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Abstract

This deliverable presents the overall state of the INTO-CPS model checking
capabilities at the end of year 3 of the project. The particular focus of this
document is the representation of continuous-time behavior for integration
with model checking, and the configuration of the required abstractions in the
INTO-CPS Application. Additionally, this deliverable provides information
on tracing of the model checking activity in the context of the development
of safety-critical systems, where traceability is a core part of the development
lifecycle.
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1 Introduction

This document is concerned with verifying global system properties of multi-
models – which are themselves expressed as a collection of continuous-time
(CT) and discrete event (DE) models, and the integration of the model check-
ing component in the INTO-CPS project. To address these topics, the model
checking component developed for INTO-CPS is discussed from two different
perspectives:

• From a technical perspective, it is discussed which formal represen-
tations and abstraction mechanisms are implemented to support the
verification of system-wide properties of multi-models.

• The integration in the INTO-CPS project focusses on the end-user,
and how model checking features can be used during a project. In this
regard, particular focus is set to the value of traceability for model
checking.

1.1 Model Checking of Mixed Multi-Models

The nature of multi-models as defined in INTO-CPS is not dissimilar to gen-
eral hybrid systems, which can be seen as systems containing both, physical
components that evolve over time and discrete components that may influ-
ence the continuous dynamics. Despite the substantial effort that was put
into the development of hybrid model checking, there are still open questions
that need to be answered in order to increase the applicability and usabil-
ity of hybrid model checking tools. We therefore deviate from representing
multi-models by what they are — hybrid systems — and consider DE ab-
stractions of their continuous behaviors, which can be seen as a response to
the scalability issues of hybrid model checking.

A classical approach to representing hybrid systems is to apply hybrid au-
tomata [ACH+95, Hen96], which are a formalism that can accurately de-
scribe systems composed of a mixture of discrete and continuous behaviors
by expressing the behavior of continuous variables using ordinary differen-
tial equations. A textbook example of an execution of a hybrid automaton
is given in Fig. 1, depicting the behavior of a bouncing ball dropped from
some initial height with zero initial velocity. Due to gravity, the ball initially
accelerates towards the ground and falls until it hits the ground. It then
bounces back whilst losing some of its kinetic energy, and raise again.
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Figure 1: Continuous-time behavior of a bouncing ball.

There is, of course, a multitude of ways of the continuous behavior of a bounc-
ing ball could be represented using a discrete abstraction. In the following,
Fig. 2 and Fig. 3 show two abstractions used in the INTO-CPS Applica-
tion [BM15, BLM16]. Figure 2 abstracts the entire state space of y over t
using one tight interval that contains all potential values. Figure 3 shows
how the hybrid behavior can automatically be abstracted using a sequence
of intervals which are based on a concrete simulation, which yields much
more precise results. In this approach, time-discretization is applied and one
interval is used to capture all values of y within a fixed-size timeframe.

Figure 2: Continuous-time behavior of a bouncing ball abstracted via a single
interval.

Approaches for deriving and handling such interval abstractions have been
the topic of previous deliverables [BM15, BLM16]. The focus of this de-
liverable is the combination of multi-models for model checking, and the
application in the INTO-CPS project.
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Figure 3: Continuous-time behavior of a bouncing ball via an adaptive se-
quence of intervals.

1.2 Traceability for Model Checking

Over the past two decades, model checking in its various flavors has made
impressive progress in terms of applicability in industry. As one example, the
approach has become a standard technique for the verification of hardware
circuits. As another example, this author’s company applies model checking
to verify interlocking system configurations for customers from railway in-
dustry, where the configurations are specified in a domain-specific language
and then automatically verified for sanity and safety.

Apart from the capability to automatically verify system properties provided
in temporal logic, a question that commonly arises in industrial projects in
safety-critical domains is that of tracing. For the technique to be of value
for certification-related activities, it must be possible to identify and relate
the configurations and results of the verification process, which naturally
leads to the notion of traceability, the purpose of which is to relate certain
information and artefacts related to the verification process. Questions to
which a traceability implementation should be able to automatically provide
answers include:

• Is requirement X satisfied for model Y?

