
Grant Agreement: 644047

INtegrated TOol chain for model-based design of CPSs

Final Integration of Simulators in the INTO-CPS
Platform

Deliverable Number: D4.3b

Version: 1.0

Date: December 2017

Public Document

http://into-cps.au.dk

D4.3b - Final Integration of Simulators (Public)

Contributors:

Adrian Pop, LIU
Victor Bandur, AU
Kenneth Lausdahl, AU
Casper Thule, AU
Marcel Groothuis, CLP
Tom Bokhove, CLP

Editors:

Marcel Groothuis, CLP

Reviewers:

Carl Gamble, UNEW
Frank Zeyda, UY
Erica Zavaglio, UTRC

Consortium:

Aarhus University AU Newcastle University UNEW
University of York UY Linköping University LIU
Veri�ed Systems International GmbH VSI Controllab Products CLP
ClearSy CLE TWT GmbH TWT
Agro Intelligence AI United Technologies UTRC
Softeam ST

2

D4.3b - Final Integration of Simulators (Public)

Document History

Ver Date Author Description
0.1 05-08-2017 Marcel Groothuis Initial document version
0.2 27-10-2017 Kenneth Lausdahl Updated document structure
0.3 30-10-2017 Kenneth Lausdahl Added initial COE description
0.4 30-10-2017 Casper Thule Updated 2 and 3.1
0.5 03-11-2017 Marcel Groothuis Updated 1, 3.2 and 4
0.6 06-11-2017 Marcel Groothuis Finish text chapter 4 and add

conclusions
0.7 07-11-2017 Marcel Groothuis Add pictures to chapter 4 and

write conclusions
0.8 08-11-2017 Adrian Pop Update the OpenModelica part
0.9 09-11-2017 Marcel Groothuis Last edits for the internal review
0.10 21-11-2017 Kenneth Lausdahl Added Section 2.4 and perfor-

mance data
0.11 22-11-2017 Casper Thule Updated Section 2
0.12 22-11-2017 Casper Thule Updated Section 2 and Appen-

dices A, B and C.
0.13 12-12-2017 Marcel Groothuis Updated abstract, Section 1, 3.2,

4
0.14 14-12-2017 Adrian Pop Updated OpenModelica Section
1.0 15-12-2017 Marcel Groothuis Ready for Review

3

D4.3b - Final Integration of Simulators (Public)

Abstract

This deliverable contains the design speci�cations for integration of simula-
tors (OpenModelica, Overture, 20-sim) and the rapid prototyping tool 20-sim
4C with the Integrated Tool Chain for Model-based Design of Cyber-Physical
Systems (INTO-CPS) co-simulation orchestration engine (COE) at the end
of the project. The integration of the simulation tools into the COE uses the
Functional Mockup Interface (FMI) with INTO-CPS extensions. In the third
year of the project, FMI-based co-simulation has been extended to include
Hardware-In-the-Loop (HIL) simulation support.

4

D4.3b - Final Integration of Simulators (Public)

Contents

1 Introduction 7
1.1 Requirements . 8
1.2 Related Work . 9

2 Co-simulation Orchestration Engine 11
2.1 Client Interface . 13
2.2 Distributed Co-Simulation . 14
2.3 Co-Simulation Performance 15
2.4 Hierarchical Co-Simulation . 16
2.5 Co-Simulation Stability . 18

3 Integration of Simulators 19
3.1 Overture . 19
3.2 20-sim . 20
3.3 OpenModelica . 23

4 HIL-simulation support 25
4.1 Introduction . 25
4.2 20-sim 4C . 25
4.3 Target Platform . 29
4.4 Limitations . 31

5 Conclusions 34
5.1 COE enhancements . 34
5.2 Overture enhancements . 34
5.3 20-sim FMI enhancements . 34
5.4 OpenModelica FMI enhancements 34
5.5 HIL-simulation using FMI . 35
5.6 Requirements . 35
5.7 Future work . 35

A List of Acronyms 40

B Co-simulation Orchestration Engine (COE) Protocol 41
B.1 COE Information . 41
B.2 The API Command . 41
B.3 The Status Command . 41
B.4 The Create Session Command 42
B.5 The Attach Session Command 42
B.6 The Initialize Command . 43

5

D4.3b - Final Integration of Simulators (Public)

B.7 The Simulate Command . 49
B.8 The Stop Simulation Command 50
B.9 The Result Command . 50
B.10 The Destroy Command . 51
B.11 The Reset Command . 51

C COE Variable Stepsize Calculation 51
C.1 Interface with the Master Algorithm 51
C.2 Constraint Types . 52
C.3 Zero Crossing Constraints . 52
C.4 Bounded Di�erence Constraints 57
C.5 Sampling Rate Constraints . 59
C.6 FMU Max Step Size Constraints 60
C.7 Interference between constraint handlers 60
C.8 Logging . 63

D COE Program properties 64

E Performance Test Functional Mock-up Unit (FMU) 65

6

D4.3b - Final Integration of Simulators (Public)

1 Introduction

This deliverable contains the design for the integration of the simulators
OpenModelica, Overture and 20-sim with the co-simulation orchestration
engine (COE) using the FMI 2.0 standard for co-simulation. Next to the
integration of the above mentioned simulators, this deliverable also describes
the integration of HIL simulation in the COE using 20-sim 4C and real-time
targets.

The integrated simulators in this project are:

• OpenModelica [Fri04], https://openmodelica.org

• Overture [LBF+10], http://overturetool.org/

• 20-sim [KGD16], http://www.20sim.com/

The integration of HIL simulation with the COE is done using:

• 20-sim 4C (Rapid prototyping)[Kle13], http://www.20sim4c.com/

• a Raspberry Pi 3 (Embedded computing board) [Ras17], https://
www.raspberrypi.org/

• the Xenomai real-time Linux extension [Xen17], http://xenomai.
org/

This deliverable is a continuation of Deliverable D4.2b [PBLG16] and it de-
scribes the updates that have been developed in the third year of the INTO-
CPS project.

Chapter 2 describes the INTO-CPS Co-simulation Orchestration Engine (COE).
This is a FMI 2.0 compliant master that is used to integrate the above-
mentioned tools. Chapter 3 summarizes the FMI tool support status in
November 2017 with a focus on the INTO-CPS Year 3 improvements and
changes for Overture (Section 3.1), 20-sim (Section 3.2) and OpenModel-
ica (Section 3.3). Further details can be found in the previous deliverables
D4.2b [PBLG16] (Year 2) and D4.1b [PBLG15] (Year 1). Chapter 4 contains
the design and implementation of the new HIL simulation feature. Chapter
5 summarizes the tool enhancements from the �nal year of the INTO-CPS
project.

7

https://openmodelica.org
http://overturetool.org/
http://www.20sim.com/
http://www.20sim4c.com/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
http://xenomai.org/
http://xenomai.org/

D4.3b - Final Integration of Simulators (Public)

1.1 Requirements

The high-level requirements from the INTO-CPS requirements report in de-
liverable D7.7 [LPO+17] with focus on the INTO-CPS Integration of Simu-
lators are presented below for the di�erent baseline tools.

• Requirement 0007 - The COE must be able to monitor the overall
stability of a co-simulation based on the suggested step-size, step-size
tolerance as well as input values (min, max and nominal) of FMUs.
Status 100%: requirement is met.

• Requirement 0008 - The COEmust have algorithms in place to increase
the overall stability of a co-simulation.
Status 100%: requirement is met.

• Requirement 0009 - The OpenModelica tool must provide an INTO-
CPS FMI tool wrapper that is compliant with the COE.
Status 98%: requirement is almost met.

• Requirement 0010 - The 20-sim tool must provide an INTO-CPS FMI
tool wrapper that is compliant with the COE.
Status 100%: requirement is met.

• Requirement 0011 - The Overture tool must provide an INTO-CPS
FMI tool wrapper that is compliant with the COE.
Status 100%: requirement is met.

• Requirement 0042 - It must be possible to generate a HIL con�gured
FMU from an existing 20-sim model FMU using 20-sim 4C.
Status 95%: requirement is almost met; minor �xes are needed to the
import process for source code FMUs from other tools than 20-sim.

8

D4.3b - Final Integration of Simulators (Public)

1.2 Related Work

Several approaches have been proposed in the past dealing with integration
of simulators at di�erent levels:

• Simulator-tool level - the tools are called as slaves by a master (covered
by FMI for Model Exchange);

• Model-export level - the tool can export a model that can be imported
in another tool (covered by FMI for Co-Simulation) and

• Source-code level - the tool can export source code that can be inte-
grated with source code exported from other tools.

At the simulator-tool level several tools (MSC. Adams, OpenModelica, etc)
were integrated using co-simulation within the SKF BEAST tool [SNF05],
[Sie10]. Also integration of Overture and 20-sim has been achieved [GMF12]
before in the DESTECS [DES09], [LRV+11] EU project at the simulator
tool-level.

At the model-export level, for example, 20-sim can export Matlab S-functions.
Similarly, 20-sim can import external model equations as precompiled DLL
using its built-in dlldynamic() function [KGD16].

At the source-code level, 20-sim is able to generate C-code and C++-code
based on templates that enables it to embed the code in a bigger frame-
work. Please see deliverable D5.1d � Design Principles for Code Generators
[HLG+15] for related work into integration at the source-code level.

In this project the integration is performed at model-export level where mod-
els are exported from tools as FMUs for co-simulation based on the FMI
2.0 standard. The exported FMUs can then be co-simulated using the
COE.

Model export is realized in this project in the following tools:

• Overture: FMI 2.0 co-simulation toolwrapper FMU and FMI 2.0 co-
simulation standalone/source code FMU;

• OpenModelica: FMI 1.0/2.0 model exchange and co-simulation FMU
with source code;

• 20-sim: FMI 2.0 co-simulation toolwrapper FMU and FMI 2.0 co-
simulation standalone/source code FMU;

• 20-sim 4C: FMI 2.0 co-simulation toolwrapper FMU and

9

D4.3b - Final Integration of Simulators (Public)

• RTTester: Test Automation module export as FMI 2.0 co-simulation
FMU. Details for RTTester can be found in Deliverables D5.2a and
D5.2b [PLM16, BLM16].

Model-import (FMI 2.0 master) is realized in this project in the following
tools:

• The COE (INTO-CPS Co-simulation Orchestration Engine);

• OpenModelica (FMI 2.0 FMU import);

• 20-sim (FMI 2.0 co-simulation FMU import) and

• 20-sim 4C (FMI 2.0 co-simulation FMU import; source code FMUs
only; for HIL-simulation purposes).

Related tools that implement FMI compliant model-import and model-export
features can be found on the FMI standard website [Blo14].

In year 3, 20-sim 4C has been extended with source code FMU import sup-
port with the goal to run FMUs in real-time on embedded targets with
the possiblity to do HIL-simulation experiments. Related work on running
FMUs in real-time for HIL-simulation is done by dSPACE for its VEOS and
SCALEXIO platforms [dSP17].

10

D4.3b - Final Integration of Simulators (Public)

2 Co-simulation Orchestration Engine

The Co-simulation Orchestration Engine (COE) [TLL18] is a fully Functional
Mock-up Interface (FMI) 2.0 co-simulation compliant Master supporting
both �xed and variable step size simulations. The COE is designed as a
simulation service provider as described in Section 2.1 and is one of the FMI
Masters available on the most platforms and architectures1. Not only does it
support the major platforms, it is also capable of supporting distributed co-
simulations with combinations of platform and architecture speci�c FMUs
as described in Section 2.2. It has been used with FMUs exported from
Overture, 20-sim, OpenModelica, Dymola, Modelon, SimulationX, 4Diac etc.
[PLS+17, OLF+17, NZL+17, Tec16, Con13]2. Furthermore, the COE also
supports parallel execution to reduce overall simulation time of demanding
co-simulations both on consumer computers and high performance clusters
as described in Section 2.3. While some simulation scenarios bene�t from in-
creased simulation speed other cases do not, for example, cases where hard-
ware is in the loop and requires that a simulation does not execute faster
than real-time. This is the case for instance when using the COE in combi-
nation with Real-Time Operating Systems (RTOSs) as a Hardware-In-the-
Loop (HIL)-simulation. To support this, a delay is performed if a step com-
pletes faster than the speci�ed step size related to Wall-clock Time (WCT),
which in this case is given in seconds.

In Section 2.4 an approach is described that enabled sub-systems to be en-
capsulated as an FMU, and an approach that can reduce simulation time
when using models that require di�erent step sizes.

