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Abstract

The deliverable reports on our work towards the creation of a novel formal semantics for the
real-time modelling language, VDM-RT. The initial focus of this report is on the object-oriented
aspects of the language, with other aspects being dealt with by subsequent deliverables. We
provide a denotational semantics for the object-oriented parts of the language in a framework
called Universal Theories of Programming (UTP), with particular emphasis on tackling multi-
ple inheritance, in the form of an extended UTP theory of classes and the definition of semantic
functions. We also provide preliminary experimental mechanisation in Isabelle showing how
classes can be encoded, and some insight into future work in this area.
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Glossary

Circus a formal modelling language for state-rich con-
current systems building on CSP and with a UTP
semantics.

CircusTime Circus extended with primitives for real-time
modelling.

CML COMPASS Modelling Language, a formal lan-
guage for modelling systems of systems based on
Circus and VDM.

CSP Communicating Sequential Processes, a process
calculus created by Tony Hoare.

FMI Functional Mockup Interface, a language for de-
scribing the composition of heterogeneous sys-
tem models.

HOL Higher Order Logic.

Isabelle a generic proof-assistant usually associated with
HOL.

UTP Unifying Theories of Programming, a framework
for reasoning about formal semantics.

VDM Vienna Development Method.
VDM++ Object-oriented dialect of VDM.
VDM-RT Real-time dialect of VDM.

Symbols

A↔ B relation between A and B.
P ; Q sequential composition of P and Q.
P ` Q design turnstile, with assumption P and commit-

ment Q.
R(| A |) the image of relation R under set A.
R⊕ S override the relation R with S.
R∗ reflexive transitive closure of relation R.
R+ transitive closure of relation R.
X =̂ A define the name X to be A.
II relation identity (skip).
Object a distinguished root class of the inheritance tree.
Σ the top-level alphabet of all symbols.d

A non-deterministic choice of an element in A.
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dom(R) the domain of relation R.
ε Hilbert’s choice operator.
iseq A a sequence of unique elements drawn from A (in-

jective).
PA power set of A.
≺ strict subclass relation.
� subclass relation.
ran(R) the range of relation R.
k 7→ v maplet from k to v.
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1 Introduction

The INTO-CPS project is integrating seven baseline technologies into a tool chain. This in-
volves either transforming data from one tool and format to another, or passing data between
models during co-simulation. The foundations work is providing a formal semantics for this
transfer, using a common framework, UTP (Unifying Theories of Programming). This deliver-
able reports on semantics work covering one baseline technology, VDM-RT.

VDM-RT is a real-time dialect of the VDM formal modelling language that can be applied
to the specification of discrete controllers for Cyber-Physical Systems (CPSs). VDM-RT is
object-oriented, where all models are defined as classes that are instantiated as objects. It
supports concurrency through threading and communication between threads through shared
objects. The real-time features of the language comprise abstractions for deployment of objects
to compute units, which are connected by buses, and the time taken to evaluate expressions,
which advance a global “wall clock” to predict the computation time of a model.

A denotational semantics exists for the core specification language [27], and a structured op-
erational semantics (SOS) exists for the real-time aspects [28], but there is currently no full
semantic description of VDM-RT. To address this, this deliverable is the first in a series of three
that looks at giving a semantics to the VDM-RT language. This first version looks primarily at
object-orientation. Future versions will look at real-time and concurrency.

The structure of the deliverable is as follows. Section 2 provides essential background for
this deliverable, covering VDM-RT first, then looking at Isabelle/HOL, UTP and their com-
bination as Isabelle/UTP. Section 3 gives our overall approach to giving a UTP semantics to
VDM-RT, and puts the remaining sections in context. Section 4 describes our extended calcu-
lus of class and object that is used to give an account of VDM-RT classes. Section 5 describes
the UTP semantics of VDM-RT classes and objects using the class calculus described in the
previous section. Section 6 gives an outline of our work so far on mechanising these seman-
tics. Finally, Section 7 concludes the deliverable and shows the way forward. Appendix A
describes an initial mechanisation of Lausdahl’s [28] operational semantics of VDM-RT in
Isabelle/HOL.

