
Grant Agreement: 644047

INtegrated TOol chain for model-based design of CPSs

INTO-CPS Traceability Implementation

Deliverable Number: D4.3d

Version: 1.0

Date: December 2017

Public Document

http://into-cps.au.dk



D4.3d - INTO-CPS Traceability (Public)

Contributors:

Kenneth Lausdahl (AU)
Jos Höll (TWT)
Christian König (TWT)
Carl Gamble (UNEW)
Oliver Möller (VSI)
Etienne Brosse (ST)
Tom Bokhove (CLP)
Luis Diogo Couto (UTRC)
Adrian Pop (LIU)
Alachew Mengist (LIU)

Editors:

Christian König (TWT)

Reviewers:

Ken Pierce (UNEW)
Kangfeng Ye (UY)
Stylianos Basagiannis (UTRC)

Consortium:

Aarhus University AU Newcastle University UNEW
University of York UY Linköping University LIU
Verified Systems International GmbH VSI Controllab Products CLP
ClearSy CLE TWT GmbH TWT
Agro Intelligence AI United Technologies UTRC
Softeam ST

2



D4.3d - INTO-CPS Traceability (Public)

Document History

Ver Date Author Description
0.1 19-07-2017 C. König (TWT) Initial document version
0.2 19-10-2017 C. König (TWT) Updated structure and content
0.3 09-11-2017 C. König (TWT) Incorporated comments from in-

ternal review
1.0 14-12-2017 C. König (TWT) Updated queries with new fea-

tures, ready for submission

3



D4.3d - INTO-CPS Traceability (Public)

Abstract

This deliverable covers the implementation of the traceability and model
management features in INTO-CPS. The implementation builds on top of
the design that was described previously in Deliverable D4.2d [LNH+16]. At
the end of Year 3, all tools support traceability by sending messages in a stan-
dardized format to the daemon, which stores the information in a database.
Furthermore, users can easily query this database to retrieve specific informa-
tion about the links between different entities, such as requirements, users,
test results or models (FMUs). These pre-defined queries are seamlessly in-
tegrated in the INTO-CPS application. This document is closely related to
Deliverables D3.1b [FGPP15], D3.2b [FGPP16] and D3.3b [FGP17b], where
the foundations for traceability in INTO-CPS are described.

4



D4.3d - INTO-CPS Traceability (Public)

Contents

1 Introduction 6

2 Implementation in the tools 6
2.1 Schema for the traceability messages . . . . . . . . . . . . . . 7
2.2 Traceability Daemon . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Modelio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Modeling tools . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 RT Tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 INTO-CPS Application . . . . . . . . . . . . . . . . . . . . . . 14

3 Querying and Visualisation 15
3.1 Cypher query language . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Implementation in the INTO-CPS application . . . . . . . . . 16
3.3 Expert User Queries . . . . . . . . . . . . . . . . . . . . . . . 19

4 Summary 20

Appendices 22

A Abbreviations 22

B Traceability Schema v1.5 23

5



D4.3d - INTO-CPS Traceability (Public)

1 Introduction

This deliverable presents the implementation of the traceability and model
management functions in INTO-CPS at the end of Year 3. It is to a large
extent connected with and based on the foundational work presented in De-
liverables D3.1b [FGPP15], D3.2b [FGPP16] and D3.3b [FGP17b], and on
the traceability design described in Deliverable D4.2d [LNH+16]. After the
introduction (Section 1), Section 2 describes the traceability actions that are
recorded by the different tools. These have been extended and improved dur-
ing Year 3, such that the whole tool-chain now generates traceability data
in the same format. All the steps of the workflow (as described in Deliv-
erable D3.3a [FGP17a]) are now covered by the tools. Implementation of
the queries to the traceability database, which is the user-relevant result, is
discussed in Section 3. This Deliverable ends with a conclusion of the status
of the traceability support in the tools at the end of Year 3 and an outlook
for the work that can be considered in the future (section 4).

As indicated in Deliverable D4.2d [LNH+16], it should be noted that the
work presented in this Deliverable focuses on traceability. Model manage-
ment, which comprises the handling of versioning of different iterations of
artefacts such as models, and collaboration within larger teams, is handled
by a versioning system such as Git1. All the tools that are described in this
Deliverable rely on Git.

All the requirements that are related to traceability (summarized in Section
2.1 of Deliverable D4.2d [LNH+16] and fully documented in Deliverable D7.7
[LPO+17]) are fulfilled.

2 Implementation in the tools

The traceability architecture is described in Deliverable D4.2d [LNH+16], the
traceability actions are discussed in Deliverable D3.2b [FGPP16]. To avoid
redundancy, the details are therefore not repeated here.

In summary, it can be said that all of the INTO-CPS tools support trace-
ability according to the traceability ontology, laid out in Deliverable D3.2b
[FGPP16], without requiring any user interaction. The tools all follow the
same message format (see Annex B) and thereby support traceability through-
out the complete tool-chain. Only the IP address and port for the daemon

1see https://git-scm.com/

6

https://git-scm.com/


D4.3d - INTO-CPS Traceability (Public)

need to be set once in the tools, and the user name and e-mail address are de-
fined. The traces themselves are either sent automatically during the saving
of a model, or after the execution of an action. Configuration and usage of
the tools is described in the User manual, Deliverable D4.3a [BLL+17].