The FMI Master supports both �xed and variable step size. A co-simulation
con�gured to use �xed step size will progress using �xed steps as long as no
FMUs fail. If a FMU fails, then a recovery algorithm attempts to resolve the
issue, and during this recovery, an alternate step size may be taken before the
entire simulation either fails or continues with the previously determined �xed
step size. A co-simulation con�gured for variable step size will progress with
a step size that is restricted initially only by the end time of the simulation
but may be further restricted by the following constraints:

Zero Crossing: A zero crossing constraint is a continuous constraint. A
zero crossing occurs at the point where the value of a function changes
its sign. In simulation, it can be important to adjust the step size such

1See http://fmi-standard.org/tools/ for tool availability.
2See http://fmi-standard.org/tools/ for FMI Cross Check Results.

11

http://fmi-standard.org/tools/
http://fmi-standard.org/tools/

D4.3b - Final Integration of Simulators (Public)

that a zero crossing is revealed as accurately as possible. For instance, a
ball should rebound from a wall exactly when the distance between the
ball and the wall hits zero and not before or after. A solver in a tool such
as Simulink can adjust the step size using iterative approaches, but in
a co-simulation, a roll-back of the participating models' internal states
would be required. This, however, is in general not possible or e�cient.
Hence the variable step size calculator bases its step size adjustments
on the prediction of a future zero crossing. It uses extrapolation and
derivative estimation to estimate changes and therefore reduce the need
for roll-back.

Bounded Di�erence: A bounded di�erence constraint is also a continuous
constraint. It ensures that the minimal and maximal value of a set of
values do not di�er by more than a speci�ed amount (the underlying
assumption is that this di�erence becomes smaller when the step size
is reduced). The bounded di�erence problem is distinguished from the
zero-crossing problem in that there is not a speci�c time instant (the
zero crossing) to hit, but rather a speci�c time di�erence (the step size
that keeps the di�erence bounded).

Sampling Rate: A sampling rate constraint is a discrete constraint. It
constrains the step size such that repetitive, prede�ned time instants
are exactly hit. This can be useful in co-simulation, for instance, when
a modelled control unit reads a sensor value every x milliseconds.

FMU Max Step Size: This constraint implements the getMaxStepSize
method from [BBG+13, CLB+16] providing a prediction of the maxi-
mal step size that a given FMU instance can perform at a given point
in time. It limits the need to roll back a simulation, because each FMU
participates in deciding the step size, and therefore all of them are ca-
pable of performing the determined step size. It is enabled by default
and it constrains the step size as follows:

size = min({getMaxStepSize(i) | ∀i ∈ instances})

As previously described in Deliverable 4.2b [PBLG16], stability is an impor-
tant aspect of any simulation both for the detection and ability to handle
otherwise unstable co-simulations. The COE has the ability to detect some
cases that may lead to an unstable model. In Year 3 it has also been up-
graded to handle some models that it previously could not simulate because
the model became unstable. Further detail on the stabilization techniques
are described in Section 2.5 and in the Mass Spring Damper example i De-
liverable D3.6 [MGP+17].

12

D4.3b - Final Integration of Simulators (Public)

2.1 Client Interface

The COE is designed as a simulation service without any user interface.
Its initial design was explained in detail in Deliverable D4.1d [LLW+15].
The Application Programming Interface (API) consists of JavaScript Object
Notation (JSON) over Hypertext Transfer Protocol (HTTP) for simulation
control and Web-sockets for live simulation progress information as shown in
Figure 1.

COE

INTO-CPS Application

JSON over HTTP

Web-sockets

Figure 1: INTO-CPS Application interaction with the COE

To perform a co-simulation, a user can use a front-end user interface like
the INTO-CPS Application, which can be used to create the con�gurations
required by the COE and perform co-simulations. The INTO-CPS Appli-
cation then creates a session for the given co-simulation in the COE and
sends the con�guration data to the COE. The COE then processes the
con�guration and informs of any issues using HTTP response. A detailed

13

D4.3b - Final Integration of Simulators (Public)

description of the con�guration can be found in Appendix B, Appendix C,
and Appendix D.

The recent versions of the COE (0.2.16 and newer) enable the user to specify
which FMU scalar variables should be included in the simulation result. Ad-
ditionally, it also enables the user to create any number of graphs combining
any output or local scalar variable from the FMUs in the co-simulation. To
maintain performance, a �lter can be enabled that reduces the frequency of
data transmitted to the graphs, which is important for simulations with very
small step sizes, where the graphs are only used to obtain an overview of
the system behaviour. The graphs are also con�gurable to allow a �oating
time window view of the system, which is useful for long-running simulations.
Simulation results are una�ected by these �lters and always contain all data
points generated in the co-simulation, thereby allowing post analysis.

2.2 Distributed Co-Simulation

The FMI standard enables models to be shared as FMUs, but in practice
this only works if all FMUs taking part in a simulation support the same
combination of platform and architecture. This limits the ways these FMUs
can be shared. For example, an FMU exported as Windows 32-bit cannot
be used in a co-simulation where another FMU only supports Windows 64-
bit. The same limitation applies if the platform is di�erent, which was the
case in [PLS+17], where a control system was developed for a Water Handling
System (WHS). The system was used to clean the exhaust gas using Exhaust
Gas Recirculation (EGR) for a large two-stroke maritime combustion engine.
The physical model was developed in MATLAB 64 bit for Windows and the
control system was developed in an internal framework for Linux 32 bit with
full support for HIL simulation.

To overcome the challenge of mixed platforms and architectures, a custom
plug-in was developed for the COE. This solved both the platform and archi-
tecture issue and improved performance for some system architectures3. The
plug-in implements a distributed factory that enable FMU instances to be
relocated to remote simulation daemons, which then perform the simulation
as shown in Figure 2. The communication is carried out using Java Remote
Method Invocation (Java RMI) and therefore a performance gain can only be
achieved if the added communication overhead is outweighed by the bene�t

3Performance increase could be seen for architectures with less cores than the amount

of work to be performed.

14

D4.3b - Final Integration of Simulators (Public)

COE

Factory

FMU

*.fmu

Distributed Factory

Proxy FMU

Host 1

Daemon

FMU

*.fmu

Host 2

Transferred

Figure 2: Distributed Extension Overview

from utilizing the extra resources on the remote host.

2.3 Co-Simulation Performance

It is always desirable to reduce the time it takes to perform a co-simulation,
especially when searching the design space for optimal combinations as de-
scribed in [Gam17]. Therefore the COE is designed to be capable of utilizing
all system cores available for the inherent parallel operations of co-simulation.
Depending on the con�guration of the COE, the following operations are ex-
ecuted in parallel: setX, doStep, and getX for all instances of all FMUs
that are part of a given co-simulation.

Initial exploratory research was carried out in [TL16], which indicated that
not all simulations bene�t from completely concurrent execution and that it
is highly dependent on the number of FMUs, the number of instances and the
time taken to perform doStep on each FMU instance. However, our inter-
nal tests have shown that there are signi�cant performance improvements for
some systems. Table 1 shows the test results of simulations using standard
(std.) settings and parallel (par.) execution. The used FMUs are written in
the Modelica language and exported using Dymola, see Appendix E for the
full model. It performs intensive computation and it was required, that the
computation was carried out such that it could not be removed by optimiza-
tion. The nLoop parameter is used to adjust the internal computation of the
FMUs.

It can be seen from Table 1 that the simulation speed is reduced to about
40% when the parallel execution is enabled, which is expected for this type
of simulation with high load and few connections.

15

D4.3b - Final Integration of Simulators (Public)

Init Sim Avg. CPU Total Avg. Total
5 FMU, Sim: 10s, Step: 1s (�x), nLoop = 10M

Std. 19.384 1497.871 25-50 1517.255 1517.26
Par. 19.421 641.031 100 660.452 660.45
Relative Di�erence -56 %

10 FMU, Sim: 10s, Step: 1s (�x), nLoop = 10M

Std.
46.933 3030

25-50
3076.957

3075.67
55.718 3018.665 3074.383

Par.
40 1097

100
1137

1164.25
47.089 1144.411 1191.5

Relative Di�erence -62 %
15 FMU, Sim: 10s, Step: 1s (�x), nLoop = 1M

Std.
5.988 450.19

25-50
456.178

474.896.749 480.992 487.741
6.914 473.835 480.749

Par.
5.83 159.72

100
165.55

168.197.004 161.604 168.608
6.897 163.509 170.406

Relative Di�erence -65 %

Table 1: Performance Time Measurements.

While the COE, is designed as a service it can also be executed as a one-shot
simulation from a Command-line Interface (CLI), which has proven useful
in Design Space Exploration (DSE) scenarios [GMB17] where large clusters
have been used to perform scheduled simulations on cluster nodes.

2.4 Hierarchical Co-Simulation

The FMI standard provides a convenient way to share and encapsulate mod-
els, however it does not specify how full modularization can be achieved for
a sub-system. To exemplify this, the Water Treatment System (WTS) from
[PLS+17] is used. The system developed by the company MAN Diesel re-
duces emissions using EGR. As part of this system, MAN Diesel buys a
sub-system called WHS from another company, which then buys most of the
sub-system components from third-parties. This means, that the company
producing the WHS can use FMI to model the component they sell to be
used as a sub-system in another product. They can make use of any FMUs
provided from their third-party suppliers and perform co-simulation. How-
ever, they can not produce an FMU for the complete WHS product based

16

D4.3b - Final Integration of Simulators (Public)

on their co-simulation because there is no straightforward way to share and
encapsulate co-simulation scenarios containing simulation settings and con-
nections between the FMUs. It can be time-consuming and challenging to
con�gure such a co-simulation scenario for the end-customer, and therefore
it is desireable to provide a means to encapsulate and share co-simulation
scenarios, such that they can be utilized as a component in another co-
simulation.

Based on the case mentioned above the COE has been extended with an
FMU interface allowing it to act as the executable part of an FMU, which
thereby makes the FMU a fully con�gured co-simulation. This is exempli�ed
in a general setting in Figure 3. The approach taken is that a co-simulation
con�guration in the INTO-CPS Application can be imploded into an hier-
archical FMU. This hierachical FMU includes the FMUs that are part of
the co-simulation con�guration, the COE and the required con�gurations to
perform the internal co-simulation. The hierarchical FMU has the union of
all inputs of the internal FMUs that are not internally connected and the
union of all outputs of the internal FMUs. This approach enables the user
to con�gure a sub-system and, once satis�ed, simply remove the sub-system
driver and implode the simulation, which generates a new hierarchical FMU.
This new hierarchical FMU can be used as any other FMU in future simu-
lations. Another potential gain is a performance enhancement, which may
apply when the sub-system performs smaller steps than the simulation it is
being used in. This allows parts of the co-simulation to take fewer but larger
steps, which is faster than all components taking many small steps.

Figure 3: Example of an FMU C connected with a hierarchical FMU con-
taining two FMUs: A and B

17

D4.3b - Final Integration of Simulators (Public)

2.5 Co-Simulation Stability

To support co-simulation for a greater range of models, a number of improve-
ments were added to the COE in Year 3 to not only improve stability in
forms of detection but also to attempt to overcome stability challenges. This
is based on [PBLG16], and directly related to the two requirements:

• Requirement 0007 - The COE must be able to monitor the overall
stability of a co-simulation based on the suggested step-size, step-size
tolerance as well as input values (min, max and nominal) of FMUs.

• Requirement 0008 - The COEmust have algorithms in place to increase
the overall stability of a co-simulation.

The COE issues warnings if a bound is speci�ed for a scalar variable and it
is violated. This takes place when the variable is retrieved from the FMU in-
stance through the FMI function getX, or when a value is set using setX. A
more advanced technique to overcome stability challenges is to use successive
substitution. This enables models with cyclic dependencies to be simulated
because it will attempt to stabilize the system by repeating a given step until
the signals are close enough in relation to the tolerances speci�ed. A simu-
lation with stabilization enabled will be slower than a standard simulation.
This is because the FMU instances that support rollback will be rolled-back
every step and attempt to take the same step again, but this time with the
values obtained from the previous step. If the signal values are not within
a de�ned tolerance of the previous signal values, then another step and roll-
back will be performed until they either stabilize or the maximum number4

of stabilization steps is reached. A mass spring damper example is shown
in Deliverable D1.3a [OLF+17] and Deliverable D3.6 [MGP+17], which can
be simulated with stabilization enabled in the COE. This model has cyclic
dependencies and is unstable if simulated without stabilization enabled.

4The default bound on the stabilization is 5 steps.

18

D4.3b - Final Integration of Simulators (Public)

3 Integration of Simulators

Integration of simulators in the INTO-CPS COE is achieved via the FMI
2.0 standard for co-simulation. Each of the simulators has implemented
support for the FMI 2.0 standard. The next sections summarize the FMI
2.0 for co-simulation support and features of each simulator. Section 3.1
describes Overture, Section 3.2 describes 20-sim and Section 3.3 describes
OpenModelica.