2 Background

2.1 VDM-RT

The Vienna Development Method (VDM) is a state-based formal method that was originally
designed in the 1970s to give semantics to programming languages [26]. Models in VDM have
a persistent state, described through a rich set of datatypes (sets, sequences, mappings, etc.).
Functionality is described through operations that modify the state. The core specification
language, called VDM-SL, has been standardized as ISO/IEC 13817-1 [24]. As part of the
standardisation process, a full denotational semantics has been defined for VDM-SL (due to
Larsen et. al [27]), as well as a proof theory and comprehensive set of proof rules [3].

Models in VDM-SL can be structured into modules. Each module has its own state, which
is global to the module, and functionality. Data and functionality can be exported and im-
ported between modules. In the 1990s, a new dialect called VDM++ [11] was defined adding
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Figure 1: Relationship of VDM-RT concepts

object-orientation and concurrency features. VDM++ retained all the core features of VDM-
SL (datatypes, operations, pre- and post-conditions, invariants, etc.) but replaced the notion of
modules with classes and objects. In the 2000s, another language extension was defined that
included abstractions for modelling real-time embedded software [39]. This work led to the
dialect used in INTO-CPS, VDM-RT (VDM Real Time).

There are two industrial-strength tools for VDM, the commercial VDMTools1 and the open
source Overture2. Overture is used in INTO-CPS and also forms part of the Crescendo baseline
technology, which allows co-simulation between VDM-RT and 20-sim models [12].

All models in VDM-RT are built from classes, which are instantiated as objects. Variables can
have a class as a datatype, or use the datatype system as defined in VDM-SL. Concurrency
in VDM-RT is based on threads. Each class may define a thread, and once an object of that
class is created, its thread can be started. A thread without a loop will terminate once its
work is finished. There is a shorthand notation for defining a thread that will call an operation
periodically.

Threads communicate via shared objects. Synchronization on shared objects is specified using
permission predicates. A permission predicate comprises an operation name and a predicate
over the state of the object. If the predicate evaluates to false, calls to the operation are blocked
until such time as the predicate evaluates to true. Permission predicates can also use history
counters that yield the number of times an operation has been requested, activated or completed.
A shorthand notation for mutual exclusion of operations is also provided.

The real-time features of VDM-RT are based around a global “wall clock” that records the time,
in nanoseconds, since the simulation began. All expressions in a model advance the clock.
VDM-RT has built-in abstractions for compute nodes, represented by CPU objects. A special
System class is used to define CPU objects. Other objects in the system can be deployed to a
CPU. When objects on different CPUs communicate, they must do so via a BUS object, which
incurs a time penalty. Both CPU and BUS objects have a notion of their speed. A class diagram
relating the key elements introduced here is given in Figure 1.

The amount of time each expression takes to evaluate (i.e. the amount of time the wall clock

1http://www.vdmtools.jp/en/
2http://www.overturetool.org/
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is updated by) is, by default, two simulated cycles of the CPU. Objects deployed to faster
CPUs will take less (simulated) time to execute. Similarly, for CPUs connected by faster buses,
their objects will incur a smaller time penalty when communicating. The amount of time
an expression, or set of expressions, takes to execute can be altered in two ways. Using a
cycles statement, which can be used to increase or decrease the simulated cycles, or using
a duration expression, which directly sets the time taken in nanoseconds (independent of
the CPU). This is useful when measurements can be made of real hardware in order make the
timing predictions of the model more accurate.

Semantics work has not kept pace with the changes introduced by the VDM++ and VDM-RT
dialects. A structured operational semantics (SOS) is given for the real-time aspects of VDM-
RT using a simplified language by Verhoef [38] (summarised in [22]). A more comprehensive
version is given by Lausdahl et al. [28]. A mechanization of this semantics in Isabelle is
reported in Appendix A. There is however currently no full semantics covering all aspects
of VDM-RT. In a sense the semantics is best represented at present by the interpreter of the
Overture tool. One of the developers has identified a number of ambiguities that a semantics
should resolve [2]:

• Initialization of static instance variables

• Initialization order of instance variables

• Calling multiple explicit superclass constructors

• Multiple inheritance superclass initialization

• Implicit calls to default constructors

• Overridden vs local operations in super constructors

• Invariant checking during construction

• Are constructors inheritable?