2.1 Schema for the traceability messages

During Year 3, a schema for the traceability messages was developed, which
defines the format of the messages, and restricts their content. The schema
acts as an interface between the daemon and the tools. The tools need to im-
plement the correct format, and the daemon validates if the tool has done it
properly. This makes sure that the database contains only information that
follows the same format, and therefore can be queried easily. Crucially, since
the schema is machine-readable, the validation is done automatically. Fur-
thermore, since the schema is public, traceability can be easily implemented
in other tools (e.g. tools from vendors outside the INTO-CPS consortium,
for instance from the INTO-CPS association) so that these can send valid
traceability messages to the daemon. In the schema, all allowed traceability-
related entities, such as activities, artefacts or tools are contained. Relations
between entities, such as prov:wasGeneratedBy, oslc:satisfies and more are
also described in the schema. It is therefore important in such a tool-chain-
wide approach as with traceability, that all the tools comply with the schema
and that the whole ontology (see Deliverable D3.3b [FGP17b]) is covered by
it. The schema version 1.5 is shown in the Annex B.

The process of generating messages, sending them to the daemon and vali-
dating them, is shown in the Figure 1 below, including an example message
from Modelio. In the tool, the information about the user (the prov:Agent) is
set. The tool (here Modelio of type Architecture Tool) generates the relation
(prov:wasAssociatedWith and prov:used) between the ModelDescription.xml
file, the user who generated it, and the original SysML model. Then, this
message is sent via HTTP to the daemon, who validates the message accord-
ing to the schema.

In the remainder of this section, implementation of traceability and genera-
tion of the related messages in the different tools is described.

7



D4.3d - INTO-CPS Traceability (Public)

Figure 1: Schematic process of generating and saving a traceability message.
For readability, the message is shortened.

2.2 Traceability Daemon

The core of the traceability architecture is the daemon, which receives the
data from the different tools and writes it into the Neo4J database. The dae-
mon was previously described in Deliverable D4.2d [LNH+16]. The database
is stored in a binary format, which causes problems when it is versioned
(e.g. in a Git or SVN system) and changed by multiple users simultaneously.
To solve this, the daemon was improved in Year 3, by adding a step be-
tween receiving of the traceability messages and storing them in the Neo4J
database.

Now, each message the daemon receives is saved in plain text into a single file
(with .dmsg file ending) in the project folder. The content of one such file is

8



D4.3d - INTO-CPS Traceability (Public)

indicated in Figure 1. At startup of the INTO-CPS Application, the daemon
builds the database from these single files. This allows multiple users to work
on the project simultaneously. Each user generates traceability messages by
the different actions he/she performs. These messages are stored in the
project folder. After completion of a task, the user pushes the files to the
repository. Merging of the database is then done by Git / SVN by combining
the .dmsg files. After an update of the project folder, each user has access to
the whole database. The schematic process is shown in Figure 2 below.

Figure 2: Schematic process of merging multipe messages from different users
and building the Neo4J database from them.

In addition, the daemon is validating the messages it receives from the tools
with the schema (see Annex B), to make sure that only those messages
that comply with the schema are written into the database. Only when
all tools use the same message format will the queries (see Section 3) return
meaningful information.

9



D4.3d - INTO-CPS Traceability (Public)

2.3 Modelio

Modelio records the following traceability actions:

� Architecture creation

� Architecture modification

� (ModelDescription import)

� ModelDescription export

� Co-Simulation configuration export

� Requirements generation and linking to SysML blocks

Modelio represents the Architecture Modeling activity in the INTO-CPS
workflows (see Section 3 in Deliverable D3.3a [FGP17a]). Consequently, these
actions are traced2. The Architecture creation / modification captures the
generation and modification of a SysML block in Modelio. The generation of
ModelDescription.xml files from a SysML block is the next step in the work-
flow. Generation of SysML blocks from imported ModelDescription.xml files
is not yet traced, but planned for the future (and will most likely be carried
out in the INTO-CPS association, see Deliverable D6.3 [KFP+17]). Export-
ing a co-simulation configuration from a SysML connections diagram, which
can transformed in the INTO-CPS application into a Multi-model, is also
traced. Generation of requirements, and association of these requirements
with SysML blocks is traced. This association can either be of the type verify
or satisfy.

In addition to the ad-hoc generation of traceability messages, which are cre-
ated when the related action is being performed, Modelio also offers the
option to convert the Git history of a Modelio project into traceability mes-
sages. This is particularly useful for use-cases, where traceability was not
used from the very beginning.

2.4 Modeling tools

Since OpenModelica, 20-sim and Overture are modeling tools, they are here
described together. Generation of models, either from scratch or from an im-
ported ModelDescription.xml file (e.g. coming from Modelio in the previous

2In the context of this deliverable, “traced” means that messages are generated and
sent to the daemon

10



D4.3d - INTO-CPS Traceability (Public)

step) is the next step in the workflow, and consequently traced, together with
their modification. FMUs can be imported from other tools, to include them
in the native models. Exporting an FMU is the next step in the workflow,
and is consequently also traced. OpenModelica, 20-sim and Overture record
the following traceability actions:

� Model creation

� Model modification

� FMU export

� FMU import

� ModelDescription import

2.4.1 20-sim

Configuration of the 20-sim traceability support is described in the User
manual, Deliverable D4.3a [BLL+17]. Therefore the steps for configuration
are not repeated here in detail.