3.1 Overture

Years 1 and 2 of the INTO-CPS project saw the development of FMI support
for Overture, including a tool-wrapper FMU exporter, as detailed in the Year
2 version of this document, Deliverable D4.2b [PBLG16]. Year 3 focused on
FMI support in Overture toward deployment to hardware and toward HIL-
simulation. This is achieved through standalone FMU export.

Unlike tool-wrapper FMUs, which contain a combination of simulation tool
and model, standalone FMUs contain code generated from the model with
Overture's C code generator, VDM2C [BHPG16]. The code is compiled
for Windows, Mac and Linux platforms as static libraries. The generated
code is generic, in the sense that it is intended for deployment outside an
FMI setting, but it is specialized by Overture's FMU exporter using wrapper
code that provides the FMI interface.

The FMI wrapper code contains two main features. First, communication
between the COE and the generated code is achieved via bu�er variables.
When the COE needs to write updated inputs to the FMU, it does so by
writing directly into the bu�er variables. Internally, the FMU reads these
bu�ers and forwards the values to the model code. After an invocation of
doStep, the wrapper code synchronizes the recalculated model variables
back with the bu�er variables, which are then read by the COE. Second, the
wrapper code implements both �xed and variable step-size co-simulation.
For a given step size requested by the COE, the thread execution mechanism
determines how many times each of the threads of the FMU can be executed,
based on their declared period values. Those threads which �t an integral
number of times in the step duration are executed the corresponding number
of times, and the output of their execution is made visible to the COE. Those
threads whose period is such that it either does not �t inside one step, or
does not �t inside a step an integral number of times, are executed, but their

19

D4.3b - Final Integration of Simulators (Public)

outputs are only made available to the COE once an execution duration
�nishes inside a given step. For instance, a thread with a period of 3 will
execute when doStep is called with a step size of 2, but its outputs will be
made available to the COE only at the end of the second call to doStep.
This can be viewed as a form of hysteresis in the output values in such
cases.

In order to make the generated code compatible with many embedded hard-
ware platforms, the generated C code is compliant with the C89 standard.

3.2 20-sim

3.2.1 Introduction

20-sim is a modeling and simulation program for mechatronic systems and
control engineering on the Windows operating system. With 20-sim, multi-
domain dynamic models can be analyzed in the time and frequency domain
for modeling and control purposes. For rapid prototyping and HIL-simulation
purposes, C-code generation support is available using C-code templates for
various C-code objectives.

With respect to simulation, 20-sim supports continuous time simulations,
discrete time simulations and hybrid simulations. For variable step-size in-
tegration method support, simulation back-stepping is available, but not for
discrete time systems. External interfacing to 20-sim is available using script-
ing (XML-RPC), custom DLL functionality and CSV �le variables.

3.2.2 FMI Support

20-sim has tool support for both import and export of FMI:

Import FMU import is supported in the following ways:

Interface De�nition An FMI modelDescription.xml can be im-
ported into 20-sim. This results in an empty 20-sim block with
the corresponding FMI interface. After adding the wanted model
implementation, it can be exported again as an FMU.

Co-simulation 20-sim can import an existing FMI 2.0 co-simulation

20

D4.3b - Final Integration of Simulators (Public)

FMU as a 20-sim block. 20-sim then acts as an FMI master sim-
ulator.

Export FMU export is supported in the following ways:

Tool Wrapper The 20-sim simulator has a built-in co-simulation fea-
ture based on XML-RPC calls. A tool wrapper FMU was devel-
oped for INTO-CPS in Year 2 that uses this interface to allow an
FMI co-simulation with a 20-sim model running inside the 20-sim
simulator. The FMU itself acts as an FMI wrapper for the existing
XML-RPC co-simulation interface.

Standalone FMU export for FMI 1.0 and FMI 2.0 Co-Simulation is
supported in 20-sim since version 4.6. The FMU export template
is based on the platform-independent, standalone, ANSI-C source
code template included in 20-sim. In contrast to the tool wrapper
FMU, this FMU type has no dependencies on the 20-sim tool.
FMI 2.0 ModelExchange is not supported.

3D Animation 20-sim can export an existing 20-sim 3D animation as
visualization FMU. This special type of FMU does not contain any
model, but instead it shows a 3D animation window. This FMU
only has inputs, and thus no outputs. Furthermore, this type of
FMU is currently only supported on the Windows platform (32-bit
and 64-bit).

Year 3 updates to the 20-sim FMI support are:

• A new cross-platform FMI visualization solution based on Unity [Tec16]
has been developed in year 3 that can replace the above-mentioned
Windows only 3D animation FMU. To make it easier to move to Unity,
a translation tool from the 20-sim 3D animation format to a Unity scene
has been developed. This allows for a largely automated conversion
from an existing 20-sim 3D animation scenery to a Unity visualization.

• Time-event and frequency event support for standalone FMU export
has been added.

• The standalone FMUs are now compatible with dSPACE VEOS.

• Vode-Adams variable step-size method support has been improved for
interaction with an FMI variable step-size co-simulation algorithm.

• Support for storing and restoring the FMU state has been added. This
allows for restarting a co-simulation from a particular moment in time.
It can be used for rollback purposes in a co-simulation when one of the

21

D4.3b - Final Integration of Simulators (Public)

other FMUs could not take the proposed step selected by the master
algorithm. When all other FMUs support restoring a previous state,
the master algorithm can retry with a di�erent step size.

• Various bug�xes and improvements based on user feedback and FMI-
crosscheck results.

3.2.3 Mapping between 20-sim and FMI

20-sim 4.6 supports FMU model export using a dedicated C-code generation
template (standalone FMU). The mapping from a submodel in 20-sim to an
FMI description is a one-to-one translation of the sorted model equations to
the corresponding ANSI-C code lines. The FMU code generation template
adds an FMI 1.0 or 2.0 co-simulation interface around the generated code.
Detailed information on the 20-sim code generation process can be found in
deliverable D5.1d [HLG+15].

All 20-sim model inputs and outputs are mapped to FMI input and output
variables. 20-sim parameters are mapped to FMI parameters and all 20-
sim variables are mapped to FMI scalar variables. Matrices and vectors
are �attened to a list of FMI scalar variables following the FMI structured
naming convention [Blo14]. All 20-sim variables are accessible from the FMI
interface. 20-sim C-code generation only supports variables of type double.
This means that the available 20-sim types integer and boolean will also be
converted to type double in the generated code. In the FMU interface, the
original type as speci�ed in the 20-sim model is used, which means that the
FMI variable set and get functions will do a conversion to and from double
values internally.

Unimplemented FMI Functionality Only co-simulation FMI is sup-
ported. Model exchange FMI will not be supported in 20-sim within the
scope of the INTO-CPS project. An overview of the FMI functions that are
not implemented is listed in Table 2.

3.2.4 Additional Simulator Capabilities

Tool Wrapper Approach Instead of implementing the model internally
in the FMU, the FMU can also interact with a running instance of the 20-
sim simulator tool. This is called the tool wrapper approach. The tool
wrapper approach has the advantage that the co-simulated (sub)model can

22

D4.3b - Final Integration of Simulators (Public)

FMI 1.0 FMI 2.0

fmiGetString fmi2GetString
fmiGetStringStatus fmi2GetStringStatus
fmiSetString fmi2SetString
fmiGetRealInputDerivatives fmi2GetRealInputDerivatives
fmiSetRealInputDerivatives fmi2SetRealInputDerivatives
fmiGetRealOutputDerivatives fmi2GetRealOutputDerivatives

fmi2SerializedFMUstateSize
fmi2SerializeFMUstate
fmi2DeSerializeFMUstate
fmi2GetDirectionalDerivative

Table 2: FMI functions currently not implemented

be inspected from within 20-sim itself. Also, results of a co-simulation can be
inspected in 20-sim. After the co-simulation has �nished, the FMU will close
the connection with the tool, but the simulation results can still be inspected
within 20-sim.

External Monitoring To inspect the progress of a 20-sim simulation by an
external application, 20-sim has been extended with functionality to transfer
large data sets of the most recent simulation data on request. This so-called
monitoring extension has been written speci�cally for the INTO-CPS project.
This means that an external tool can register a list of monitor variables in
20-sim. During simulation, the external application can retrieve the values
for these registered variables. The monitoring action itself does not interrupt
the simulation in 20-sim. One application of this monitoring functionality is
to pass 20-sim data to software that can visualise this data in a 3D scenery.
A connection to Unity [Tec16] (a game engine) is setup to animate a 3D-
scenery based on variables obtained from 20-sim. Unity can make visually
appealing sceneries, and the visualisation can be done on multiple operating
systems. This enables distributed visualisation on separate computers. This
can be used for training simulator purposes, for example. The interface is
built upon the XML-RPC interface, which enables other tools to use the
monitoring functionality for their own purposes.

3.3 OpenModelica

OpenModelica [Fri04] is an open-source Modelica-based modeling and sim-
ulation environment. Modelica [FE98] is an object-oriented, equation-based

23

D4.3b - Final Integration of Simulators (Public)

FMI 1.0 FMI 2.0

fmi2GetFMUstate
fmi2SetFMUstate
fmi2FreeFMUstate
fmi2SerializedFMUstateSize
fmi2SerializeFMUstate
fmi2DeSerializeFMUstate

Table 3: FMI functions currently not implemented

language to conveniently model complex physical systems containing, e.g.,
mechanical, electrical, electronic, hydraulic, thermal, control, electric power
or process-oriented subcomponents. The Modelica language (and OpenMod-
elica) supports continuous, discrete and hybrid time simulations. OpenMod-
elica always compiles Modelica models into FMU, C or C++ code for simu-
lation. OpenModelica supports Windows, Linux and Mac Os X.

OpenModelica has support for static and dynamic debugging of Modelica
models [PSA+14]. Static debugging helps the user understand how his model
has been optimized and solved by the compiler via an equation browser.
Dynamic debugging is currently available for algorithmic Modelica code and
supports breakpoint-based debugging.

3.3.1 FMI Support

OpenModelica supports FMI 1.0 for model-exchange import and export and
FMI 2.0 export and import both for model-exchange and co-simulation.
In Year 3 the focus was on making the FMI export more stable and �x
issues found during usage (errors in dependencies inside model structure,
setting of discrete inputs, default nominal attributes, missing values of �-
nal parameters, missing dependent dlls, etc.) . Support for analytic ja-
cobians via fmi*GetReal*Derivatives has been implemented and is
being tested.

An overview of the FMI functions that are not implemented is listed in
Table 3. All the other functions that are given in the FMI standard are
implemented.

24

D4.3b - Final Integration of Simulators (Public)

4 HIL-simulation support

4.1 Introduction

One of the goals in Year 3 for the INTO-CPS project was to extend the
FMI co-simulation usage towards partially running on real hardware. This
is also known as Hardware-In-the-Loop (HIL) simulation. A HIL-simulation
experiment is a variant of a co-simulation experiment in which one or more
parts (e.g. models) run on real hardware. To achieve this goal, CLP has
extended 20-sim 4C to import source code FMUs to allow running them on
real hardware. To perform HIL-simulations with an FMU running on the
real hardware, a special tool-wrapper FMU has been developed that acts
as a communication link between the COE and the FMU running on the
Raspberry Pi. This addresses INTO-CPS requirement 0042.

This chapter describes the implementation details for running FMUs in real-
time as standalone tasks or as part of a HIL-simulation. Section 4.2 describes
the extension of 20-sim 4C that allows for importing FMUs and running
them on real hardware. Section 4.3 describes the selected hardware tar-
get for demonstrating HIL-simulation with 20-sim 4C. HIL-simulation puts
particular demands on the used models, FMUs and the communication pro-
tocol. This chapter concludes in Section 4.4 with a summary of guidelines
and limitations for the current HIL implementation.

4.2 20-sim 4C

4.2.1 Purpose

20-sim 4C is a rapid-prototyping environment that enables you to run models
(generated as ANSI-C-code) on various targets like PCs, Bachmann PLCs
and various embedded boards. 20-sim 4C can be used for:

• Measurement and Calibration: Run models that read sensors;

• Machine Control: Run models to control the operation of machines;

• Rapid Prototyping: Start and stop the model; change parameters
during run-time; monitor signals during run-time; log signals for o�-
line analysis and import the log data back in 20-sim to �netune the
model.