• Which model checking queries exercise requirement X?

• Which is the last model version for which model checking query X
failed?

It is no surprise that traceability typically is stored as some form of database
which relates entities according to a well-defined scheme. We do not con-
tribute to these fundamentals, but rather present a scheme that appears
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well-suited for covering industrial needs related to model checking for safety-
critical systems.

1.3 Outline

The remainder of this document is structured as follows. First, Sect. 2 dis-
cusses related work with respect to model checking and traceability. Then,
the formal foundations of model checking in the INTO-CPS project are dis-
cussed in Sect. 3, which is followed by a description of the implementation
of model checking and traceability in the INTO-CPS Application. The de-
liverable concludes with a discussion.

2 Related Work

This section discusses various important contributions to the areas of (sym-
bolic) model checking, bounded model checking and abstract interpretation,
which have to some extent been incorporated in the INTO-CPS model check-
ing framework. Related work on traceability in general is not discussed, since
this document only provides details on the specific implementation of trace-
ability for the model checking component. For an overview of the INTO-CPS
approach to traceability, we refer the reader to [KLN+17].

2.1 Temporal Logic & Model Checking

In its general setting, model checking amounts to answering the question
whether a model M satisfies its specification ϕ, formally M |= ϕ. Two
temporal logics — namely computation tree logic [CES86] (CTL) and linear
temporal logic [Pnu77] (LTL)— are supported by virtually any model checker
for discrete event systems. RTT-MBT supports LTL rather than CTL, which
is justified as follows:

• LTL formulas are interpreted over (infinite) linear execution sequences
of a system or model, whereas CTL considers branches of sequences. As
RTT-MBT is not only a model checker but also a test case generation
framework, its main goal is reasoning about linear executions, which is
why LTL is preferred.
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• Further, CTL suffers from the fact that it is a branching time formalism:
Reasoning about branching time is unintuitive and thus hard to use for
non-experts in temporal logic, which hinders the practical application of
this formalism in industry. In fact, it has been observed that “nontrivial
CTL equations are hard to understand and prone to error ” [SBF+97]
and “CTL is difficult to use for most users and requires a new way of
thinking” [BBL98].

• Whereas LTL allows compositional reasoning, and thus allows model
checking backends to be improved by integrating compositional tech-
niques, CTL is non-compositional [Var01, NV07].

Initially, the problem M |= ϕ for LTL was solved by using a construc-
tion based on Büchi automata [VW86]. Intuitively, this approach represents
the system and the LTL specification as Büchi-automata, and then algo-
rithmically checks whether the intersection of system and the negation of
the specification is non-empty. In this case, a violation of the specification
has been detected. Later, symbolic methods have been introduced, which
solve the LTL model checking problem by representing both the system and
specification as Boolean formulae, see [BCCZ99, BHJ+06]. Comprehensive
introductions to temporal logics, model checking and the core algorithms are
given by Clarke et al. [CGP99] as well as Baier and Katoen [BK08]. Our
model checker, RTT-MBT, uses symbolic techniques based on propositional
encodings of LTL specifications, as will be discussed in Sect. 4.

2.2 Bounded Model Checking

The key idea of BMC is to exercise the behavior of a system only up to
a certain depth of computations [BCCZ99, CBRZ01, CKOS05]. BMC has
been established as a valuable bug-hunting framework for hardware and soft-
ware [CKL04], which is motivated by the observation that bugs can often be
found after few computation steps if only the right inputs are chosen. How-
ever, it has been observed that bounded model checking can also be applied
for formal verification if the unrolling depth k of the transition relation is
large enough. Precisely, the unrolling depth k has to match the complete-
ness threshold c of the system, which can intuitively be described as: If no
counterexample of length c or less is found, the specification holds for all (in-
finite) executions of the model. Hence, BMC with k ≥ c suffices for proving
correctness of a system [BCCZ99, Thm. 27]. However, computing the com-
pleteness threshold is as least as hard as solving the model checking problem
itself [CKOS04, KOS+11]. Consequently, BMC is often used for verification
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up to a certain bound, without giving an actual correctness guarantee for
nonterminating executions of the system.