Because Git is needed for the INTO-CPS traceability daemon, it is not pos-
sible to only enable the traceability daemon without enabling Git version
control. If both options (for Git version control and for communication with
the traceability daemon) are enabled, every traceable action in 20-sim will
store a copy of its data in the indicated Git repository. If the model itself is
already in a Git repository, this will also make sure to commit the changes to
this repository automatically. There is an additional option named “Write
custom save messages”, which will ask the user to write a custom message
whenever a traceable action is performed. This message will be stored in Git
as the Git commit message.

The “Model creation” action is a “Save as” action, which is the moment when
the user officially saves a new model to disk. In the same line of reasoning, a
“Model modification” action is a “Save” action in 20-sim, because the user
modifies an existing model on disk. 20-sim has no support for deleting a
model from within its user interface, therefore there is no traceability query
to delete a model from 20-sim. 20-sim also has support to export and import
an FMU and to import a modelDescription.xml file. These three actions are
described in [BLL+17], and are also traceable. The exported or imported
FMU or the imported modelDescription.xml file will also be placed under

11



D4.3d - INTO-CPS Traceability (Public)

version control in the Git repository. Currently 20-sim does not support
tracing the export of a tool-wrapper FMU.

2.4.2 OpenModelica

Traceability support in OpenModelica is very similar to the one implemented
in 20-sim. After an initial configuration of the Git repository and and trace-
ability daemon, the actions for saving a model, import of a ModelDescrip-
tion.xml file and export of a FMU are traced without further user interac-
tion.

2.4.3 Overture

In Overture, traceability is implemented as an additional package (as a .jar

file), that can be downloaded from the GitHub page 3. This package extracts
traceability information from the Git repository, where the current Overture
project is stored in. It can be either triggered manually, or simply added to
a Git post-commit hook, to send new traces to the daemon after the user
commits the changes to the model to the repository. Similar to Modelio, this
way of extracting traceability messages from the Git repository is useful if
traceability has not been used since the start of the project.

2.5 RT Tester

RT Tester records the following traceability actions:

� Define test model

� Define test objectives

� Run test

� Define model-checking model

� Define continuous time abstraction

� Run model-checking query

There is no need for the user to configure these operations, because per
default valid settings (for the INTO-CPS Application) are used.

3see https://github.com/overturetool/intocps-tracability-driver/releases

12

https://github.com/overturetool/intocps-tracability-driver/releases


D4.3d - INTO-CPS Traceability (Public)

The following environment variables can be used to modify the tracing be-
haviour.

OSLC_SERVER machine running the OSLC server (default: localhost)
OSLC_PORT port number to address the OSLC server at (default: 8083)
OSLC_EDOMAIN email-domain to use (default: example.com)
OSLC_VERBOSE if set (to non-0/non-False), then generate verbose output

that shows all json data before posting

Example. In a project, a test “TR-TR” has been configured that aims to
cover all transition relations. By this computation, the requirements REQ-
001 and REQ-002 have been covered (by one or more model elements), but
the test run did not reach the model element that is related to REQ-004.

Figure 3: RT-Tester Test-Automation result, requirements may be PASS,
FAIL, or INCONCLUSIVE (i.e., untried).

After the “Run test” operation, the test result is shown in Figure 3: The
REQ-001 is marked FAIL (because one of the reached control states did not
behave as expected), REQ-002 is PASS, and REQ-004 is INCONCLUSIVE,
i.e., it is unclear whether the system under test would behave correctly here
- the situation has not been reached.

This information is transmitted (automatically) to the Neo4J server, along
with related information like what tool/what version has been used, who

13



D4.3d - INTO-CPS Traceability (Public)

Figure 4: Representation of the “Run test” activity in the Neo4J database.

performed the operation, etc. This is shown in Figure 4: The highlighted
arrow points to REQ-002 (which is PASS and thus verified). The other
“Trace” relation with the same origin points to REQ-002 and has the name
“into:violates”, because the test run demonstrates that REQ-001 does not
(always) hold. The REQ-004 is not connected to the test run (and would be
a separate green blob here, not displayed).

2.6 INTO-CPS Application

The INTO-CPS Application records the following traceability actions:

� Multi-model creation

� Co-Simulation configuration creation

14



D4.3d - INTO-CPS Traceability (Public)

� Run Simulation

These actions are automatically recorded once the user creates a multi-model
from an exported SysML configuration diagram, generates an Co-Simulation
configuration from a multi-model, or modifies these configurations. Finally,
the start of a simulation run is also recorded.

3 Querying and Visualisation

In order to bring a benefit to the user, the traceability data not only needs
to be recorded, but also analysed and presented in a way that is helpful to
the user. The tools therefore must have a way of querying the database,
for specific information, such as relations between requirements, models, test
results, users or simulation results.

The results from these queries are displayed within the INTO-CPS Applica-
tion as lists, separated between different categories (FMUs, Users, Simula-
tions, Requirements), as discussed below in Section 3.2. These categories can
be extended and minimized, to present a neatly arranged view to the user.
The interface has the same look as the rest of the INTO-CPS Application,
which makes it user-friendly. Additionally, for expert users that have a good
understanding of the underlying structure, and that are proficient in generat-
ing queries to the database, it is possible to manually enter queries to search
the traceability database. This is briefly described in Section 3.3.