25

D4.3b - Final Integration of Simulators (Public)

20-sim 4C can import generated C-code from multiple sources:

1. 20-sim

2. Matlab Simulink

3. Scilab/Xcos

4. FMI 2.0 co-simulation source code FMU (Year 3 INTO-CPS addition)

The next section focusses on Item 4, the FMI 2.0 import extension.

4.2.2 FMI 2.0 Import

The input for 20-sim 4C is a set of ANSI-C source �les, together with an
XML-�le that describes the model con�guration. This model con�guration
contains a description of the inputs, outputs, variables and parameters con-
tained in the source code.

The implemented steps to import an FMU are:

1. Extract the FMU

2. Check for a valid FMU (FMI 2.0 Co-Simulation with source code)

3. Generate a 20-sim 4C compatible XML model con�guration �le from
the FMI model description

4. Generate 20-sim 4C project

5. Open 20-sim 4C project

The result is a 20-sim 4C project that can be further con�gured for a speci�c
target. This process is shown at the top in Figure 4. See also [BLL+17]
(Section 5.3) for the corresponding FMU import manual.

4.2.3 Running an FMU in real-time with I/O

The next steps to get the FMU running in real-time on a target are the
20-sim 4C steps:

• Con�gure: Select a target and discover it on the network.

• Connect: Connect FMU inputs and outputs to target I/O (e.g. AD/DA
converters, digital I/O etc.) and extend the FMU code.

26

D4.3b - Final Integration of Simulators (Public)

Figure 4: Steps to run a source code FMU in real-time

• Compile: Combines and compiles code from various sources to a target
executable. The combined code consists of:

� FMU source code;

� 20-sim 4C FMI wrapper;

� connection code (connects FMU inputs/outputs to I/O);

� real-time task framework (operating system speci�c code);

� board support code (board initialization/cleanup) and

� I/O driver code.

• Command: Con�gure task timing settings, upload the target exe-
cutable and start the model task

This process is shown in the orange box at the bottom of Figure 4. The
result of these steps is a running FMU on the target (see also Figure 5).

27

D4.3b - Final Integration of Simulators (Public)

Figure 5: 20-sim 4C running an imported CoupledClutches FMU on a Rasp-
berry Pi 3.

The above-mentioned 20-sim 4C FMI wrapper implements an FMI 2.0 co-
simulation master algorithm. Both the co-simulation master and the co-
simulation slave (FMU) are combined in a single executable to be able to
run a single FMU as standalone program.

4.2.4 HIL-simulation support

The result of the previous section is a real-time FMU running on a tar-
get. Doing a HIL-simulation requires a connection between our real-time
FMU and a simulation environment. The simulation environment here is the
INTO-CPS COE co-simulating one or more FMUs on a PC. This connection
has been realized by means of a special real-time tool-wrapper FMU. 20-sim
4C has been extended with a tool-wrapper export function that generates
this real-time tool-wrapper FMU for the selected model and target.

28

D4.3b - Final Integration of Simulators (Public)

This tool-wrapper FMU has multiple goals:

1. It provides a standard FMI 2.0 co-simulation interface for importing in
the COE and other FMI 2.0 co-simulation engines;

2. It provides an XML-RPC communication interface between the PC and
the real-time target;

3. It sends FMU inputs to target inputs;

4. It receives FMU outputs from target outpus;

5. It allows for run-time parameter updates (tunable parameters) for the
real-time FMU and

6. It provides real-time synchronization (wall-clock sync).

With this tool-wrapper FMU, one can set-up a HIL-simulation experiment
as depicted in Figure 6.

Figure 6: HIL simulation on the Raspberry Pi 3

4.3 Target Platform

The above-mentioned FMI extension for 20-sim 4C allows in principle to run
FMUs on all target platforms supported by 20-sim 4C (Bachmann PLCs, in-
dustrial PCs and various embedded boards). The selected hardware platform
for running FMUs in real-time for INTO-CPS is a Raspberry Pi 3 [Ras17]
running Xenomai real-time Linux [Xen17].

29

D4.3b - Final Integration of Simulators (Public)

4.3.1 Raspberry Pi 3

The selected target platform for running FMU is the Raspberry Pi [Ras17].
The Raspberry Pi boards are small, a�ordable and powerful embedded ARM
boards suitable for educational, hobby and (small) industrial projects. The
Raspberry Pi is a good compromise between a small embedded microcon-
troller like the Arduino (AVR) and a full scale x86/x64-based (industial)
PC. The Raspberry Pi provides on-board digital I/O, PWM outputs and
serial buses like uart, SPI and i2c. Other I/O can be connected via the avail-
able serial buses. The Raspbery Pi boards provide at least 256 MB of RAM,
which allows us to log many FMU and I/O signals simultaneously for o�ine
analysis later on.

4.3.2 Xenomai Real-time Linux

Several �avors of real-time Linux exist with di�erent features and di�erent
timing accuracies. We have selected the Xenomai 2.6 real-time framework
[Xen17] as real-time extension for the mainline Linux kernel. Xenomai is
suitable for running industrial applications with stringent response time re-
quirements alongside regular Linux applications. Xenomai is based on a dual
kernel approach with a nano-kernel called ADEOS running next to a patched
Linux kernel. The regular Linux kernel is patched with an interrupt pipeline
(I-pipe) that can reroute hardware interrupts to the real-time part. In this
way, real-time applications can get the interrupts (including timers) �rst,
giving them a higher priority than the entire Linux system. This assures
predictable and stable task response times. For a Xenomai task with a fre-
quency of 1000 Hz, we have measured on the Raspberry Pi 3 a jitter on the
task start time of only 7µs (0.7% of the task period). This was measured
by means of toggling a digital output pin and measuring the jitter on an
oscilloscope.

The Xenomai patches for the Linux kernel are available for several hardware
architectures like x86, x64 and ARM. Support for ARM is available for a
limited set of boards (like the Raspberry Pi 1, 2 and 3) because all dedicated
board support packages need a patched interrupt pipeline.

4.3.3 20-sim 4C support

To make the Raspberry Pi suitable for 20-sim 4C usage and HIL-simulation,
Controllab has created a dedicated SD-card image with a modi�ed version

30

D4.3b - Final Integration of Simulators (Public)

of the default Raspbian Linux installation [Ras17] using a Xenomai-patched
kernel. Furthermore, the installation is extended with two daemon applica-
tions:

• Controllab Discovery daemon: allows 20-sim 4C to discover the board
on the network;

• Controllab XML-RPC daemon: provides an XML-RPC scripting inter-
face that provides functions for:

� uploading tasks and related �les;

� starting real-time tasks;

� modifying parameters;

� monitoring and logging of I/O signals and task variables and

� HIL-simulation (write unconnected inputs/read outputs).

4.4 Limitations

4.4.1 Models and FMUs

HIL-simulations require that the selected models can run in real-time, since
part of the co-simulation experiment is running in real-time on real hardware.
This limits the time budget for calculating the FMU using the fmi2DoStep()
function.

A simple guideline for the models and their FMUs (INTO-CPS requirement
0084) is that they should be able to be calculated faster than real-time
on the selected target (Raspberry Pi 3) for all FMU steps. This is easy
to test for �xed step-size FMUs by running the FMU standalone with 20-
sim 4C on the target. If the reported FMU simulation time in 20-sim 4C
is progressing slower than the wall-clock time, the FMU is not suitable for
real-time experiments on the selected target.

Note 1: Variable step-size FMUs are supported, but their internal calcu-
lation step-size varies based on the dynamic behaviour of the model. This
means that the amount of steps per second is not constant and therefore it
is not possible to guarantee that all FMU steps can be calculated within a
�xed time slot. It is therefore better to avoid them in a real-time setting
when possible. If a variable step-size FMU is required, you should carefully
check the timing of the running FMU.

31

D4.3b - Final Integration of Simulators (Public)

Note 2: First tests from Controllab with source code FMUs generated by
various other tools like OpenModelica, Overture, Dymola, Catia, dSpace and
Maplesim show that the compile phase is the most troublesome phase. The
FMI 2.0 standard does not specify in detail how to compile a source code
FMU and it turns out that this freedom given by the standard gives mixed
results across tool vendors. Some test FMUs are incomplete (OpenModel-
ica 1.12 release; not all required sources are embedded and sources are not
mentioned in the modelDescription.xml) while others contain a manual that
describes how to compile the FMU. This makes a fully automated process
from FMU to a running task on a real-time target hard. At this point, the
FMI standard should be improved in the future. Source code test FMUs
generated from 20-sim, Overture, Dymola, Catia and MapleSim have been
tested succesfully. For OpenModelica changes are needed for their FMU
export proces to allow compilation without Make�le. The OpenModelica
team is working on a �x to allow a succesful 20-sim 4C import and compile
process.

4.4.2 FMI co-simulation engines

Most FMI co-simulation engines, amongst others the INTO-CPS COE are
not written with real-time simulation in mind. As a consequence, strict
timing guaranties for hard-real-time HIL-simulation cannot be given. The
best that can be achieved at this moment is soft-real-time HIL-simulation
(best e�ort real-time). Similar to the limited time budget for FMU step
calculation on the real-time target, the PC-side of the HIL-simulation also
should simulate in real-time. This means that each individual FMU should
calculate faster than real-time. The 20-sim 4C tool wrapper FMU will then
limit the calculation frequency of the entire co-simulation experiment to real-
time.

4.4.3 Communication protocol

The 20-sim 4C target communication protocol (XML-RPC) is not optimized
for HIL-simulation purposes. It is designed for rapid prototyping with signal
monitoring and incidental parameter changes as goals. Monitored signals
are bu�ered at the target for a short time and blockwise transferred to 20-
sim 4C. HIL-simulation requires direct read/write access to the inputs and
outputs of the FMU. This is currently implemented using the existing XML-
RPC protocol. The protocol overhead currently limits the amount of signals

32

D4.3b - Final Integration of Simulators (Public)

that can be exchanged between the co-simulation and the Raspberry Pi to
approximately one dozen signals. This can be improved in the future by
selecting a more e�cient (binary) communication protocol.

33

D4.3b - Final Integration of Simulators (Public)

5 Conclusions

The focus in Year 3 of the INTO-CPS project from the simulator point of
view was mainly on bug�xes and enhancements of the existing FMI features
developed in the �rst two years. New developments focused on optimizations
of co-simulation speed, running distributed co-simulations and running HIL-
simulations.

5.1 COE enhancements

The INTO-CPS COE has further improved during Year 3. Several optimiza-
tions are added to speed-up the co-simulation. Support for WCT synchro-
nization was added to support HIL-simulations. Stability monitoring support
was added to monitor the stability of co-simulation experiments, and support
for running distributed co-simulations on multiple PCs is now available.

5.2 Overture enhancements

Overture FMI support has seen further improvement towards deployment as
ANSI-C code for embedded targets. Next to the default tool-wrapper FMU
export, it is now also possible to export VDM code as standalone FMU with
C-code. This C-code can be imported in 20-sim 4C for further deployment
to embedded targets and to run HIL-simulations.

5.3 20-sim FMI enhancements

Most FMI 2.0 developments were done in Year 1 and 2. Year 3 FMI develop-
ments in 20-sim focussed on bug�xing, �ne-tuning and minor enhancements.
A major new development is the replacement of the 3D animation FMU by
a new cross-platform FMU based on Unity.

5.4 OpenModelica FMI enhancements

Year 3 OpenModelica FMI support was focused on improvements and bug
�xing to existing FMI export and import built in the �rst two years.

34

D4.3b - Final Integration of Simulators (Public)

5.5 HIL-simulation using FMI

Year 3 developments around 20-sim 4C have extended the usage of the FMI
standard towards running FMUs in real-time on actual hardware without
manual code writing. In addition a real-time tool-wrapper FMU has been
developed that closes the loop between a PC-based co-simulation and the
real-time FMU running on a target. This provides HIL-simulation possi-
bilities based on the FMI standard. First tests from our industial partners
show that this proof-of-concept is working. However it needs further opti-
mizations to scale to larger systems with more I/O. It proved challenging to
accept all source-code FMUs because the FMI 2.0 standard documentation
around source code FMUs is limited which gives freedom for various solutions
that will not automatically import and compile.

5.6 Requirements

The high-level INTO-CPS requirements (Section 1.1) as de�ned at the be-
ginning of the INTO-CPS project are all being met.

5.7 Future work

The INTO-CPS research project is almost �nished, but the Overture, 20-sim,
20-sim 4C and OpenModelica development will continue. Future FMI-related
changes, bug�xes improvements and extensions will be done as work within
of the new INTO-CPS association (e.g the Unity 3D animation FMU) and
as part of the normal tool development work �ow.