• Overriding/overloading polymorphic / curried functions

• Pre-post conditions in OO state context

• Diamond inheritance

As an open source initiative, both the Overture tool and the language definitions are looked
after by community members. A group of seven elected members form the Language Board
(LB), oversee requests for change to the language. We have engaged the LB as part of the
semantics work and will hold regular netmeetings to report progress and discuss issues as they
arise. This will ensure that the semantics work will have a wide benefit to both the project and
the community at large.

2.2 Isabelle/HOL

Isabelle/HOL [33] is a proof assistant for Higher-Order Logic (HOL). A proof assistant en-
ables a theory engineer to develop theories, consisting of definitions and laws, and prove the-
orems about those theories. Isabelle/HOL consists of an ML-style functional programming
language and a proof system to assert and prove properties of defined constructs. Functional
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programming concepts include functions, algebraic datatypes, and records. A simple function
for squaring an integer can be defined in Isabelle like so:

definition square :: int⇒ int where
square n = n ∗ n

This definition command creates a new constant called square, whose type is int⇒ int, that is
a total function from integers to integers. The body of the function is declared by the equation
below the type declaration follow where.

Mechanical proofs can be entered as a sequence of commands (apply-style) or using the
ISAR [41] structured proof language, which supports readable proofs. Isabelle proofs are con-
structed by the application of tactics that can be used to variously decompose a proof goal into a
collection of simpler ones, until all goals have been discharged. Proofs are correct by construc-
tion with respect to a small core of axioms as part of the LCF architecture that ensures relative
soundness of the system. This follows since theories only introduce constants through defini-
tion, and not through the addition of further axioms, though the latter is possible (with suitable
justification) if a more powerful logic than HOL is required. Nevertheless, if the definitional
approach is followed, no inconsistencies can be introduced by user theories. Though a consis-
tency proof for the HOL axioms is impossible (à la Gödel), they have been given a semantics
in ZFC set theory [23] and therefore HOL is as consistent as one of the main foundations of
mathematics.

Along with elementary deduction tactics, like backward chaining, Isabelle has a large number
of automated proof tactics. This includes the equational simplifier simp, the classical reasoner
blast, and the combination tactic auto. Tactics can be augmented with additional rules by plac-
ing them in appropriate theorem sets. For instance, the set simp contains simplification laws and
intro contains introduction laws. Isabelle also includes a number of high-level proof tools [4]
such as sledgehammer, a principled integration of third-party automated theorem provers, and
nitpick, a counterexample generator. We believe this combination sets Isabelle apart as an ideal
platform on which to mechanise semantics. For more information in Isabelle/HOL, please see
the excellent document provided on their website3.

In Section 6 we will use Isabelle to create a prototype mechanisation of some of the core
constructs of our object-oriented language. This is engineered in the context of Isabelle/UTP,
our UTP implementation that we describe in Section 2.4.

2.3 Unifying Theories of Programming

Unifying Theories of Programming [21] (UTP) is a mathematical framework for describing
and unifying the formal semantics of programming and modelling languages. It has previously
been applied to creation of semantic models for a variety of languages, including Safety-Critical
Java [7], SysML [31], Simulink [8], and CML [44] (a formal modelling language for Systems of
Systems). During these developments a large library of theories of programming has been built
up, and we will be able to make use of these in our semantics for VDM-RT. Moreover, UTP
will enable us to describe formal links between VDM-RT and the other INTO-CPS notations
which will in turn allow us to have a tool-chain that is semantically well founded.