While there is plenty of research on traceability in software or systems en-
gineering, only few industry standard tools implement traceability. One of
them, IBM Doors Next Generation, is among the most popular tools [WP10],
which displays traceability relations between requirements on different lev-
els (e.g. high-level requirements and their refinements) as trees or lists 4.
Another popular way of displaying traceability relations is the matrix view,
which shows the relations between different artefacts in a 2-dimensional ta-
ble. However, due to the heterogeneity of the different artefact types (re-
quirements, models / FMUs, simulation results, configuration files etc.), the
matrix view is not implemented in the context of INTO-CPS. Another pop-
ular way of presenting links is the graph view, where the different artefacts
and their relation is shown in a graph. This is possible using the expert
mode, which is based on the Neo4J interface, as described below in Section

4see also https://jazz.net/library/article/88104

15

https://jazz.net/library/article/88104


D4.3d - INTO-CPS Traceability (Public)

3.3. In principle however, the openness of the INTO-CPS tool-chain allows
for creation of new views, if they are required by a specific use-case.

3.1 Cypher query language

The Neo4J database uses a query language called Cypher. This language
uses ASCII art to represent nodes and relations. Nodes are surrounded by
parentheses “(” and “)”, and relationships are identified by square brack-
ets “[” and “]”. More information can be found on https://neo4j.com/

developer/cypher-query-language/.

3.2 Implementation in the INTO-CPS application

For representation of the traceability links to the users, pre-defined queries
were integrated to the INTO-CPS Application. They allow the user to search
for different artefacts and relations between artefacts. The user interface is
identical to the rest of the INTO-CPS Application, which lowers the entry
barriers for users. The searches generate lists of items, which can be mini-
mized to keep an overview of all the presented data.

At the end of Year 3, the following queries (which are also described in
Annex B of Deliverable D3.3b [FGP17b]) are implemented in the INTO-CPS
Application to allow for a easy usage.

1. FMUs: Query the database for all requirements that are related to a
specific FMU.

2. Users: Query the database for all activities and artefacts that are re-
lated to a specific user.

3. Simulations: Query the database for all the Co-Simulation results that
are associated with a multi-model.

4. Requirements: Query the database for test results that are linked to
requirements.

Right-clicking on the “Traceability” button on the left-hand side of the win-
dow opens a context menu (see Figure 5). Clicking on “Trace Objects” shows
the overview of the different queries, that can then be extended and mini-
mized.

16

https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/


D4.3d - INTO-CPS Traceability (Public)

Figure 5: Overview of the traceability queries in the INTO-CPS Application.

FMU and requirements This query is done in two steps. The first query
lists all the FMUs that are stored in the database (e.g. after FMU export in
Overture, 20-sim or OpenModelica, see Section 2.4.)

In the Cypher language (see previous Section), the first query is done with
the following command:

match(n{type:’fmu’}) return n.uri, n.path

In the next step, all requirements that are related to a specific FMU (<FMU_name>)
are queried by this command:

match (activity)<-[:Trace{name:"prov:wasGeneratedBy"}]-

({uri:’<FMU_name>’})-[:Trace{name:"oslc:satisfies"}]->(element)

return element.uri, element.hash, activity.time, element.type

order by activity.time desc

This returns all the requirements that are linked by the oslc:satisfies rela-
tionship to the particular FMU.

17



D4.3d - INTO-CPS Traceability (Public)

Users and artefacts and activities The INTO-CPS project aims ex-
plicitly the collaborative modelling, which means that multiple people are
typically involved in the process. To support this, all the users and their
actions can be traced.

First, all users are queried from the database by the following command:

match (usr{specifier:’prov:Agent’}) return usr.name, usr.uri

Next, all the artefacts that were influenced by a particular user (here iden-
tified by the URI, which contains the e-mail address Agent.richard.payne@
newcastle.ac.uk) can be found by:

match (usr{uri:’Agent.richard.payne@newcastle.ac.uk’})<-

[:Trace{name:’prov:wasAttributedTo’}]-(entity)

return entity.uri, entity.type

These artefacts are for example simulation results, FMUs, model description
files or simulation configurations. A complete list of activites can be found
in Annex B under the enumeration for ArtefactType.

In addition, all the activities performed by this user can be traced by:

match (usr{uri:’Agent.richard.payne@newcastle.ac.uk’})<-

[:Trace{name:’prov:wasAssociatedWith’}]-(entity)

return entity.uri, entity.type

The activites are for example architectureModelling, modelDescriptionEx-
port, simulationModelling and so forth. A complete list of activites can be
found in Annex B under the enumeration for ActivityType. Those activites
reflect the activites as described in the ontology (see also Annex A of Deliv-
erable D3.3b [FGP17b]).

Simulation results and files First all the simulation results are queried
by the following command:

match (n{type:’simulationResult’})-

[:Trace{name:"prov:wasGeneratedBy"}]->(m)

return n.uri, m.time, m.type

In the next step, all files that were used (i.e. that have the relation prov:used)
to produce this simulation result (<Result_file>) are queried by the follow-
ing command:

match({uri:’Entity.<Result_file>’})-

18



D4.3d - INTO-CPS Traceability (Public)

[:Trace{name:"prov:wasGeneratedBy"}]->

(simulation)-[:Trace{name:"prov:used"}]-(entity)

return entity.uri, entity.path, entity.hash

This query lists the FMUs, the configuration files and the log files which are
related to this particular simulation result.

Requirements and Test results To take the test results from RT Tester
into account (see Section 2.5), three different queries were implemented.

Requirements without positive simulation or test results are queried by:

match (req{type:’requirement’}) where not

(req)<-[:Trace{name:"oslc:verifies"}]-()

return req.uri

This query indicates to the user all those requirements that have not been
validated yet.