2.3 Abstraction

The foundations of abstraction have been formalized by Cousot & Cousot [CC77]
in the abstract interpretation framework. In principle, the semantics of a pro-
gram is specified using lattices. Lattices A and C are then used to specify
state in the concrete and abstract domains, respectively, and importantly
these lattices are connected by an abstraction function α : A → C and a
concretization function β : C → A. For c ∈ C and a correct abstraction
function α, the value α(c) then describes c in the sense that it contains c,
and possibly more values. This form of imprecision preserves soundness, but
may lead to false positive (or spurious) warnings.

Often, abstract systems are sufficient to prove interesting system properties.
However, if this is not the case, the abstraction has to be refined into a more
precise representation of the concrete system semantics, an approach that
has widely been automated using techniques such as counterexample guided
abstraction refinement [GS97].

However, of course abstract interpretation techniques have widely been ap-
plied to the verification of hybrid systems [Hen96]. For example, Sankara-
narayanan et al. [SDI08] have combined symbolic model checking with states
encoded on top of template polyhedra, that is, conjunctions of linear in-
equalities

∑n
i=0 ci · vi ≤ k where the ci are fixed a priori. However, such

works target an entirely different setting than our work since it is entirely
based on abstracting formally specified hybrid automata, whereas we focus
on continuous-time models that may not necessarily have a formal semantics
(the outputs may, for example, be computed using a controller that is directly
connected to the system). Further, the scalability of complex abstractions
such as template polyhedra in a network of components is uncertain. As
stated by Sankaranarayanan et al. [SDI08, Sect. 1], “hybrid systems veri-
fication is a challenge even for small systems”, which of course applies to
networks of hybrid systems.

2.4 Traceability for Verification and Validation

The value of traceability for verification and validation activities as allow-
ing the verification of properties which are spread over different develop-
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ment artefacts and versions thereof. Virtually all industrial standards for
safety-critical systems, such as the RTCA DO-178B [WG-92], the RTCA DO-
178C [WG-11], the CENELEC EN 50128 [CEN99] or the ISO 26262 [ISO11]
are aligned to this view and require traceability of both, development and ver-
ification artefacts. The model checking component integrated in the INTO-
CPS supports this view and allows to both store and retrieve identified arte-
facts, and relations among them. We refer the read to [LNH+16, KLN+17]
for a thorough discussion of related work.

3 Foundations of Model Checking in INTO-CPS

In the context of the INTO-CPS project, multi-models are considered, that
is, networks of heterogeneous system components, the combination of which
forms the entire system. To the model checker, each system component is a
possibly hierarchical state machine, the behavior of which can be represented
via its transition relation. Based on this representation of components, a
multi-model is represented as a network hierarchical state machines, each
of which represents the behavior of some system component. Indeed, this
perspective significantly simplifies the interpretation of a multi-model.

This section starts by proving a primer on LTL model checking via SMT-
solving based on unrolling the transition relation for a single system compo-
nent. It follows a description of how the different state charts are formally
combined, which leads to a formal representation of multi-models.

3.1 Primer on Model Checking by Unrolling

The model checking implementation uses the standard SAT-based approach
to bounded. Formally, let I denote an encoding of the initial states of the
system, and let T (si, si+1) denote an encoding of a single transition from
pre-state si to post-state si+1. The semantics of the system for k execution
steps is then fully described by:

I ∧
k−1∧
i=0

T (si, si+1)

This formula only describes how the system behaves, when different com-
putations are performed, but it does not relate the behavior to the desired
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system properties. Assuming that a formula ϕ describes the desired sys-
tem property, the model checking problem amounts to checking whether the
combined formula

M = I ∧
k−1∧
i=0

T (si, si+1) ∧ ¬ϕ

is satisfiable, where ¬ϕ describes all states that do not satisfy the specifica-
tion. If this formulaM is satisfiable, the model represents a counterexample
trace which specifies a finite trace through the system leading to the erro-
neous state. Otherwise, no such trace exists and the desired system property
is satisfied. It is well-known that the state chart semantics can be represented
by unrolling their operational semantics [LP99], which is likewise true for ϕ,
which we briefly discuss in what follows.