35

D4.3b - Final Integration of Simulators (Public)

References

[BBG+13] D. Broman, C. Brooks, L. Greenberg, E.A. Lee, M. Masin, S. Tri-
pakis, and M. Wetter. Determinate composition of FMUs for co-
simulation. In Embedded Software (EMSOFT), 2013 Proceedings of
the International Conference on, pages 1�12, 2013.

[BHPG16] Victor Bandur, Miran Hasanagic, Adrian Pop, and Marcel
Groothuis. FMI-Compliant Code Generation in the INTO-CPS Tool
Chain. Technical report, INTO-CPS Deliverable, D5.2c, December
2016.

[BLL+17] Victor Bandur, Peter Gorm Larsen, Kenneth Lausdahl, Casper
Thule, Anders Franz Terkelsen, Carl Gamble, Adrian Pop, Etienne
Brosse, Jörg Brauer, Florian Lapschies, Marcel Groothuis, Christian
Kleijn, and Luis Diogo Couto. INTO-CPS Tool Chain User Manual.
Technical report, INTO-CPS Deliverable, D4.3a, December 2017.

[BLM16] Jörg Brauer, Florian Lapschies, and Oliver Möller. Implementation
of a Model-Checking Component. Technical report, INTO-CPS De-
liverable, D5.2b, December 2016.

[Blo14] Torsten Blochwitz. Functional Mock-up Interface for Model Ex-
change and Co-Simulation. https://www.fmi-standard.
org/downloads, July 2014.

[CLB+16] Fabio Cremona, Marten Lohstroh, David Broman, Marco Di Na-
tale, Edward A. Lee, and Stavros Tripakis. Step revision in hybrid
co-simulation with FMI. In MEMOCODE, pages 173�183. IEEE,
2016.

[Con13] Controllab Products B.V. http://www.20sim.com/, January 2013.
20-sim o�cial website.

[DES09] DESTECS (Design Support and Tooling for Embedded Control
Software). European Research Project, June 2009. http://www.
destecs.org.

[dSP17] dSPACE GmbH. https://www.dspace.com/en/inc/home/
support/supvers/supverscompm/fmicompatibility.
cfm, November 2017. dSPACE FMI support website.

[FE98] Peter Fritzson and Vadim Engelson. Modelica - A Uni�ed Object-
Oriented Language for System Modelling and Simulation. In EC-

36

https://www.fmi-standard.org/downloads
https://www.fmi-standard.org/downloads
http://www.destecs.org
http://www.destecs.org
https://www.dspace.com/en/inc/home/support/supvers/supverscompm/fmicompatibility.cfm
https://www.dspace.com/en/inc/home/support/supvers/supverscompm/fmicompatibility.cfm
https://www.dspace.com/en/inc/home/support/supvers/supverscompm/fmicompatibility.cfm

D4.3b - Final Integration of Simulators (Public)

COP '98: Proceedings of the 12th European Conference on Object-
Oriented Programming, pages 67�90. Springer-Verlag, 1998.

[Fri04] Peter Fritzson. Principles of Object-Oriented Modeling and Simula-
tion with Modelica 2.1. Wiley-IEEE Press, January 2004.

[Gam17] Carl Gamble. Comprehensive DSE Support. Technical report,
INTO-CPS Deliverable, D5.3e, December 2017.

[GMB17] Carl Gamble, Oliver Möller, and Victor Bandur. Test automation
module in the INTO-CPS Platform. Technical report, INTO-CPS
Deliverable, D5.3a, December 2017.

[GMF12] C.J. Gamble, M. Mans�eld, and J.S. Fitzgerald. The Co-
Simulation of a Cardiac Pacemaker using VDM and 20-sim. In
J. S. Fitzgerald, T. Mak, A. Romanovsky, and A. Yakovlev, editors,
Procs. Workshop on Trustworthy Cyber-Physical Systems, volume
CS-TR-1347 of Technical Report Series. School of Computing Sci-
ence, Newcastle University, UK, 2012.

[HLG+15] Miran Hasanagi¢, Peter Gorm Larsen, Marcel Groothuis, Despina
Davoudani, Adrian Pop, Kenneth Lausdahl, and Victor Bandur.
Design Principles for Code Generators. Technical report, INTO-
CPS Deliverable, D5.1d, December 2015.

[KGD16] C. Kleijn, M.A. Groothuis, and H.G. Di�er. 20-sim 4.6 Reference
Manual. Controllab Products B.V., 2016.

[Kle13] C. Kleijn. 20-sim 4C 2.1 Reference Manual. Controllab Products
B.V., 2013.

[LBF+10] Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John Fitzgerald,
Kenneth Lausdahl, and Marcel Verhoef. The Overture Initiative �
Integrating Tools for VDM. SIGSOFT Softw. Eng. Notes, 35(1):1�6,
January 2010.

[LLW+15] Kenneth Lausdahl, Peter Gorm Larsen, Sune Wolf, Victor Ban-
dur, Anders Terkelsen, Miran Hasanagi¢, Casper Thule Hansen, Ken
Pierce, Oliver Kotte, Adrian Pop, Etienne Brosse, Jörg Brauer, and
Oliver Möller. Design of the INTO-CPS Platform. Technical report,
INTO-CPS Deliverable, D4.1d, December 2015.

[LPO+17] Peter Gorm Larsen, Ken Pierce, Julien Ouy, Kenneth Lausdahl,
Marcel Groothuis, Adrian Pop, Miran Hasanagic, Jörg Brauer, Eti-
enne Brosse, Carl Gamble, Simon Foster, and Jim Woodcock. Re-

37

D4.3b - Final Integration of Simulators (Public)

quirements Report Year 3. Technical report, INTO-CPS Deliver-
able, D7.7, December 2017.

[LRV+11] Kenneth G. Lausdahl, Augusto Ribeiro, Peter Visser, Frank
Groen, Yunyun Ni, Jan F. Broenink, Angelica Mader, Joey W. Cole-
man, and Peter Gorm Larsen. D3.3b � Co-simulation Foundations.
Technical report, The DESTECS Project (INFSO-ICT-248134), De-
cember 2011.

[MGP+17] Martin Mans�eld, Carl Gamble, Ken Pierce, John Fitzgerald,
Simon Foster, Casper Thule, and Rene Nilsson. Examples Com-
pendium 3. Technical report, INTO-CPS Deliverable, D3.6, De-
cember 2017.

[NZL+17] Mihai Neghina, Constantin-Bala Zamrescu, Peter Gorm Larsen,
Kenneth Lausdahl, and Ken Pierce. A Discrete Event-First Ap-
proach to Collaborative Modelling of Cyber-Physical Systems. In
Fitzgerald, Tran-Jørgensen, Oda, editor, The 15th Overture Work-
shop: New Capabilities and Applications for Model-based Systems
Engineering, pages 116�129, Newcastle, UK, September 2017. New-
castle University, Computing Science. Technical Report Series. CS-
TR- 1513.

[OLF+17] Julien Ouy, Thierry Lecomte, Frederik Forchhammer Foldager,
Andres Villa Henriksen, Ole Green, Stefan Hallerstede, Peter Gorm
Larsen, Luis Diogo Couto, Pasquale Antonante, Stylianos Basagian-
nis, Sara Falleni, Hassan Ridouane, Hajer Saada, Erica Zavaglio,
Christian König, and Natalie Balcu. Case Studies 3, Public Version.
Technical report, INTO-CPS Public Deliverable, D1.3a, December
2017.

[PBLG15] Adrian Pop, Victor Bandur, Kenneth Lausdahl, and Frank Groen.
Integration of Simulators using FMI. Technical report, INTO-CPS
Deliverable, D4.1b, December 2015.

[PBLG16] Adrian Pop, Victor Bandur, Kenneth Lausdahl, and Frank Groen.
Updated Integration of Simulators in the INTO-CPS Platform.
Technical report, INTO-CPS Deliverable, D4.2b, December 2016.

[PLM16] Adrian Pop, Florian Lapschies, and Oliver Möller. Test automation
module in the INTO-CPS Platform. Technical report, INTO-CPS
Deliverable, D5.2a, December 2016.

[PLS+17] Nicolai Pedersen, Kenneth Lausdahl, Enrique Vidal Sanchez, Pe-
ter Gorm Larsen, and Jan Madsen. Distributed Co-Simulation of

38

D4.3b - Final Integration of Simulators (Public)

Embedded Control Software with Exhaust Gas Recirculation Water
Handling System using INTO-CPS. In Proceedings of the 7th In-
ternational Conference on Simulation and Modeling Methodologies,
Technologies and Applications (SIMULTECH 2017), pages 73�82,
Madrid, Spain, July 2017. ISBN: 978-989-758-265-3.

[PSA+14] Adrian Pop, Martin Sjölund, Adeel Ashgar, Peter Fritzson, and
Francesco Casella. Integrated Debugging of Modelica Models. Mod-
eling, Identi�cation and Control, 35(2):93�107, 2014.

[Ras17] Raspberry Pi Foundation. https://www.raspberrypi.org/, August
2017. Raspberry Pi Foundation website.

[Sie10] Alexander Siemers. Contributions to Modelling and Visualisation
of Multibody Systems Simulations with Detailed Contact Analysis.
Doctoral thesis No 1337, Linköping University, Department of Com-
puter and Information Science, 2010.

[SNF05] Alexander Siemers, Iakov Nakhimovski, and Dag Fritzson. Meta-
modelling of mechanical systems with transmission line joints in
modelica. In Proceedings of the 4th International Modelica Confer-
ence, 2005.

[Tec16] Unity Technologies. Unity. https://unity3d.com/, December
2016.

[TL16] Casper Thule and Peter Gorm Larsen. Investigating concurrency in
the co-simulation orchestration engine for into-cps. Proceedings of
the Institute for System Programming of the RAS, 28(2):139�156,
2016.

[TLL18] Casper Thule, Kenneth Lausdahl, and Peter Gorm Larsen. Mae-
stro: The into-cps co-simulation orchestration engine. 2018. To be
submitted to Simulation Modelling Practice and Theory.

[Xen17] Xenomai. http://xenomai.org, August 2017. Xenomai website.

39

https://unity3d.com/

D4.3b - Final Integration of Simulators (Public)

A List of Acronyms

20-sim Software package for modelling and simulation of dynamic systems
ACA Automatic Co-model Analysis
AST Abstract Syntax Tree
AU Aarhus University
CLI Command-line Interface
CLP Controllab Products B.V.
COE Co-simulation Orchestration Engine
CPS Cyber-Physical Systems
CT Continuous-Time
DE Discrete Event
DESTECS Design Support and Tooling for Embedded Control Software
DSE Design Space Exploration
FMI Functional Mockup Interface
FMI-Co Functional Mockup Interface � for Co-simulation
FMI-ME Functional Mockup Interface � Model Exchange
FMU Functional Mockup Unit
HIL Hardware-in-the-Loop
HMI Human Machine Interface
HW Hardware
ICT Information Communication Technology
IDE Integrated Design Environment
M&S Modelling and Simulation
MBD Model Based Design
MIL Model-in-the-Loop
OMG Object Management Group
OS Operating System
PROV-N The Provenance Notation
RPC Remote Procedure Call
SIL Software-in-the Loop
SysML Systems Modelling Language
TA Test Automation
TRL Technology Readiness Level
UML Uni�ed Modelling Language
VDM Vienna Development Method
VSI Veri�ed Systems International
WCT Wall-clock Time
WP Work Package
XML Extensible Markup Language

40

D4.3b - Final Integration of Simulators (Public)

B COE Protocol

The COE protocol is based on a JSON over HTTP protocol using a similar
approach as REST. However, unlike REST, the COE keeps state. The format
used to describe each command is: URL and any arguments, pre�xed with
a colon, e.g. �:section�.

B.1 COE Information

Information about the COE is available at:

http://localhost:8082/

B.2 The API Command

The command is available at:

http://localhost:8082/api

or the following for a PDF version:

http://localhost:8082/api/pdf

If successful, the command returns one of two types of content:

Content-Type: application/pdf A PDF version of this document.

Content-Type: text/plain The LaTeX source �le of this document.

B.3 The Status Command

The command is available at:

http://localhost:8082/status/:session

The command takes the following arguments:

:session Optional session id �ltering the returned data array to the single
instance with the given session id.

41

http://localhost:8082/
http://localhost:8082/api
http://localhost:8082/api/pdf
http://localhost:8082/status/:session

D4.3b - Final Integration of Simulators (Public)

If no session is provided, then the command returns an array with the status
of all sessions similar to the example below.