Requirements without any simulation or test result are queried by:

match (req{type:’requirement’}) where not (req)<-

[:Trace{name:"into:violates"}]-() and not (req)<-

[:Trace{name:"oslc:verifies"}]-()

return req.uri

This query finds all requirements that have not yet been tested, to indicate
to the user which

And finally, requirements with at least one positive but no negative test result
are queried by:

match (req{type:’requirement’}) where (req)<-

[:Trace{name:"oslc:verifies"}]-() and not

(req)<-[:Trace{name:"into:violates"}]-()

return req.uri

This finds those requirements that have been tested positively and can be
seen as fulfilled, since no counter-example was found.

3.3 Expert User Queries

In addition to these built-in queries, expert queries can be performed by the
native Neo4J interface that is integrated in the INTO-CPS application, using

19



D4.3d - INTO-CPS Traceability (Public)

the Cypher language (see Section 3.1). To access this interface, the user can
click on “View Traceability Graph” in the context menu for traceability (see
Figure 5). The interface, with the graph view, is shown in Figure 4. The
queries, for example those described in the previous Section, can be directly
typed into the command line, returning lists of objects. Advanced users can
modify the queries from the previous sections, use those described in Annex
B of Deliverable D3.3b [FGP17b] or define their own queries.

In the framework of the INTO-CPS project, visualisation of the query results
is focused to the INTO-CPS application. The traceability architecture allows
however in principle for querying of the database from any other tool. For
example, OpenModelica also implemented viewing the graph database within
OpenModelica.

The usage of the queries in the INTO-CPS application is described in Deliv-
erable D4.3a [BLL+17] and is therefore not repeated here.

4 Summary

This deliverable presents the status of the traceability and model manage-
ment efforts in INTO-CPS at the end of Year 3. Continuing the work from
the previous years, a message schema was defined that ensures that all tools
use the same format for sending their data. The handling of the Neo4J
database by the daemon was improved to allow working with multiple users
on a repository. All tools record the relevant actions, and the whole work-
flow of INTO-CPS is covered, with respect to traceability data. Queries were
implemented in the INTO-CPS application to return meaningful data to the
user.

While the INTO-CPS tool-chain is well covered with respect to traceability
by the end of Year 3, external tools are not supported. For example, if FMUs
were generated in other tools, this is not listed in the traceability database.
Therefore, methods for covering these artefacts coming from external tools,
could be developed in the future. Since the interface, the ontology and the
format for the messages are public, however, support for external tools can
easily be integrated by their developers. In principle, traceability should be
used since the beginning of a project, such as CPS design. However, parsing
of the Git repository, as it is enabled by Overture or Modelio, enables users
to take advantage of traceability even though it was not used from the very
beginning.

20



D4.3d - INTO-CPS Traceability (Public)

There is a plethora of research on traceability in software and systems engi-
neering. In the context of INTO-CPS, we enabled traceability in the whole
tool-chain of CPS design, from systems modelling, trough physical and cy-
ber modeling, down to co-simulation and test automation. This presents an
important step in the true integration of the different tools that are used in
CPS design.

21



D4.3d - INTO-CPS Traceability (Public)

Appendices

A Abbreviations

ASCII American Standard for Information Interchange
COE Co-Simulation Orchestration Engine
CPS Cyber-Physical System
DB Database
FMI Functional Mockup Interface
FMU Functional Mockup Unit
HiL Hardware in the Loop
JSON JavaScript Object Notation
OSLC Open Services for Lifecycle Collaboration
SVN Apache Subversion
URI Uniform Resource Identifier
XML eXtensible Markup Language

22



D4.3d - INTO-CPS Traceability (Public)

B Traceability Schema v1.5

In the following, the schema for sending traceability messages is listed. It
ensures that all tools send the messages in the same format, so that they can
be queried from the database later on.

1 {
2 "$schema": "http://json -schema.org/draft -04/schema

#",

3 "description": "INTO -CPS Traceability JSON Schema"

,

4 "version": "1.5",

5 "type": "object",

6 "properties": {
7 "rdf:RDF": {
8 "type": "object",

9 "minProperties": 4,

10 "maxProperties": 6,

11 "properties": {
12 "xmlns:rdf": {
13 "type": "string",

14 "enum": [

15 "http://www.w3.org/1999/02/22-rdf -syntax

-ns#"

16 ],

17 "default": "http://www.w3.org/1999/02/22-

rdf -syntax -ns#"

18 },
19 "xmlns:prov": {
20 "type": "string",

21 "enum": [

22 "http://www.w3.org/ns/prov#"

23 ],

24 "default": "http://www.w3.org/ns/prov#"

25 },
26 "messageFormatVersion": {
27 "type": "string",

28 "enum": [

29 "1.3",

30 "1.3.1",

31 "1.3.2",

23



D4.3d - INTO-CPS Traceability (Public)

32 "1.4",

33 "1.5"

34 ],

35 "default": "1.5"

36 },
37 "prov:Agent": {
38 "type": "array",

39 "minItems": 1,

40 "uniqueItems": true,

41 "items": [

42 {
43 "$ref": "#/ definitions/Agent"

44 }
45 ],

46 "additionalItems": {
47 "$ref": "#/ definitions/Agent"

48 }
49 },
50 "prov:Entity": {
51 "type": "array",

52 "minItems": 1,

53 "uniqueItems": true,

54 "items": {
55 "anyOf": [

56 {
57 "$ref": "#/ definitions/Artefact"