3.2 Unrolling LTL Specifications

LTL is a temporal logic that specifies properties over the future over paths,
where the term temporal refers to a discrete notion of time. LTL does not
in itself include the ability to reason about concrete, dense time, but rather
considers timing as a sequence of computation steps. For instance, the logic
itself provides the means to express that some property should hold after
three computation steps, but not that it holds after three seconds, as opposed
to more advanced logics such as timed computation tree logic (TCTL).

Specifications in LTL are built from a finite set of atomic propositions,
Boolean operators and the following temporal modalities:

Globally ψ A property ψ shall hold globally, denoted Gψ.

Finally ψ Eventually property ψ shall be satisfied, denoted Fψ.

Next ψ In the successor state, ψ shall be satisfied, denoted Xψ.

ψ1 Until ψ2 Property ψ1 shall hold until ψ2 holds, denoted ψ1Uψ2.

These operators can be combined and nested to express complex properties.
All LTL formulae are implicitly universally quantified, which means that
the properties have to hold for all paths, as opposed to CTL which allows to
specify properties over different possible futures by considering the branching
structure of the computations1.

1At a first glance, CTL may thus appear to be more expressive than LTL. However,
expressiveness of both logics is incomparable, and CTL has certain disadvantages when it
comes to its application. See Sect. 2 for a discussion.
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The semantics of LTL is specified over infinite paths, which are naturally
specified as ω-words π = s0s1 . . . over the alphabet 2AP where AP denotes
the set of atomic properties. Let πi = sisi+1 . . . denote the suffix of π starting
at position i. The satisfaction |= of an ω-word π is then specified as:

• π |= p for p ∈ AP if and only iff p ∈ s0
• π |= ¬ψ iff π 6|= ψ

• π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2

• π |= ψ1 ∨ ψ2 iff π |= ψ1 or π |= ψ2

• π |= X ψ iff π1 |= ψ.

• π |= ψ1 U ψ2 iff there exists iN such that πi |= ψ and for all 0 ≤ k ≤ i,
πk |= ψ1.

The semantics of Gψ and Fψ follow directly from the following equiva-
lences:

• G ψ ≡ ¬F ¬ψ

• F ψ ≡ true U ψ

This semantics can naturally be unrolled until a fixed depth k, for exam-
ple:

F ψi = ψi ∨ ψi+1 ∨ . . . ∨ ψk

G ψi = ψi ∧ ψi+1 ∧ . . . ∧ ψk

G ψi
1 ∧ F ψi

2 = (ψi
1 ∨ ψi+1

1 ∨ . . . ∨ ψk
1) ∧ (ψi

2 ∧ ψi+1
2 ∧ . . . ∧ ψk

2)

This approach allows the specification to be passed directly to an SMT solver
so thatM can be checked for satisfiability.

3.3 Model Checking for Multi-Models

The behavior of a single (discrete-event) system component depends on its
definition of internal actions, its input variables and its internal state. Intu-
itively, the component resides in some internal state until inputs arrive. It
then executes one or more actions, which may potentially alter the internal
state and some changes become visible at the output interfaces. This simple
understanding of a component’s behavior directly leads to a straightforward
representation of multi-models, which cannot interactive via shared states,
but only through their interfaces.

14
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We define a system component formally as a tuple C = (O, S, II), where:

• O denotes the operational semantics of the system component,

• S = {s1, . . . , sn} denotes the internal state of the system component,

• II denotes the set of input variables of the system component, and

• IO denotes the set of output variables of the system component.