1 [
2 {
3 "status":"idle",
4 "sessionid": "-1"
5 },
6 {
7 "status":"idle",
8 "sessionid": "0"
9 }
10]

If a session ID is given, then a single session is returned

1 {
2 "status":"idle",
3 "sessionid": "-1"
4 }

B.4 The Create Session Command

The command is available at:

http://localhost:8082/createSession

The command takes no argument and returns a JSON string containing the
session id. An example is presented below, where the sessionId is 12345:

1 {"sessionId":"12345"}

B.5 The Attach Session Command

The command is available at:

ws://localhost:8082/attachSession/:session

The command takes no arguments and opens a WebSocket (https://
tools.ietf.org/html/rfc6455). Output data from connected out-
puts will be live streamed according to the following format:

1 {
2 "{fmuName}":{
3 "instanceName":{

42

http://localhost:8082/createSession
ws://localhost:8082/attachSession/:session
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455

D4.3b - Final Integration of Simulators (Public)

4 "variableName": variableValue
5 }
6 }
7 }

B.6 The Initialize Command

The command is available at:

http://localhost:8082/initialize/:session

The command takes the following argument and requires a JSON payload,
Content-Type: application/json:

:session The session ID.

The Data payload:

1 {
2 "fmus":{
3 "{controllerFmu}":"file://controller.fmu",
4 "{tankFmu}":"file://tank.fmu"
5 },
6 "connections":{
7 "{controllerFmu}.crtlIns.valve":["{tankFmu}.tankIns.

valve"],
8 "{tankFmu}.tankIns.level":["{controllerFmu}.crtlIns.

level"]
9 },
10 "parameters":{
11 "{controllerFmu}.crtlIns.maxLevel":8,
12 "{controllerFmu}.crtlIns.minLevel":2
13 },
14 "algorithm":{
15 FIXED-STEP-SIZE-CONFIG or VARIABLE-STEP-SIZE-CONFIG
16 },
17 "livestream":{
18 "{controllerFmu}.crtlIns":["local","local2"],
19 "{tankFmu}.tankIns":["level"]
20 },
21 "logVariables":{
22 "{tankFmu}.tankIns":["local"]
23 },
24 "parallelSimulation": false,
25 "stabalizationEnabled":false,
26 "global_absolute_tolerance": 0.0,

43

http://localhost:8082/initialize/:session

D4.3b - Final Integration of Simulators (Public)

27 "global_relative_tolerance":0.01
28

29 }

FIXED-STEP-SIZE-CONFIG The �xed step size con�guration contains
the following:

1 "type":"fixed-step",
2 "size":0.1

VARIABLE-STEP-SIZE-CONFIG The variable step size con�guration con-
tains the following:

1 "type":"var-step",
2 "size":[1E-6, 1.0],
3 "initsize":1E-4,
4 "constraints":{
5 STEPSIZE-CONSTRAINT*
6 }

Where the properties are de�ned as:

type:"var-step" selects the variable stepsize calculator (each al-
gorithm has a type).

size:[<minimal stepsize> , <maximal step size>] de�-
nes the stepsize interval as an array of double values.

initsize:<initial stepsize> de�nes the initial stepsize as dou-
ble value.

constraints: de�nes the stepsize constraints as follows:

1 "id":{
2 type:"[zerocrossing|boundeddifference|

samplingrate|fmumaxstepsize]",
3 ...
4 }

The id is a string that is used to identify the constraint e.g.
in the log. All constraints have a single common name-value pair
with name type. The value of type speci�es the type of the con-
straint; the other name-value pairs of the constraint depend on the
value of type. The zerocrossing is described in Section B.6.1,
boundeddifference in Section B.6.2, and samplingrate in
Section B.6.3 fmumaxstepsize in Section B.6.4.

44

D4.3b - Final Integration of Simulators (Public)

The JSON payload contains the following entries:

fmus A list of the location of the FMUs.

connections A map of connections, output to input.

parameters A map from parameter to value.

algorithm Step size algorithm con�guration:

�xed-step A �xed step size algorithm is available requiring a step size
to be speci�ed.

livestream These scalar variables will be livestreamed via websockets. They
must have a causality of either local or output.

logVariables These scalar variables will be logged. They must have a
causality of either local or output.

parallelSimulation Optional boolean condition specifying if the COE should
parallelize certain parts of the simulation. This condition is or'ed to-
gether with all simulation.parallelise.* properties.

stabalizationEnabled This enabled stabilization mode in the COE. Cur-
rently it makes use of successive substitution retrying a maximum of 5
steps. It uses the global_absolute_tolerance and
global_relative_tolerance to decide if the signals are stable
or another stabilization step is needed. The implementation uses the
Numpy.isclose function. When this option is enabled the cyclic check
is disabled and a warning is for any FMU that is in a cycle that does
not support get and set state from FMI.

global_absolute_tolerance The global absolute tolerance used for stabi-
lization.

global_relative_tolerance The global relative tolerance used for stabi-
lization.

The command returns the following response on success:

1 {
2 "status":"initialized",
3 "sessionid": "1234",
4 "avaliableLogLevels":{
5 "{8c4e810f-3df3-4a00-8276-176fa3c9f001}.tank":[
6 {
7 "name":"logAll",
8 "description":"Description of this loggin level"
9 },

45

D4.3b - Final Integration of Simulators (Public)

10 {
11 "name":"logError",
12 "description":null
13 }],
14 "{8c4e810f-3df3-4a00-8276-176fa3c9f000}.controller":[
15 {
16 "name":"logAll",
17 }]
18 }
19 }

The avaliableLogLevels value will be speci�c to the FMUs given in
the initial payload. The sessionid is the ID that must be supplied in any
subsequent calls.

B.6.1 De�nition of a Zero Crossing Constraint

A constraint of "type":"zerocrossing" is de�ned by

1 "id":{
2 "type":"zerocrossing",
3 "ports":[
4 "<guid>.<instance>.<outport>",
5 "<guid>.<instance>.<outport>"
6],
7 "order":[1|2],
8 "abstol":<double>,
9 "safety":<double>
10 }

where the second entry in the ports list and the attributes order, abstol
and safety are optional. The name-value pairs have the following mean-
ing.

• ports: De�nes the zero crossing function f as an array of strings of
size 1 or 2. If one output port is provided, then f is the value of that
output port. If two output ports are provided, then f is the di�erence
between the values of the �rst and second output ports. Any other size
of the string array is not supported.

• order: This name-value pair is optional; it speci�es the extrapolation
order that is used to predict a zero crossing (see Section C.3.1). First
and second order extrapolation are supported. The default is second
order extrapolation.

46

D4.3b - Final Integration of Simulators (Public)

• abstol: This name-value pair is optional; it speci�es the absolute
tolerance. The stepsize calculator attempts to adjust the stepsize such
that at a time instant tZC the absolute value of the zero crossing func-
tion f is smaller or equal to the absolute tolerance, |f(tZC)| ≤ abstol.
The default value for the absolute tolerance is 10−3.

• safety: This name-value pair is optional; it adjusts the conservatism
of the zero crossing prediction. The neutral default value is 0.0. If the
variable stepsize calculator fails to resolve a zero crossing of a particular
co-simulation within the absolute tolerance (and the minimal stepsize
is not the limiting factor), then the value for safety can be increased
for more conservatism in the zero crossing prediction. Negative values
for less conservatism are mathematically possible, but should probably
not be used.

B.6.2 De�nition of a Bounded Di�erence Constraint

A constraint of "type":"boundeddifference" is de�ned by

1 "id":{
2 "type":"boundeddifference",
3 "ports":[
4 "<guid>.<instance>.<outport>"
5 ,"<guid>.<instance>.<outport>"
6 ,"<guid>.<instance>.<outport>"
7 ...
8]
9 ,"abstol":<double>
10 ,"reltol":<double>
11 ,"safety":<double>
12 ,"skipDiscrete":<boolean>
13 }

where entries after the �rst in the ports list and the attributes abstol,
reltol, safety and skipDiscrete are optional. The name-value pairs
have the following meaning.

• ports: De�nes a set of values whose minimal and maximal value shall
have a bounded di�erence. The set of values is de�ned by a non-empty
array of strings. If one output port is provided, then the set of values
comprises that output port's current value and its previous value. If at
least two output ports are provided, then the set of values comprises
the output ports' current values.

47

D4.3b - Final Integration of Simulators (Public)

• abstol: This name-value pair is optional; it speci�es the absolute
tolerance. The stepsize calculator attempts to adjust the stepsize such
that the absolute di�erence between the minimal and maximal value is
smaller than the value of abstol. The default value for the absolute
tolerance is 10−3.

• reltol: This name-value pair is optional; it speci�es the relative
tolerance. The stepsize calculator attempts to adjust the stepsize such
that the relative di�erence between the minimal and maximal value is
smaller than the value of reltol. The default value for the relative
tolerance is 10−2.

• safety: This name-value pair is optional; it adjusts the conservatism
of the algorithm that selects the next stepsize. The neutral default
value is 0.0. If the variable stepsize calculator fails to keep the di�erence
bounded (and the minimal stepsize is not the limiting factor), then the
value of safety can be increased for more conservatism in the stepsize
selection algorithm. Small negative values above αRISKY − 1, i.e. per
default above −0.4 (see Table 7), are possible for less conservatism.
Negative values below or equal to αRISKY−1 lead to unde�ned behavior
of the di�erence bin assignment algorithm (see Section C.4).

• skipDiscrete: This optional name-value pair is by default set to
true, i.e. the skipping over previous stepsizes that were limited by
discrete constraints (see Section C.7.3) is by default enabled. It may
be disabled by setting this value to false.

B.6.3 De�nition of a Sampling Rate Constraint

A constraint of "type":"samplingrate" is de�ned by

1 "id":{
2 "type":"samplingrate",
3 "base":<integer>,
4 "rate":<integer>,
5 "startTime":<integer>
6 }

with the following name-value pairs.

• base: De�nes the exponent of 10 of the time base in seconds.

• rate: De�nes the sample rate in multiples of 10base.

48

D4.3b - Final Integration of Simulators (Public)

• startTime: De�nes the occurrence of the �rst sample hit in multiples
of 10base.

B.6.4 De�nition of a FMU Max Step Size Constraint

A constraint of "type":"fmumaxstepsize" is de�ned by

1 "id":{
2 "type":"fmumaxstepsize"
3 }

The constraint limits the step size to the minimum of the step size returned
by getMaxStepSize from all instances that support the function.

B.7 The Simulate Command

The command is available at:

http://localhost:8082/simulate/:session

The command takes the following arguments and requires a JSON payload,
Content-Type: application/json:

:session The session ID.

The Data payload:

1 {
2 "startTime":0.0,
3 "endTime":10.1,
4 "logLevels": {
5 "{8c4e810f-3df3-4a00-8276-176fa3c9f001}.tank":
6 ["logAll", "logError"],
7 "{8c4e810f-3df3-4a00-8276-176fa3c9f000}.tank":
8 ["logError"]
9 }
10 }

The payload contains the start and end time interval plus the log levels.

The command returns the following response on success:

1 [
2 {
3 "status":"Finished",

49

http://localhost:8082/simulate/:session

D4.3b - Final Integration of Simulators (Public)

4 "sessionid": "1234"
5 }
6]

B.8 The Stop Simulation Command

This command sets a �ag such that the simulation related to a given ses-
sionID is stopped on completion of its current step.

The command is available at:

http://localhost:8082/stopsimulation/:session

The command takes the following arguments:

:session The session ID.

B.9 The Result Command

The command is available at:

http://localhost:8082/result/:session/:type

The command takes the following arguments:

:session The session ID.

:type Optional parameter. Possible parameters are: plain/zip and default
is plain.

The command returns the following response on success. A response supports
two return formats selected by the :type argument and indicated using the
content type:

Content-Type: application/zip Returns a zip �le containing the initial-
ization data + start data + the result obtained during the simulation

Content-Type: text/plain Returns the result obtained during the simula-
tion as text. The result is a CSV formatted string with: time, stepsize,
and all outputs at that time

50

http://localhost:8082/stopsimulation/:session
http://localhost:8082/result/:session/:type

D4.3b - Final Integration of Simulators (Public)

B.10 The Destroy Command

The command is available at:

http://localhost:8082/destroy/:session

The command takes the following arguments:

:session The session ID.

The command destroys a session and releases all resources bound to the
session on success full termination.

B.11 The Reset Command

The command is available at:

http://localhost:8082/reset

The command resets the COE to its initial state on success full termina-
tion.

C COE Variable Stepsize Calculation

Three of the four constraint types (Zero Crossing, Bounded Di�erence, and
Sampling Rate) are de�ned in a JSON �le that is posted to the COE with the
initialize command (see Section B.6), and one (FMU-requested) is requested
by the simulated FMUs.

After initialization, the variable stepsize calculator holds a set of constraint
handlers. Each handler is responsible for one constraint. When asked for the
next stepsize by the COE, the variable stepsize calculator asks each handler
for the next stepsize and returns the minimum of these values.