58 },
59 {
60 "$ref": "#/ definitions/Tool"

61 }
62 ]

63 }
64 },
65 "prov:Activity": {
66 "type": "array",

67 "minItems": 1,

68 "uniqueItems": true,

69 "items": [

70 {
71 "$ref": "#/ definitions/Activity"

72 }

24



D4.3d - INTO-CPS Traceability (Public)

73 ],

74 "additionalItems": {
75 "$ref": "#/ definitions/Activity"

76 }
77 }
78 },
79 "required": [

80 "xmlns:rdf",

81 "xmlns:prov",

82 "messageFormatVersion"

83 ],

84 "additionalProperties": false

85 }
86 },
87 "required": [

88 "rdf:RDF"

89 ],

90 "additionalProperties": false,

91 "definitions": {
92 "ActivityType": {
93 "type": "string",

94 "enum": [

95 "architectureConfigurationCreation",

96 "architectureModelling",

97 "codeGeneration",

98 "configurationCreation",

99 "defineCTAbstraction",

100 "defineMCModel",

101 "defineMCQuery",

102 "defineTestModel",

103 "defineTestObjectives",

104 "designNoteCreation",

105 "dse",

106 "dseAnalysisCreation",

107 "dseConfigurationCreation",

108 "fmuExport",

109 "fmuImport",

110 "fmuExportForHiL",

111 "mockupFMUCreation",

112 "modelChecking",

113 "modelCreation",

25



D4.3d - INTO-CPS Traceability (Public)

114 "modelModification",

115 "modelDeletion",

116 "modelDescriptionExport",

117 "modelDescriptionImport",

118 "modelPortionFMUExport",

119 "requirementsManagement",

120 "runMCQuery",

121 "runTest",

122 "simulation",

123 "simulationConfigurationCreation",

124 "simulationModelling",

125 "testCreation"

126 ]

127 },
128 "ArtefactType": {
129 "type": "string",

130 "enum": [

131 "architectureConfiguration",

132 "architectureConnectionDiagram",

133 "architectureModelFile",

134 "architectureStructureDiagram",

135 "architectureSubSystem",

136 "dseAlgorithm",

137 "dseAnalysisScript",

138 "dseRankingScript",

139 "dseRankingValue",

140 "dseResult",

141 "dseSearchConfiguration",

142 "dseAnalysisConfiguration",

143 "designNote",

144 "designNoteFile",

145 "fmu",

146 "file",

147 "hiLAsset",

148 "modelCheckingAbstraction",

149 "modelCheckingQuery",

150 "modelCheckingResult",

151 "modelCheckModel",

152 "modelCheckResult",

153 "modelDescriptionFile",

154 "modelFile",

26



D4.3d - INTO-CPS Traceability (Public)

155 "modelPortionConfiguration",

156 "multiModelConfiguration",

157 "objectivesValue",

158 "requirement",

159 "requirementSource",

160 "requirementSourceSubPart",

161 "requirementsDocument",

162 "scenarioData",

163 "simulationConfiguration",

164 "simulationModelContainer",

165 "simulationResult",

166 "softwareAgent",

167 "testCase",

168 "testConfiguration",

169 "testExecutionResult"

170 ]

171 },
172 "ToolType": {
173 "type": "string",

174 "enum": [

175 "Architecture Tool",

176 "Co Simulation Engine",

177 "Co Simulation GUI",

178 "Software Tool",

179 "Simulation Tool",

180 "Model Checking Tool",

181 "Test Automation Tool"

182 ]

183 },
184 "Activity": {
185 "type": "object",

186 "minProperties": 5,

187 "maxProperties": 6,

188 "properties": {
189 "rdf:about": {
190 "$ref": "#/ definitions/URIActivity"

191 },
192 "type": {
193 "$ref": "#/ definitions/ActivityType"

194 },
195 "time": {

27



D4.3d - INTO-CPS Traceability (Public)

196 "type": "string",

197 "format": "date -time"

198 },
199 "prov:wasAssociatedWith": {
200 "type": "object",

201 "minProperties": 1,

202 "maxProperties": 1,

203 "properties": {
204 "prov:Agent": {
205 "$ref": "#/ definitions/RefAgent"

206 }
207 },
208 "required": [

209 "prov:Agent"

210 ],

211 "additionalProperties": false

212 },
213 "prov:used": {
214 "type": "object",

215 "minProperties": 1,

216 "maxProperties": 1,

217 "properties": {
218 "prov:Entity": {
219 "type": "array",

220 "minItems": 1,

221 "uniqueItems": true,

222 "items": {
223 "anyOf": [

224 {
225 "$ref": "#/ definitions/RefTool"

226 },
227 {
228 "$ref": "#/ definitions/

RefArtefact"

229 }
230 ]

231 }
232 }
233 },
234 "required": [

235 "prov:Entity"

28



D4.3d - INTO-CPS Traceability (Public)

236 ],

237 "additionalProperties": false

238 }
239 },
240 "required": [

241 "rdf:about",

242 "type",

243 "time",

244 "prov:wasAssociatedWith",

245 "prov:used"