3http://isabelle.in.tum.de/documentation.html
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P ; (Q ; R) = (P ; Q) ; R (1)

P ; false = false (2)

(P 2 b 3 Q) ; R = (P ; R)2 b 3(Q ; R) (3)

while b do P = (P ; while b do P)2 b 3II (4)

P ; Q = ∃ x0.P[x/x0] ; P[x′/x0] (5)

(P ∧ b) ; Q = P ; (b′ ∧ Q) (6)

II{x,x′}∪A = (x = x′) ∧ IIA (7)

Table 3: UTP Algebraic Laws of Predicative Programming

Programs in the UTP are given denotational semantics using alphabetised predicates (P) that
define the relationship between before variables (x) and after variables (x′) in the predicate’s
alphabet α(P). The calculus provides the operators typical of first order logic, such as connec-
tives ∧,∨,¬,⇒ and quantification ∀ x.P,∃ x.P, [P], where [P] represents the universal closure
of P, that is a universal quantification over all the variables in α(P). UTP predicates are ordered
by a refinement partial order P v Q, that equates to universal closure of reverse implication
[Q ⇒ P]. A detailed tutorial on the UTP alphabetised predicate calculus is available [15], and
so we will concentrate only on the crucial elements here.

Imperative programs can be described using relational operators such as sequential composi-
tion P ; Q, if-then-else conditional P 2 b 3 Q (for condition b), non-deterministic choice u,
assignment x :=A v (for expression v and alphabet A), and skip IIA (do nothing and identify all
variables) all of which are given predicative interpretations. For such imperative programs, the
refinement operator P v Q corresponds to behavioural refinement, where the refined program
Q is more deterministic than P. This also induces a complete lattice on programs, where true,
the most non-deterministic program represents the bottom of the lattice, and false, the mirac-
ulous program, is the top. Recursive and iterative constructions can then be specified using
lattice and fixed point operators, such as

d
, µX.P, and the derived while b do P. A collection

of algebraic laws that can be proved about such imperative and predicate operators is shown in
Table 3 (see [21] and [43]).

Law 1 demonstrates the associativity of sequential composition. Law 2 shows that the miracu-
lous program false is a right annihilator of sequential composition. Law 3 shows how sequen-
tial composition distributes through if-then-else conditional. Law 4 shows how a while loop
can be unfolded through making a copy of the body. Law 5 allows the extraction of an inter-
mediate variable x0 in a sequential composition through the use of an existential quantification.
Law 6 shows how a conjoined conditional predicate b can be transferred to a postcondition on
the other side of the sequential composition.

Aside from such programming operators, denotations can also be given to assertional reasoning
calculi such as the Hoare calculus triple {p}Q{r}, and weakest precondition calculus P wp q.
Moreover, UTP provides a way of linking operational semantics to denotational semantics [21]
through describing the transition relation (σ,P) → (ρ,Q), for state configuration predicates σ
and ρ and programs P and Q, as a refinement statement – σ′ ; P v ρ′ ; Q. From this definition

12
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(σ,P)→ (ρ,Q)
SEQ-STEP

(σ,P ; R)→ (ρ,Q ; R)

—
SEQ-TERM

(σ,II ; P)→ (σ,P)

[σ † c]
COND-TRUE

(σ,P 2 c 3 Q)→ (σ,P)

[¬(σ † c)]
COND-FALSE

(σ,P 2 c 3 Q)→ (σ,Q)

— ASSIGN
(σ, x := v)→ (σ(x := σ † v),II)

[σ † c]
ITER-COPY

(σ,while c do P)→ (σ,P ; while c do P)

[¬(σ † c)]
ITER-TERM

(σ,while c do P)→ (σ,II)

Table 4: Operational semantics of an imperative language in UTP

we can derive a set of structural operational laws for our imperative language, as illustrated in
Table 4. The † operator used in the rules substitutes a state configuration’s variable values into
an expression ([21] uses a slightly different notation). In this operational semantics the relation
II stands for successful termination; thus when a program to left-hand side of a sequential
composition reaches this, the right-hand side can begin.