C.1 Interface with the Master Algorithm

The variable stepsize calculator is called by the master algorithm before each
doStep. It is given by the master algorithm the current time, the previous
stepsize, the current output values, and the (estimated) output derivatives of

51

http://localhost:8082/destroy/:session
http://localhost:8082/reset

D4.3b - Final Integration of Simulators (Public)

the FMUs. The variable stepsize calculator returns to the master algorithm
the next stepsize.

After a doStep, the master algorithm asks the variable stepsize calculator
to validate the taken step, i.e. to check whether any constraints have been
violated. If that is the case, a warning is issued. If all FMUs support rollback,
a rollback is initiated and the master algorithm asks the variable stepsize
calculator for a new, reduced stepsize.

The algorithm for derivative estimation, see Section C.3.2, has been moved
from the variable stepsize calculator to the COE. This is done so that the
master algorithm may estimate derivatives and supply these to FMUs that
have the capability canInterpolateInputs. To be clear, if the FMU that sup-
plies these signals also provides derivatives, these are used, but if that FMU
has maxOutputDerivativeOrder=0 (or <=1 in the case of second order
input derivatives]), the estimated values are used.

C.2 Constraint Types

There are four constraint types:

• Zero Crossing

• Bounded Di�erence

• Sampling Rate

• FMU Max Step Size

The constraints are de�ned in the JSON �le (see Section B.6). The fourth
constraint, FMU Max Step Size, was enabled by default until COE version
0.2.14. See Section C.6 for more info on the FMU Max Step Size Con-
straint.

C.3 Zero Crossing Constraints

A zero crossing constraint is a continuous constraint. A zero crossing occurs
at the point where a function changes its sign. In simulation, it can be
important to adjust the stepsize such that a zero crossing is hit (more or
less) exactly. For instance, a ball should rebound from a wall exactly when
the distance between the ball and the wall hits zero and not before or after
that.

52

D4.3b - Final Integration of Simulators (Public)

A solver in a tool such as Simulink can adjust the stepsize using iterative
approaches, but in a co-simulation a rollback of the participating models'
internal states is in general not possible or e�cient. Hence, the variable
stepsize calculator bases its stepsize adjustments on the prediction of a future
zero crossing.

C.3.1 Extrapolation

To predict a future zero crossing, the zero crossing function f must be ex-
trapolated.

For �rst order extrapolation, the following calculation is used:

f(t+ ∆t) = f(t) + ḟ(t)∆t

For second order extrapolation, the following calculation is used:

f(t+ ∆t) = f(t) + ḟ(t)∆t+ 0.5f̈(t) (∆t)2

C.3.2 Derivative Estimation

The derivatives ḟ(t) and f̈(t) are either provided by the FMUs (if the capa-
bility maxOutputDerivativeOrder is high enough), or estimated. For
�rst order extrapolation, the last two data points are used to estimate the
�rst derivative. For second order extrapolation, either the last three data
points are used to estimate the �rst and second derivate, or, if the FMU
provides the �rst but not the second derivative, the last two data points and
their �rst derivatives are used to estimate the second derivative.

C.3.3 Extrapolation Error Estimation

Extrapolation will generally incur an extrapolation error; the variable step-
size calculator estimates that error based on past extrapolation errors. After
completion of a time step, the variable stepsize calculator compares the actual
value x of the zero crossing function f with the value x̂ that was predicted
one time step earlier. The estimated extrapolation error ε̂ follows:

ε←
{
αε̂+ (1− α) |x− x̂| if ε̂ > |x− x̂|
|x− x̂| otherwise

}
(1)

53

D4.3b - Final Integration of Simulators (Public)

For example, it decreases slowly (α = 0.7) with a �rst order IIR-�lter rule
when the extrapolation error becomes smaller, and rises abruptly to the
actual value when the extrapolation error becomes larger.

C.3.4 Estimation of the number of timesteps to a zero cross-
ing

The variable stepsize calculator (conservatively) estimates the number of
timesteps n to hit the predicted zero crossing f(tZC) = 0 at time tZC , when
starting from the current time t (with t ≤ tZC) and when keeping the current
stepsize ∆t constant, to:

n =
tZC − t

∆t
· 1

1 + ε̂+ σ
(2)

where ε̂ is the estimated extrapolation error and σ the (additional) level
of conservatism optionally speci�ed by the attribute safety in the JSON
con�g �le.

The rationale of this equation is that the left term predicts the zero crossing
exactly when the zero crossing function f is, in the case of �rst order extrapo-
lation, a straight line, or, in the case of second order extrapolation, a straight
line or second order parabola. An extrapolation error generally occurs for all
other functions f , with the danger of overestimating n and thus potentially
choosing a too large stepsize (that steps over the zero crossing with the con-
sequence that the tolerance of the zero crossing may be violated). Therefore,
n is conservatively underestimated. The degree of this conservatism is de-
�ned by the second term and depends on both the (time-varying) estimated
extrapolation error ε̂ and the (constant) value of the safety attribute σ.

C.3.5 Detection of unstable oscillations

Unstable oscillations around the zero crossing are detected by monitoring the
last three data points and checking whether these lie on alternating sides of
the zero crossing and increase in absolute value.

54

D4.3b - Final Integration of Simulators (Public)

C.3.6 Stepsize adjustment strategy

The chosen stepsize ∆t is in most cases determined by a factor ρ that is
multiplied with the previous stepsize ∆tprev (and saturated to lie within the
speci�ed stepsize interval). The stepsize is said to be adjusted to hit the zero
crossing when ρ = n (for n ≤ 1). The stepsize is said to be tightened when
ρ = TIGHTENING_FACTOR. The stepsize is held constant, when ρ =
1. The stepsize is said to be relaxed when ρ = RELAXATION_FACTOR.
The stepsize is said to be strongly relaxed when ρ = STRONG_RELA-
XATION_FACTOR. The default values for these factors are listed in
Table 5.

Table 5: Default values for the stepsize adjustment factors.
TIGHTENING_FACTOR 0.5
RELAXATION_FACTOR 1.2
STRONG_RELAXATION_FACTOR 3.0

By inspecting the last two data points, the direction of the simulated trajec-
tory with respect to the zero crossing can be either:

• distancing zero crossing,

• approaching zero crossing or

• crossed zero.

When distancing a zero crossing, the stepsize is strongly relaxed.

When approaching a zero crossing, the current value of the zero crossing func-
tion, f(t), is compared to the value of the absolute tolerance, abstol.

If:

|f(t)| ≤ abstol · TOLERANCE_SAFETY_FACTOR (3)

where TOLERANCE_SAFETY_FACTOR ≤ 1.0 and a default value
of 0.5, then f(t) is said to be well within tolerance, and the stepsize is re-
laxed (the zero crossing has not yet occurred but is already precisely re-
solved).

If

|f(t)| ≤ abstol (4)

55

D4.3b - Final Integration of Simulators (Public)

then f(t) is said to be within tolerance, and the stepsize is held constant (the
zero crossing has not yet occurred but is already resolved).

If

|f(t)| > abstol (5)

then f(t) is said to be outside tolerance, and the (conservatively) estimated
value for the number of timesteps to hit the predicted zero crossing, n, is
considered.

• If n ≤ 1, then the stepsize is adjusted to hit the zero crossing.

• If 1 < n ≤ δtighten, then the stepsize is tightened.

• If δtighten < n ≤ δrelax, then the stepsize is held constant.

• If δrelax < n ≤ δstronglyrelax, then the stepsize is relaxed.

• If δstronglyrelax < n, then the stepsize is strongly relaxed.

The default values of the parameters δi are listed in Table 6.

Table 6: Default values of the distance bin separators for the number of
timesteps to hit a predicted zero crossing.

δtighten 1.8 (= 1.5 ·RELAXATION_FACTOR)
δrelax 3.0 (= STRONG_RELAXATION_FACTOR)
δstronglyrelax 30.0 (= 10.0 · δrelax)

When the simulated trajectory crossed zero in the previous time step, it is
checked whether or not unstable oscillations around the zero crossing are
building up.

• If unstable oscillations occur, and f(t) is well within tolerance, then the
stepsize is held constant.

• If unstable oscillations occur, and f(t) is within tolerance, then the
stepsize is tightened.

• If unstable oscillations occur, and f(t) is outside tolerance, then the
stepsize is set to its minimal value.

• If unstable oscillations do not occur, and f(t) is well within tolerance,
then the stepsize is relaxed.

56

D4.3b - Final Integration of Simulators (Public)

• If unstable oscillations do not occur, and f(t) is within tolerance, then
the stepsize is held constant.

• If unstable oscillations do not occur, and f(t) is outside tolerance, then
the stepsize is tightened.

The �nal three reactions (when unstable oscillations do not occur) are some-
what conservative, with the intention of discouraging possible oscillations
around the zero crossing from developing. Therefore, the stepsize imme-
diately after the zero crossing is kept small. Altogether, these are the 14
possible reactions of the variable step size calculator to exhaustively handle
a zero crossing constraint.

C.4 Bounded Di�erence Constraints

A bounded di�erence constraint is a continuous constraint. A bounded dif-
ference ensures that the minimal and maximal value of a set of values do not
di�er by more than a speci�ed amount (the underlying assumption is that this
di�erence becomes smaller when the stepsize is reduced). For the de�nition
of a bounded di�erence constraint in the JSON �le, see Section B.6.2.

The capability to impose a bounded di�erence can be useful in co-simulation,
for instance, in the calculation of the heat exchange between model A of
temperature TA and model B of temperature TB. Here, at least one of the
models must calculate the heat �ow, which is a function of both TA and
TB. The model that calculates the heat �ow, say model A, knows its own
temperature TA but only has a view, TB,view, on model B's true temperature
TB. To bound the error of the calculated heat �ow, a bounded di�erence
between TB and TB,view is imposed.

The bounded di�erence problem is distinct from the zero crossing problem in
that there is not a speci�c time instant (the zero crossing) to hit, but rather a
speci�c time di�erence (the stepsize that keeps the di�erence bounded).

To choose the next stepsize, the current absolute and relative di�erences
between the minimal and maximal values, δA and δR, are calculated and
compared to the absolute and relative tolerances, εA and εR, respectively.
Based on this comparison, the absolute and relative di�erences are each as-
signed to one of �ve distance bins. The bins are determined with the safety

57

D4.3b - Final Integration of Simulators (Public)

factor:

σ =
1

1 + safety
, (6)

where i = A,R, and with the default values of the parameters

αSAFE ≤ αTARGET ≤ αRISKY ≤ 1 (7)

listed in Table 7.

Table 7: Default values of the parameters used in the distance bin assignment
of the bounded di�erence algorithm.

αRISKY 0.6
αTARGET 0.4
αSAFE 0.2

If:

• δi > εi , then the di�erence i is assigned to the VIOLATION bin.

• εi ≥ δi > εiσαRISKY , then the di�erence i is assigned to the RISKY
bin.

• εiσαRISKY ≥ δi > εiσαTARGET , then the di�erence i is assigned to the
TARGET bin.

• εiσαTARGET ≥ δi > εiσαSAFE , then the di�erence i is assigned to the
SAFE bin.

• εiσαSAFE ≥ δi , then the di�erence i is assigned to the SAFEST bin.

Of the two assigned distance bins, the less safe one (the one ranking higher
in the bullet list above) is chosen. If this distance bin is the

• VIOLATION bin, then the stepsize is strongly tightened.

• RISKY bin, then the stepsize is tightened.

• TARGET bin, then the stepsize is held constant.

• SAFE bin, then the stepsize is relaxed.

• SAFEST bin, then the stepsize is strongly relaxed.

58

D4.3b - Final Integration of Simulators (Public)

A strongly tightened stepsize means that δ = STRONG_TIGHTENING_-
FACTOR with default value 0.01 is multiplied with the previous stepsize
(∆t)prev to obtain the next stepsize ∆t. The meaning of the other stepsize
adjustments is analogous to the implementation of the zero crossing algo-
rithm (see Section C.3.6). The chosen stepsize is saturated to the stepsize
interval.

This algorithm for the bounded di�erence handler tries to adjust the step-
size such that it is kept within the TARGET bin throughout the simulation.
Because a variable stepsize calculator in a co-simulation cannot (e�ciently)
obtain the stepsize through an iterative approach, it needs to make fairly
sure that the stepsize it selects does not lead to a tolerance violation. The
stepsize calculation must therefore be somewhat conservative, which is es-
sentially manifested in the RISKY bin as a bu�er between the TARGET and
VIOLATION bins.