246 ],

247 "additionalProperties": false

248 },
249 "URIArtefact": {
250 "type": "string",

251 "pattern": "^ Entity \\.(

architectureConfiguration|

architectureConnectionDiagram|

architectureModelFile|

architectureStructureDiagram|

architectureSubSystem|dseAlgorithm|

dseAnalysisScript|dseRankingScript|

dseRankingValue|dseResult|

dseSearchConfiguration|

dseAnalysisConfiguration|designNote|

designNoteFile|fmu|file|hiLAsset|

modelCheckingAbstraction|modelCheckingQuery

|modelCheckingResult|modelCheckModel|

modelCheckResult|modelDescriptionFile|

modelFile|modelPortionConfiguration|

multiModelConfiguration|objectivesValue|

requirement|requirementSource|

requirementSourceSubPart|

requirementsDocument|scenarioData|

simulationConfiguration|

simulationModelContainer|simulationResult|

softwareAgent|testCase|testConfiguration|

testExecutionResult):([a-zA-Z0-9\\/.\\ -_])

+(:([a-zA-Z0-9\\.-_])+)?#([0-9a-f]{5,40}|[0
])$",

252 "additionalProperties": false

29



D4.3d - INTO-CPS Traceability (Public)

253 },
254 "URITool": {
255 "type": "string",

256 "pattern": "^ Entity \\.( architectureTool|

coSimulationEngine|coSimulationGUI|

softwareTool|simulationTool|

modelCheckingTool|testAutomationTool):([a-

zA -Z0-9\\/.\\ -_]+)(:[a-zA -Z0-9\\/.\\ -_ ()]

+)*$",

257 "additionalProperties": false

258 },
259 "URIActivity": {
260 "type": "string",

261 "pattern": "^ Activity \\.(

architectureConfigurationCreation|

architectureModelling|codeGeneration|

configurationCreation|designNoteCreation|

dse|dseAnalysisCreation|

dseConfigurationCreation|fmuExport|

fmuImport|fmuExportForHiL|mockupFMUCreation

|modelCreation|modelModification|

modelDeletion|modelDescriptionExport|

modelChecking|modelDescriptionImport|

modelPortionFMUExport|

requirementsManagement|simulation|

simulationConfigurationCreation|

simulationModelling|testCreation|

defineTestModel|defineTestObjectives|

runTest|defineMCModel|defineCTAbstraction|

defineMCQuery|runMCQuery):([0-9]){4}\\-([0-
1][0-9])\\-([0-3][0-9])T([0-2][0-9]):([0-5]

[0-9]):([0-5][0-9])(\\.[0-9][0-9][0-9])?Z#[

a-fA -F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}
-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}$",

262 "additionalProperties": false

263 },
264 "URIAgent": {
265 "type": "string",

266 "pattern": "^ Agent\\:[a-z0-9._-]+@[a-z0-9._-]{
2,}\\.[a-z]{2,4}$",

267 "additionalProperties": false

30



D4.3d - INTO-CPS Traceability (Public)

268 },
269 "RefEntities": {
270 "type": "object",

271 "minProperties": 1,

272 "maxProperties": 1,

273 "properties": {
274 "prov:Entity": {
275 "type": "array",

276 "minItems": 1,

277 "uniqueItems": true,

278 "items": [

279 {
280 "$ref": "#/ definitions/RefArtefact"

281 }
282 ],

283 "additionalItems": {
284 "$ref": "#/ definitions/RefArtefact"

285 }
286 }
287 },
288 "additionalProperties": false

289 },
290 "RefArtefact": {
291 "type": "object",

292 "minProperties": 1,

293 "maxProperties": 1,

294 "properties": {
295 "rdf:about": {
296 "$ref": "#/ definitions/URIArtefact"

297 }
298 },
299 "required": [

300 "rdf:about"

301 ],

302 "additionalProperties": false

303 },
304 "RefTool": {
305 "type": "object",

306 "minProperties": 1,

307 "maxProperties": 1,

308 "properties": {

31



D4.3d - INTO-CPS Traceability (Public)

309 "rdf:about": {
310 "$ref": "#/ definitions/URITool"

311 }
312 },
313 "required": [

314 "rdf:about"

315 ],

316 "additionalProperties": false

317 },
318 "RefActivity": {
319 "type": "object",

320 "minProperties": 1,

321 "maxProperties": 1,

322 "properties": {
323 "rdf:about": {
324 "$ref": "#/ definitions/URIActivity"

325 }
326 },
327 "required": [

328 "rdf:about"

329 ],

330 "additionalProperties": false

331 },
332 "RefAgent": {
333 "type": "object",

334 "minProperties": 1,

335 "maxProperties": 1,

336 "properties": {
337 "rdf:about": {
338 "$ref": "#/ definitions/URIAgent"

339 }
340 },
341 "required": [

342 "rdf:about"

343 ],

344 "additionalProperties": false

345 },
346 "Agent": {
347 "type": "object",

348 "minProperties": 2,

349 "maxProperties": 3,

32



D4.3d - INTO-CPS Traceability (Public)

350 "properties": {
351 "rdf:about": {
352 "$ref": "#/ definitions/URIAgent"

353 },
354 "name": {
355 "type": "string"

356 },
357 "email": {
358 "type": "string",

359 "format": "email"

360 }
361 },
362 "required": [

363 "rdf:about",

364 "email"

365 ],

366 "additionalProperties": false

367 },
368 "Tool": {
369 "type": "object",

370 "properties": {
371 "version": {
372 "type": "string"

373 },
374 "name": {
375 "type": "string"

376 },
377 "type": {
378 "$ref": "#/ definitions/ToolType"

379 },
380 "rdf:about": {
381 "$ref": "#/ definitions/URITool"