Rule SEQ-STEP describes the evolution of the left-hand side of a sequential composition. Specif-
ically, if P in state σ can perform a transition to Q in state ρ, the a sequential composition can
perform the same transition. Rule SEQ-TERM describes the situation when the left-hand side has
terminated, leaving II. In this case, the right-hand side is enabled. Rule COND-TRUE describes
the situation when the condition of a conditional evaluates to true under state σ. The latter is
described by the universal closure of the application of the state substitution σ into condition
c. Likewise, rule COND-FALSE describes the situation when the condition is false. Rule ASSIGN

describes the execution of an assignment by updating the state σ with a new value for x as the
state substitution applied to expression v. Rule ITER-COPY is the iteration copy rule. When
the condition c evaluates to true then a copy of the loop body P is prepended to the while
loop. This can then be executed through rule SEQ-STEP. Finally, rule ITER-TERM describes the
situation when c is false and therefore the loop terminates.

As can be seen, the UTP predicate calculus thus provides a rich language for both defining
and reasoning about semantics of programs, specifications, and models, in the algebraic, de-
notational, and operational flavours. Building on the core imperative constructs, the UTP also
allows the specification of more complex language aspects using UTP theories. A UTP theory
isolates an aspect of a language, such as object orientation, real-time, or concurrency, to allow
its independent study. A language’s denotational semantics can then be constructed by com-
position of the underlying building block UTP theories. This is important for Cyber-Physical
Systems, which make use of a wide variety of heterogeneous programming and modelling
paradigms [14].

Concretely, a UTP theory consists of three components:

• an alphabet of observational variables that provide structure to the semantic denotations;

• a collection of operators (the signature) specified in terms of the alphabet;

13
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• healthiness conditions – idempotent functions whose image define the theory domain.

For example a simple theory of discrete time could consists of observational variables now, now′ :
N giving the time before and after a process has executed. A basic signature could consist of
the usual imperative operators to describe programs that take time to execute. We could further
define a simple operator wait n , now′ = now + n that allows n time units to elapse, and a
healthiness condition DT (P) , P ∧ now ≤ now′ that ensures that time can only go forward,
and is idempotent since it is conjunctive. Clearly it follows then wait is healthy since it satis-
fies this property, thus DT (wait n) = wait n, i.e. wait n is a fixed point of DT , as illustrated
below:

DT (wait n) = DT (now′ = now + n)

= now′ = now + n ∧ now ≤ now′

= now′ = now + n ∧ now ≤ now + n
= now′ = now + n ∧ true
= now′ = now + n.

Initially for VDM-SL, we are most interested in the UTP theory of designs, that are used
to specify terminating imperative programs and Meyer-style contracts with assumptions and
commitments [43]. Designs can therefore be used to give an account to both implicit operations
and invariants over rich state in the context of VDM-SL modules. The main construct in the
signature is the design turnstile P ` Q, for relations P and Q, stating that, if the assumption P is
satisfied then the commitment Q is guaranteed. The signature also contains the aborting design
⊥D, the miraculous design>D (an infeasible specification), and the usual imperative constructs
such as assignment (x :=D v) and sequential composition lifted into the design space.

Like their relational counterparts, the design signature is given a purely predicative interpre-
tation, specifically P ` Q , (ok ∧ P) ⇒ (ok’ ∧ Q). The observational variables ok, ok’ : B
in this context are used to indicate that a program P has started executing or has successfully
terminated, respectively. Designs can equivalently be characterised by two idempotent health-
iness conditions called H1 and H2, that is to say if a predicate P is H1-H2 healthy, then P can
be rewritten in the form pre(P) ` post(P), where the functions pre and post extract the pre and
postconditions from P, respectively. For more details please see the UTP book [21] or one of
the UTP tutorials [43, 15].

From this definition of designs, we can prove a number of algebraic laws that give further
intuition. Some key laws of designs are presented in Table (5). Law (8) states that an unsatisfi-
able design is equivalent to an abort. Consequently, a design executed outside its precondition
results in to abnormal termination. Law (9) states that a design specified after an abort is un-
reachable. Law (10) states that the non-deterministic choice between two designs conjoins the
pre-conditions and disjoins the post-conditions. Law (11) states how the sequential composi-
tion of two designs can be calculated to be a single composite design. The composite design
assumes that the precondition (p1) of the first design holds, conjoined with weakest precon-
dition of Q1 which establishes the second design’s precondition (p2). The composite design’s
commitment is then simply the relational composition of the two design’s commitments.