The most import part of the representation of multi-models is the handling
of interface variables. Input variables usually can freely be assigned values
by the model checker. This is not necessarily the case when the system
components are combined, because the outputs of one component may now
serve as the inputs of another. Output variables of all system components
thus become part of the internal system state; the occurrences of these vari-
ables as inputs in the operational semantics of a component are likewise
replaced.

Figure 4 sketches this approach for a system consisting of two components
that model the conversion of temperatures from Fahrenheit to Celsius and
a controlling unit, which can send certain control commands to an actua-
tor. The inputs are highlighted in green color, and the outputs are given
in orange. When analyzed on its own, each component has two inputs and
one output. The temperature conversion component takes as input a volt-
age and a temperature value in Fahrenheit, and transforms it into Celsius.
The heating controller takes as input a voltage and a temperature value in
Fahrenheit, and issues a control command.

If these two components are combined, the shared data leads to different
interface connections:

• The input voltage is shared among the system components, and thus
is considered identical by both.

• The heating controller component only has one external input (volt-
age), and the output of the temperature conversion component becomes
the input of the heating controller. The temperature value in Celsius
can thus been seen as becoming part of the overall system-wide state,
rather than an output.

This transformation dovetails with the specification of multi-models via SysML
connection diagrams as performed in INTO-CPS. A particular reason for the
combination of independent system components for model checking stems
from the fact that abstractions of continuous-time components are inte-
grated with native discrete-event components. The construction of a multi-
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Figure 4: The system consists of two components for temperature conversion
and heating. The output temperature in Celsius of the temperature conver-
sion component is used as input for the heating controller component. The
input voltage is shared and used by both components. Figure 5 shows the
combined representation of these two components, where shared interface
signals are represented via shared internal state variables.
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model representation based on combining the constituent system components
thereby provides a straightforward and configurable integration of the ab-
straction mechanism. For instance, it becomes trivial to replace an interval
abstraction of a continuous-time component with a more precise one gener-
ated from simulations [BLM16].

Figure 5: Two separate components, as given in Fig. 4 are combined in a
single model. The key idea is to transform output signals of one compo-
nent, which serve as inputs to another, as shared global variables, so that all
changes immediately become visible to the dependent components. Since the
modelling formalism of SysML state charts supports parallel composition, it
is straightforward to combine two discrete-event models into one model con-
taining two parallel components.

4 Implementation of a Model Checking Com-
ponent in INTO-CPS

This section focuses on the architecture of the model checking component
as implemented in the INTO-CPS project, and how it is connected to the
traceability engine.

17
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4.1 Architecture

The overall architecture of the system implementation is depicted in Fig. 6.
The model checking component is configured via the INTO-CPS Application,
which communicates with the model checking component via an abstraction
layer implemented in Python. There is neither direct communication be-
tween the model checking component and the INTO-CPS Application, nor is
the is the model checking component invoked directly. The rationale for this
additional abstraction layer is that the implementation of the model checking
algorithm itself is independent of the existence of a traceability implementa-
tion. Likewise, since the abstraction layer encapsulates all tool invocations,
it is not necessary to alter the INTO-CPS Application in order to extend or
modify the tracing.

Figure 6: Integration of the model checking component in the INTO-CPS
architecture.

4.2 Configuration of Model Checking

In principle, applying model checking to a multi-model requires three impor-
tant configuration steps:

• The multi-model containing the different components has to be im-
ported into the INTO-CPS Application.

18
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• The abstractions to be applied to the multi-model have to be config-
ured 2.

• The LTL specifications have to be defined.

Figure 7 shows the dialog to configure the desired abstractions. The example
is based on the RT-Tester turn indication lever model, which models turn
indication functionality based on three inputs (found under Stimulation in
Fig. 7):

• A continuous input called voltage is provided, and the turn indica-
tion functionality is expected to operate only if the voltage is within
the valid range from 9 to 13 [V].

• An integral input TurnIndLever is provided, which indicates the
state of the physical turn indication lever. Admissible values range
from 0 to 2.