382 }
383 },
384 "required": [

385 "version",

386 "name",

387 "type",

388 "rdf:about"

389 ],

390 "additionalProperties": false

33



D4.3d - INTO-CPS Traceability (Public)

391 },
392 "Artefact": {
393 "type": "object",

394 "maxProperties": 13,

395 "properties": {
396 "rdf:about": {
397 "$ref": "#/ definitions/URIArtefact"

398 },
399 "path": {
400 "type": "string",

401 "pattern": "^([a-zA -Z0-9\\/.\\ -_ ])+$"

402 },
403 "hash": {
404 "type": "string",

405 "pattern": "^([0-9a-f]{5,40}|[0])$"
406 },
407 "type": {
408 "$ref": "#/ definitions/ArtefactType"

409 },
410 "prov:wasAttributedTo": {
411 "type": "object",

412 "minProperties": 1,

413 "maxProperties": 1,

414 "properties": {
415 "prov:Agent": {
416 "$ref": "#/ definitions/RefAgent"

417 }
418 },
419 "required": [

420 "prov:Agent"

421 ],

422 "additionalProperties": false

423 },
424 "prov:wasGeneratedBy": {
425 "type": "object",

426 "minProperties": 1,

427 "maxProperties": 1,

428 "properties": {
429 "prov:Activity": {
430 "$ref": "#/ definitions/RefActivity"

431 }

34



D4.3d - INTO-CPS Traceability (Public)

432 },
433 "required": [

434 "prov:Activity"

435 ],

436 "additionalProperties": false

437 },
438 "prov:wasDerivedFrom": {
439 "$ref": "#/ definitions/RefEntities"

440 },
441 "prov:hadMember": {
442 "$ref": "#/ definitions/RefEntities"

443 },
444 "oslc:elaborates": {
445 "$ref": "#/ definitions/RefEntities"

446 },
447 "oslc:satisfies": {
448 "$ref": "#/ definitions/RefEntities"

449 },
450 "oslc:verifies": {
451 "$ref": "#/ definitions/RefEntities"

452 },
453 "into:doesNotVerify": {
454 "$ref": "#/ definitions/RefEntities"

455 },
456 "into:violates": {
457 "$ref": "#/ definitions/RefEntities"

458 }
459 },
460 "required": [

461 "rdf:about",

462 "path",

463 "hash",

464 "type"

465 ],

466 "additionalProperties": true

467 }
468 }
469 }

35



D4.3d - INTO-CPS Traceability (Public)

References

[BLL+17] Victor Bandur, Peter Gorm Larsen, Kenneth Lausdahl, Casper
Thule, Anders Franz Terkelsen, Carl Gamble, Adrian Pop, Eti-
enne Brosse, Jörg Brauer, Florian Lapschies, Marcel Groothuis,
Christian Kleijn, and Luis Diogo Couto. INTO-CPS Tool Chain
User Manual. Technical report, INTO-CPS Deliverable, D4.3a,
December 2017.

[FGP17a] John Fitzgerald, Carl Gamble, and Ken Pierce. Method Guide-
lines 3. Technical report, INTO-CPS Deliverable, D3.3a, Decem-
ber 2017.

[FGP17b] John Fitzgerald, Carl Gamble, and Ken Pierce. Methods Progress
Report 3. Technical report, INTO-CPS Deliverable, D3.3b, De-
cember 2017.

[FGPP15] John Fitzgerald, Carl Gamble, Richard Payne, and Ken Pierce.
Methods Progress Report 1. Technical report, INTO-CPS Deliv-
erable, D3.1b, December 2015.

[FGPP16] John Fitzgerald, Carl Gamble, Richard Payne, and Ken Pierce.
Methods Progress Report 2. Technical report, INTO-CPS Deliv-
erable, D3.2b, December 2016.

[KFP+17] Christian König, Peter Fritzson, Adrian Pop, Christian Kleijn, Pe-
ter Gorm Larsen, Mette Stig Hansen, Jörg Brauer, and Stylianos
Basagiannis. Dissemination and Exploitation Report - Year 3.
Technical report, INTO-CPS Deliverable, D6.3, December 2017.

[LNH+16] Kenneth Lausdahl, Peter Niermann, Jos Höll, Carl Gamble,
Oliver Mölle, Etienne Brosse, Tom Bokhove, Luis Diogo Couto,
and Adrian Pop. INTO-CPS Traceability Design. Technical re-
port, INTO-CPS Deliverable, D4.2d, December 2016.

[LPO+17] Peter Gorm Larsen, Ken Pierce, Julien Ouy, Kenneth Lausdahl,
Marcel Groothuis, Adrian Pop, Miran Hasanagic, Jörg Brauer,
Etienne Brosse, Carl Gamble, Simon Foster, and Jim Woodcock.
Requirements Report Year 3. Technical report, INTO-CPS De-
liverable, D7.7, December 2017.

[WP10] Stefan Winkler and Jens Pilgrim. A survey of traceability in re-
quirements engineering and model-driven development. Software
and Systems Modeling (SoSyM), 9(4):529–565, 2010.

36


	Introduction
	Implementation in the tools
	Schema for the traceability messages
	Traceability Daemon
	Modelio
	Modeling tools
	RT Tester
	INTO-CPS Application

	Querying and Visualisation
	Cypher query language
	Implementation in the INTO-CPS application
	Expert User Queries

	Summary
	Appendices
	Abbreviations
	Traceability Schema v1.5

