of the physical behaviour of the vehicle (the longitudinal dynamics, the
battery, electric engine and the air conditioning) as well as the topology of the
chosen route, and weather conditions (relevant for the air conditioning) and a
system for monitoring the state of the vehicle. It will therefore allow the user to
predict the remaining battery charge, based on on realistic data (vehicle physics,
route, weather). It can be used for example for realistic calculation of electric
vehicle fleets or for integration in the vehicle’s software, as an addition to the
navigation system, or for optimizing vehicle settings for maximum range.

The focus of this year’s work was the transfer of the case study to the INTO-
CPS tool-chain. This primarily meant usage of the COE, and as a consequence,
connecting the Matlab models in a FMI-compliant fashion. To achieve this, a
Matlab FMU wrapper was developed during year 2. Furthermore, integration of
the workflow from the abstract system models (in SysML) to creation of a Co-
simulation configuration, was achieved.

To further develop the case study, a HiLL scenario is specified in this deliverable.
This will be largely based on existing technologies, and serve to evaluate more
aspects of the INTO-CPS tool-chain, such as code generation or design space
exploration.

The evolving INTO-CPS tools will be further evaluated in the third year. One fo-
cus here will be the evolving functionalities regarding traceability, which are very
interesting for Systems Engineering applications. In terms of implementation, the
HiL scenario that is described in this document will be the main effort in year 3,
along with the assessment of the requirements.

89

D1.2 - Case Studies 2 (Public)

References

[CLJ15]

[EGHI15]

[HLB*15]

[KB15]

[KFP*16]

[KS10]

[LPOT16]

[QCGT09]

Martin Peter Christiansen, Peter Gorm Larsen, and Rasmus Nyholm
Jgrgensen. Agricultural Robotic Candidate Overview using Co-model
Driven Development. In IEEE/RSJ International Conference on In-
telligent Robots and Systems, 3 Submitted 4-3-2015.

Jose Esparza, Ole Green, and Stefan Hallerstede. Case Study 1, Agri-
culture, (Confidential). Technical report, INTO-CPS Confidential De-
liverable, D1.1c, December 2015.

Francois Hantry, Thierry Lecomte, Stelios Basagiannis, Christian
Konig, and Jose Esparza. Case Studies 1, Public Version. Techni-
cal report, INTO-CPS Public Deliverable, D1.1a, December 2015.

Christian Konig and Natalie Balcu. Case Study 1, Automotive, (Con-
fidential). Technical report, INTO-CPS Confidential Deliverable,
D1.1e, December 2015.

Christian Konig, Peter Fritzson, Adrian Pop, Christian Kleijn, Pe-
ter Gorm Larsen, Mette Stig Hansen, Jorg Brauer, and Stylianos
Basagiannis. Dissemination and Exploitation Report - Year 2. Tech-
nical report, INTO-CPS Deliverable, D6.2, December 2016.

Manoj Karkee and Brian L. Steward. Study of the open and closed
loop characteristics of a tractor and a single axle towed implement
system. Journal of Terramechanics, 47(6):379-393, December 2010.

Peter Gorm Larsen, Ken Pierce, Julien Ouy, Kenneth Lausdahl, Mar-
cel Groothuis, Adrian Pop, Miran Hasanagic, Jorg Brauer, Etienne
Brosse, Carl Gamble, Simon Foster, and Jim Woodcock. Require-
ments Report Year 2. Technical report, INTO-CPS Deliverable, D7.5,
December 2016.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
3, page 5, 2009.

90

	Introduction
	Cyber-Physical aspects of the Industrial Case Studies
	Cyber-Physical aspects of the Railway case study
	Cyber-Physical aspects of the Agriculture case study
	Cyber-Physical aspects of the Building case study
	Cyber-Physical aspects of the Automobile case study
	Complementarity of the Industrial Case Studies
	Key Performance Indicators

	Railway case study
	The Case study
	Contribution during Year 2
	Industrial needs and assessments

	Agriculture Case Study
	Introduction
	Agriculture case study
	Modelling
	Robotti Second Generation
	Industrial needs and assessment

	 Building Case Study
	Introduction
	Building Case Study
	Modeling
	HVAC Co-simulation Results
	Industrial Needs and Assessment
	UTRC-Req-001: Simulation Completeness
	UTRC-Req-002: Simulation Delays
	UTRC-Req-003: Design Space Exploration
	UTRC-Req-004: Simulation Accuracy and Precision
	UTRC-Req-005: Scalable Simulation
	UTRC-Req-006: Code generation
	UTRC-Req-007: Platform Independence and FMU support
	Conclusion - Reporting Experiences

	 Automotive Case Study
	Specifications
	Specification of the HiL scenario
	Model
	Route module (CT)
	Alarm System (DE)
	Simulation results
	Evaluation of INTO-CPS tools
	Requirements and Assessments
	Conclusion