• A discrete input EmerSwitch defines whether emergency flashing is
turned on, which may to some extent lead to interactions with the core
turn indication functionality.

In this example, the input signal voltage of type float is to be fed using
values from a concrete execution, the log of which is stored in a file called
signals.json. The abstraction is configured so that values within an
interval of 2 units are used for discretization of the signal.

The following listing shows an excerpt of a logfile, which simply denotes the
values of all signals at different timestamps. Initially, voltage is zero and
is set to 8.14 after 8231 ms. After 9000 ms, voltage becomes 12.041
and then slightly changes its value until 18016 ms have passed, when the
execution ends. The input format is the standard RT-Tester logging format,
which can thus be used to combine test executions using RT-Tester with
model checking in the INTO-CPS Application. A screenshot from the signal
viewer integrated into RT-Tester is given in Fig. 8. It is also straightforward
to define execution logs manually. Overall, the simulation-based abstraction
represents the signal flow using three intervals for voltage.

[ ...
{"name":"voltage", "type":"float",
"data": [[0,0,0.000000],

2Here, it is important to note that abstraction can not only be applied to continuous-
time components, but also discrete-event components. Given a concrete execution for
example, it may be desirable to verify system properties only for this execution; then,
simulation-based abstraction could be applied to replace a discrete-event component.
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[1,8231,8.14],
[2,9000,12.041],
[3,10000,12.241],
[4,18016,12.241]]},

...
]

It is not possible to verify system properties subject to the constraints spec-
ified through the execution log, such as: Within the first 9000 ms, the turn
indication lever is off, no matter how other system inputs are set. This
property is then formalized as:

G((_timeTick < 9000)→ ((lightLeft == 0) ∧ (lightRight == 0))

The configuration dialog for such queries is shown in Fig. 9.

For practical use, it is of course necessary to present counterexamples to the
tool users. The provided functionality is given in Fig. 10. The model checker
was configured so that the continuous input signal voltage is abstracted
by a gradient, that is, it may change its value by 1.00 units in 1000 ms.
The model checker was then invoked to verify the specification:

G((voltage < 10 ∨ voltage ≥ 14)→ (¬LampsLeft ∧ ¬LampsRight)

The additional predicate _stable refers to a built-in predicate, which ex-
presses that only stable states shall be considered. Stable states are those

Figure 7: Configuration of simulation-based abstraction for signals.
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Figure 8: The values of voltage extracted from a concrete execution, which
is then passed into the abstraction generator for model checking.

states where time passes, so that the specification allows the property to be
violated internally. The counterexample view in Fig. 10 then shows a se-
quence of states and values, depicting how the specification is violated.

4.3 Traceability

The set of entities related to tracing of model checking activities and artefacts
is depicted in Fig. 11. The actions in the INTO-CPS Application that lead
to a recording of traceability related data are defined as:

ACT-CONFIGURE Configure a model for model checking.

ACT-ABSTRACT Define a discrete-event abstraction of a continuous-
time component.

ACT-EXECUTE Run the model checker to verify a query.

Figure 11 intuitively sketches some of the relations among entities that are
related to traceability. The syntax of traceability items for model checking
is formally defined in [KLN+17]. Some examples of relations given in the
diagram are:

• Model checking is always executed by some user (ACT-EXECUTE),
indicated by an edge from activity Model Checking to an entity Agent.

• The action of executing the model checker (ACT-EXECUTE) pro-
duces a Result, which is connected to the Agent who has executed the
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Figure 9: Editing of LTL formulae in the INTO-CPS Application. The
screenshot also shows how requirements can be linked to model checking
queries. A successful verification of a specification through the model checker
can either confirm a requirement (verifies) or show that it is violated (vio-
lates), depending on the specification. After the model checker has termi-
nated, the traceability data is automatically transferred to the traceability
server. See Sect. 4.3 for further details.
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Figure 10: Presentation of counterexample traces in the INTO-CPS Appli-
cation.
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model checker. The result is linked to an arbitrary number of Require-
ment entities, which are either verified or shown to be violated.