In addition to such imperative behaviour, VDM-RT also allows the representation of concurrent
reactive behaviour. UTP also provides a theory for such systems called the theory of reactive
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processes that can be used to characterise systems that engage in a series of a events, repre-
sented as a set of traces. Reactive processes are characterised by three (pairs of) observational
variables:

• tr, tr′ : seq Event – describe the sequence of traces the process has executed in before and
after being executed;

• wait,wait′ : B – indicate whether the process (before) is waiting for an input from another
process;

• ref , ref ′ : PEvent – describe the sets of events that the processes refuses to engage in.

The domain of reactive processes is then characterised by a healthiness condition R that ensures
traces and processes are well behaved. Reactive processes can be used to give a semantics to
a wide variety of process calculi, such as Milner’s CCS [30] and Hoare’s CSP [20] as describe
in [21] chapter 8. Moreover, reactive processes can be combined with the theory of designs to
create reactive designs [35]. A reactive design, written R(P ` Q) is a reactive program with an
assumption P and commitment Q. These constructs can be used to express reactive contracts in
a rely-guarantee style [25]. Moreover reactive designs can also be used to express the constructs
of CSP. This fact forms the basis for the Circus [35] language family that combines the rich-
state modelling of designs with reactive behaviour of CSP. We will further consider Circus in
section 3.

2.4 Isabelle/UTP

In order to verify the correctness of UTP-based semantic models, we need mechanical support
for formalising UTP theories, proving algebraic laws, composing them to produce denota-
tional models, and providing provably corresponding semantic bases. In a theorem prover like
Isabelle, we can go even further and construct proof tactics and procedures for proving prop-
erties of theory objects (i.e. programs or models) in a particular semantic interface, such as
a Hoare logic based program verifier. This then means that we have an unbroken chain from
proof of program correctness to justification in terms of high-level properties in the underlying
denotational semantic models and theories.

We have therefore mechanised the UTP semantic framework in Isabelle/UTP [15, 17]. Is-
abelle/UTP is a framework that allows the formation of theories, semi-automated proof of their
properties, and theory combination to provide semantic models. It is a (relatively) deep se-
mantic embedding of the UTP relational calculus into the HOL object logic. Unlike typical
deep embeddings, it is also integrated with Isabelle’s type system and automated proof tactics.
Thus it allows both precise reasoning about program semantics, and also facilitates program
verification. Isabelle/UTP facilitates mechanised theory engineering, that is the creation and

false ` Q = ⊥D (8)
⊥D; (P ` Q) = ⊥D (9)

(P1 ` Q1) u (P2 ` Q2) = (P1 ∧ P2 ` Q1 ∨ Q2) (10)
(p1 ` Q1); (p2 ` Q2) = (p1 ∧ (Q1 wp p2)) ` (Q1; Q2) (11)

Table 5: Algebraic laws of designs
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Figure 2: A UTP proof using the ISAR language

exploration of the theories of programming with machine aided reasoning facilities. For exam-
ple, all the laws shown in Tables 3 and 5 have been verified with respect to our model in this
framework.

We give a model to alphabetised predicates as a derived Isabelle type, and then define the
standard constructs of predicates and relations as Isabelle functions. We also give a purely se-
mantic model to expressions, variable renaming, and substitution. We then define proof tactics
that allow us to automate proofs. The majority of these tactics work by soundly translating a
UTP predicate into some kind of Isabelle/HOL construct, such as sets or binary relations, for
which a large number of laws have already been proven. For example utp-pred-tac converts a
UTP predicate into a HOL predicate, and this allow standard predicate reasoning to be applied.
In contrast utp-rel-tac can be applied to relational conjecture, through conversion to Isabelle’s
binary relations. Using these tactics we also prove many of the UTP’s algebraic laws.