On the safe side of the TARGET bin, two bins must exist. The SAFE bin
has an associated relaxation factor that is small enough so that a stepsize
relaxation should not lead to an overshoot of the bound di�erence beyond
the TARGET bin in the next time step. The SAFEST bin has an associated
strong relaxation factor that is equal to the strong relaxation factor used by
all other continuous constraints to prevent interference between continuous
constraints (see Section C.7.1).

Note that the above described algorithm of the Bound Di�erence handler is
extended below to prevent interference by discrete events (see Section C.7.3).

C.5 Sampling Rate Constraints

A sampling rate constraint is a discrete constraint. It constrains the step-
size such that repetitive, prede�ned time instants are exactly hit. This can
be useful in co-simulation, for instance, when a modeled control unit reads
a sensor value every x milliseconds. For the de�nition of a sampling rate
constraint in the JSON �le, see Section B.6.3.

The chosen stepsize is either the time di�erence between the current time and
the time instant of the next sampling, or the maximal stepsize, whichever is
smaller. Note that the minimal stepsize may be violated to hit a sampling
event.

59

D4.3b - Final Integration of Simulators (Public)

C.6 FMU Max Step Size Constraints

The FMU Max Step Size constraint limits the step size to the value returned
from an FMU if the function is supported by the FMU. A proposal is under-
way to extend the FMI standard with the procedure:

fmi2Status fmi2GetMaxStepSize(fmi2Component c, fmi2Real *
maxStepSize);

This means that an FMU can report in advance the maximal stepsize that
it will accept in the next time step. The variable stepsize calculator queries
all FMUs for these stepsizes and uses the minimum of the reported values
as upper bound for the next stepsize. The implementation in the COE is
based on the principle presented in [BBG+13, CLB+16] forMaster-Step With
Predictable Step Sizes. To the authors knowledge, this feature is implemented
in FMUs exported from the tools: 20-sim, OpenModelica and Overture.

C.7 Interference between constraint handlers

When multiple constraints are present, their handlers may interfere with
each other in the sense that one constraint may become active only because
another one has been active in the previous step. Measures are taken to
counter such interference.

C.7.1 Interference between continuous constraints handlers

Interference between continuous constraint handlers occurs when:

1. In one time step, Constraint A is active (i.e. constrains the stepsize);

2. In the next time step, the handler for Constraint A relaxes the stepsize
by a factor ρA > 1, and

3. Constraint B becomes active � not because its handler protects against
a potential violation, but only because it cannot relax the stepsize by
more than a factor ρB < ρA.

To prevent such interference, all continous contraints must have the same
value for their respective maximal relaxation factors. Therefore, in the
implementation of the variable stepsize calculator, STRONG_RELAXA-
TION_FACTOR is the maximal relaxation factor for both Zero Crossing
and Bounded Di�erence constraints and de�ned in the scope of the whole

60

D4.3b - Final Integration of Simulators (Public)

calculator � not in the scope of individual constraints (as other factors are).
When constraints relax strongly, STRONG_RELAXATION_FACTOR
is used5.

C.7.2 Interference between discrete constraints handlers

Discrete constraints handlers base their stepsize requirements on independent
time instants and therefore do not interfere with each other.

C.7.3 Interference between discrete and continuous constraint han-
dlers

When a discrete constraint handler has limited the stepsize in the previous
step, the question arises how a continuous constraint handlers shall proceed
with its calculation of the next stepsize. The situation that shall be avoided
is this: all continuous constraint handlers would allow a large stepsize, but a
discrete constraint handler enforces a sudden, strong reduction of the step-
size. In the steps that follow, there are no discrete events, but the continuous
constraint handlers require potentially many steps to repeatedly strongly re-
lax the stepsize until it becomes large again.

The solution to this problem is di�erent for Zero Crossing and Bounded
Di�erence constraint handlers.

Extension of the Zero Crossing handler To prevent the above de-
scribed undesired situation, Zero Crossing handlers calculate the next step-
size based on the last stepsize that was not limited by a discrete constraint.

To be precise, a Zero Crossing handler uses the previous data points irre-
spective of the previously active constraints to calculate the extrapolation.
But when it calculates the next stepsize, it discards all previous stepsizes
that were limited by a discrete constraint and chooses the last stepsize that
was limited by a continuous constraint. With the thus chosen previous step-
size (and the result of the extrapolation), the handler calculates the factor ρ
that is multiplied to the chosen previous stepsize in order to obtain the next

5Strictly speaking, when all continuous constraints relax strongly with the same relax-

ation factor, they all become active. The important point is that none of them slows down

the relaxation process unnecessarily by relaxing less than the others.

61

D4.3b - Final Integration of Simulators (Public)

stepsize. With this approach, introduced discrete events do not markedly af-
fect the tightening and relaxation of the stepsize selected by a Zero Crossing
handler.

This approach is safe, in the sense that a zero crossing should not be crossed
prematurely, for two reasons. First, introduced discrete events always shorten
the stepsize when approaching the zero crossing, which is conservative. Sec-
ond, the assumed previous stepsize may be larger than the true previous
stepsize (that was limited by a discrete constraint handler), but this does
no harm: The calculation of the next stepsize is based on the number of
timesteps to the predicted zero crossing, n, with the assumption that the
(assumed) previous stepsize is held constant. When the previous stepsize is
larger, n becomes smaller, favoring a stronger tightening of the next step-
size in particular close to the zero crossing, where the stepsize is adjusted to
hit.

Essentially, the Zero Crossing handler can safely ignore previous stepsizes
that were limited by discrete constraints because it needs to hit a time in-
stant (i.e. the zero crossing) and that time instant does not depend on
the previous stepsizes (time di�erences). The situation is di�erent for the
Bounded Di�erence handler.

Extension of the Bounded Di�erence handler Whereas the Zero Cross-
ing handler needs to hit a time instant (i.e. the zero crossing) that does not
depend on the previous stepsizes (time di�erences), the Bounded Di�erence
handler needs to limit a value di�erence that does depend on the stepsize.
When the Bounded Di�erence handler notices that the previous stepsize was
limited by a discrete constraint, it may proceed in either of two ways.

First, the Bounded Di�erence handler could simply go forward as usual (i.e.
it calculates the next stepsize by scaling the previous stepsize by the factor
that is associated with the determined di�e-rence bin). Because the previous
stepsize was limited by a discrete event and was therefore shorter than the
stepsize that the Bounded Di�erence handler would have chosen, this strategy
will frequently lead to the stepsize being relaxed or strongly relaxed.

Second, the Bounded Di�erence handler could take the last stepsize that was
limited by a continuous constraint and repeat the decision it made then
on that stepsize. To prevent that a repeated decision overly relaxes the
stepsize, the repeated decision will hold the stepsize constant whenever the
past decision was to relax or strongly relax it. To prevent that a repeated
decision overly tightens the step-size, the chosen next stepsize may never be

62

D4.3b - Final Integration of Simulators (Public)

smaller than the one obtained with the above (usual) strategy.

By default, the second strategy is enabled. However, in rare cases that strat-
egy may lead to a tolerance violation (a chain of discrete events could carry
a past decision to hold the stepsize constant through time; when the chain of
discrete events stops, the stepsize will be held constant in the next step but
it might have needed to be tightened instead). Therefore, it is possible to dis-
able the second strategy by setting the optional attribute "skipDiscrete"
to false in the de�nition of the Bounded Di�erence constraint in the JSON
con�guration �le (see Section B.6.2).

When the second strategy is disabled, an active discrete constraint will likely
reduce the next stepsize(s) proposed by the Bounded Di�erence constraint
handler, potentially reducing e�ciency.

C.8 Logging

The variable stepsize calculator writes to the same log as the COE.

When a step is taken with maximal stepsize, the variable stepsize calculator
produces no log output.

When a step is taken with a less than maximal stepsize, the variable stepsize
calculator logs the identi�ers of the active constraints and the action of their
handlers. For instance, a log entry would read

Time 0.9499999999999998, stepsize 0.09, limited by constraint
"bd" with decision to hold the stepsize constant
(absolute difference within target range)

When all continuous constraints relax strongly, the log entry does not list all
constraints but is shortened to:

Time 5.000458745644138, stepsize 9.536808544011453E-4,
all continuous constraint handlers allow strong relaxation}

When a Zero Crossing constraint handler detects a zero crossing, it produces
a log entry which would read:

A zerocrossing of constraint "zc" occurred in the time interval
[14.999971188014648 ; 15.000117672389647] and was hit
with a distance of 0.18103104302103257

When the variable stepsize calculator detects that a constraint has been
violated in the previous step, it logs a warning. For instance, such a warning
would read:

63

D4.3b - Final Integration of Simulators (Public)

Absolute tolerance violated!
| A zerocrossing of constraint "zc"
| occurred in the time interval [4.998123597131701 ;

5.008123597131701]
| and could only be resolved with a distance of

11.789784201164633
| which is greather than the absolute tolerance of 1.0
| The stepsize equals the minimal stepsize of 0.01 !
| Decrease the minimal stepsize
or increase this constraint’s tolerance}

D COE Program properties

The COE program �ow can be changed using the following Java properties
which can be set on program launch using -D followed by the property and
a value can be speci�ed after an equal sign:

simulation.program.delay.enable If this property is set to true
then the COE will interpret the time step size in seconds and make
sure that the steps are at least separated by a program delay of that
time step size. It only introduces a delay if the execution of doStep
on all FMU instances are faster than the requested time step size.

fmi.instantiate.with.empty.authority This inserts an empty au-
thority into the URI sent to the FMU in instantiate. E.g. file:/
will become file:///. This can be necessary for faulty FMU imple-
mentations.

coe.fmu.custom.factory This must be given a fully quali�ed name to
a class which implements org.intocps.orchestration.coe.IF
muFactory if set this class will be instantiated and ask to handle FMU
creation before the internal factory. This can thus be used to override
the default behaviour.

coe.livestream.filter Limits the time resolution on the values send
using live logging. The values will only be send at the given interval or
greater.

simulation.parallelise.resolveinputs Run all per instance in-
put actions in parallel.

simulation.parallelise.setinputs Run all per instance set inputs
in parallel.

64

D4.3b - Final Integration of Simulators (Public)

simulation.parallelise.dostep Run all per instance doSte calls
in parallel.

simulation.parallelise.obtainstate Run all per instance calls to
obtain a global state in parallel.

simulation.profile.executiontime Log execution time for the main
calls involved in performing a global step.

Note that enabling parallel execution may not give faster simulations it is
highly dependent on the number of instances, the amount of inputs/outputs
and the actual execution to of the doStep call per instance.

E Performance Test FMU

within ;
model Snail "slow and useless, heats your PC"
import Modelica.Constants.eps;

Modelica.Blocks.Interfaces.RealInput u annotation (Placement(
transformation(extent={{-140,-20},{-100,20}})));

Modelica.Blocks.Interfaces.RealOutput y annotation (Placement
(transformation(extent={{100,-10},{120,10}})));

parameter Integer nLoop = 10 "array size" annotation(Evaluate
=false);

protected
Real uPos;

algorithm

uPos := abs(u);
y := 0;

for i in 1:nLoop loop
y := y + (-1).^i * exp(atan2(uPos, log(uPos + eps)) / (i *

sqrt(uPos + eps)));
end for;

annotation (
Icon(coordinateSystem(preserveAspectRatio=false)),
Diagram(coordinateSystem(preserveAspectRatio=false)),
uses(Modelica(version="3.2.2")));

65

D4.3b - Final Integration of Simulators (Public)

end Snail;

66

	Introduction
	Requirements
	Related Work

	Co-simulation Orchestration Engine
	Client Interface
	Distributed Co-Simulation
	Co-Simulation Performance
	Hierarchical Co-Simulation
	Co-Simulation Stability

	Integration of Simulators
	Overture
	20-sim
	OpenModelica

	HIL-simulation support
	Introduction
	20-sim 4C
	Target Platform
	Limitations

	Conclusions
	COE enhancements
	Overture enhancements
	20-sim FMI enhancements
	OpenModelica FMI enhancements
	HIL-simulation using FMI
	Requirements
	Future work

	List of Acronyms
	COE Protocol
	COE Information
	The API Command
	The Status Command
	The Create Session Command
	The Attach Session Command
	The Initialize Command
	The Simulate Command
	The Stop Simulation Command
	The Result Command
	The Destroy Command
	The Reset Command

	COE Variable Stepsize Calculation
	Interface with the Master Algorithm
	Constraint Types
	Zero Crossing Constraints
	Bounded Difference Constraints
	Sampling Rate Constraints
	FMU Max Step Size Constraints
	Interference between constraint handlers
	Logging

	COE Program properties
	Performance Test FMU