No configuration is required at all because valid default settings are used.
However, it is necessary to define the traceability OSLC server via environ-
ment variables:

• OSLC_SERVER: The machine is running the OSLC server, if undefined
localhost is used.

• OSLC_PORT: The corresponding port number, if undefined 808 is used.

• OSLC_EDOMAIN: E-mail domain to be used.

• OSLC_VERBOSE: If to a non-zero value, then verbose output is gener-
ated, which shows all the internal JSON data before posts are gener-
ated.

For further details on the format of the traceability data, we refer to [KLN+17].

Figure 11: The diagram depicts the data and dependencies which are related
to tracing of the activity model checking. The corresponding artefacts are
automatically collected by the model checking component and transferred to
the traceability engine.
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5 Conclusion

The scope of this document is the implementation and application of state-of-
the-art model checking techniques for cyber-physical systems, whose behavior
is described by a network of heterogeneous components. The components
are heterogeneous in the sense that they are specified using different formal
models, which is not uncommon to cyber-physical systems.

The approach advocated in this deliverable is conceptually simple: Each sys-
tem component has to be represented as a discrete-event component, which
may require abstraction. The resulting network of discrete-event components
is then combined and fed into a model checker for LTL. This strategy thereby
allows to verify system-wide properties of the multi-model, whilst operating
on interchangeable components.

A seemingly easy aspect whose practical aspect must not be underestimated
is traceability, which is a core requirement in virtually any standard for the
development of safety-critical systems, such as the RTCA DO-178B [WG-92]
and RTCA DO-178C [WG-11], the CENELEC EN-50128 [CEN99] or the ISO
26262 [ISO11]. Traceability of development artefacts may be considered an
essential milestone towards completeness of the development lifecycle. Only
if artefacts from a development phases can safely be associated the underly-
ing artefacts, such as system requirements, development can be considered
complete. One contribution of this deliverable is that it provides a general
scheme how model checking traceability can be implemented, and which en-
tities may be necessary to thoroughly trace artefacts and actions.
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A List of Acronyms

20-sim Software package for modelling and simulation of dynamic systems
ACA Automatic Co-model Analysis
AST Abstract Syntax Tree
AU Aarhus University
BDD Binary Decision Diagram
BMC Bounded Model Checking
CLE ClearSy
CLP Controllab Products B.V.
COE Co-simulation Orchestration Engine
CPS Cyber-Physical Systems
CT Continuous-Time
CTL Computation Tree Logic
DE Discrete Event
DESTECS Design Support and Tooling for Embedded Control Software
DSE Design Space Exploration
FMI Functional Mockup Interface
FMI-Co Functional Mockup Interface – for Co-simulation
FMI-ME Functional Mockup Interface – Model Exchange
FMU Functional Mockup Unit
LTL Linear Temporal Logic
MC Model Checking
RTT-MBT RT-Tester Model Based Test Case Generator
SAT SATisfiable Boolean formula,

a symbolic representation of terms that can/should evaluate to true
SMT Satisfiability Modulo Theories, i.e., a SAT formula interpreted

over a logical theory (here, this describes a system design)
ST Softeam
SysML Systems Modelling Language
TWT TWT GmbH Science & Innovation
UML Unified Modelling Language
UNEW University of Newcastle upon Tyne
UTRC United Technologies Research Center
UY University of York
VSI Verifdied Systems International
WP Work Package
XML Extensible Markup Language

30


	Introduction
	Model Checking of Mixed Multi-Models
	Traceability for Model Checking
	Outline

	Related Work
	Temporal Logic & Model Checking
	Bounded Model Checking
	Abstraction
	Traceability for Verification and Validation

	Foundations of Model Checking in INTO-CPS
	Primer on Model Checking by Unrolling
	Unrolling LTL Specifications
	Model Checking for Multi-Models

	Implementation of a Model Checking Component in INTO-CPS
	Architecture
	Configuration of Model Checking
	Traceability

	Conclusion
	List of Acronyms