We can also here leverage ISAR [41]to provide readable UTP proofs, for example in Figure 2
we show a proof for one of the laws of designs relating the turnstile operator to healthiness
conditions H1 and H2. We specify a theorem with two assumptions and a conclusion, and then
open the proof environment to perform a step-by-step equational proof.Specifically, we demon-
strate that if a predicate P is H1-H2 healthy then it can be written as a design of ¬Pf ` Pt, where
¬Pf extracts the precondition, and Pt extracts the postcondition. We prove this through num-
ber of steps invoking our predicate tactic, utp-pred-tac and Isabelle’s first-order logic reasoner
metis.

We have previously used Isabelle/UTP to mechanise the theory of designs, the theories of
alphabetised relations, reactive processes, and CSP [16]. This then gives the basis for the state-
rich reactive parts of VDM-RT. Preliminary work on mechanisation of object-orientation has
also be completed [47]. This includes a large library of algebraic laws that can be applied to
proving properties of our semantic models. In this deliverable we will use Isabelle/UTP to give
a preliminary mechanisation of our theory of object-orientation.

We now give a few technical details of Isabelle/UTP. The Isabelle/UTP core consists of a
model of alphabetised predicates and relations including all the standard operators of Boolean
algebra, complete lattices, and the relational calculus. Our Isabelle type for UTP predicates ’m
uapred is parametric over a value model ′m. The value model is a datatype consisting of all
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the types constructable within the domain of a particular language. It is necessary for a deep
semantic embedding as we cannot easily characterise a type of all the types constructable in
HOL (a universe type) without axiomatic extension, only cardinality bounded approximations
of such a universe. Nevertheless, the presence of this parameter need not concern most users,
but all UTP types of necessity carry this extra ′m parameter.

The model-centric approach means we have an open syntax tree for UTP predicates, meaning
the new operators can be defined as functions. This is vital for the UTP where new operators are
created in every new UTP theory. Isabelle’s open parser architecture also ensures maximum
flexibility in the creation of an AST with comprehensive pretty printing. Accompanying the
core operators we have built a library of proof tactics for solving different classes of problem
expressed as UTP predicates, and a large library of algebraic laws to aid in proof. This core
then provides the foundation for building more complex UTP theories that enable the charac-
terisation of different programming and modelling paradigms.

Isabelle/UTP provides the following types:

• ’m uapred – alphabetised predicates

• (’a, ’m) pexpr – polymorphic expressions of type ′a

• (’a, ’m) pvar – polymorphic variables of type ′a

Predicates can be constructed using the built-in UTP predicate parser, where a predicate can be
written using near identical syntax to mathematical UTP surrounding by backticks. There are
some exceptions to this, for example the predicate x = 1∧y = 2 contains expressions with UTP
variables x and y. In order to distinguish these from Isabelle variables, they must be prepended
with a dollar, hence the predicate in Isabelle/UTP becomes ‘$x = 1 ∧ $y = 2‘.

3 UTP Formal Semantics of VDM-RT

In this section we describe our overall approach to the creation of a new UTP-based semantics
for VDM-RT. As we have said, UTP semantic framework allows us to consider the theoretical
aspects of a language in isolation, such as object orientation or real-time, and later to compose
these with other aspects to produce a complete denotational semantics for a language. Our
UTP approach to creation of formal semantics for a language is based around the following
three step process:

1. creation of UTP theories that isolate and formalise the paradigmatic aspects of a lan-
guage, such as concurrency, real time, object orientation, or hybrid programming;

2. fusion and linking of UTP theories to generate a suitable model for the target language,
and provision of denotational semantics for the language operators;

3. derivation of applicable semantic models, such as operational or axiomatic semantics,
from the denotational semantics.

This process is iterative and can be executed in different orders depending on the initial arte-
facts available. For example, we already have the operational semantics that we mechanised in
appendix A (as an aid to understanding) and so that will be used as an input to derivation of
the denotational semantics, (though it should be stressed that our semantic model will be new,
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independent, and reusable). In addition, we may have a set of algebraic laws for our language
operators and these should likewise be respected by the UTP denotational and operational se-
mantics. In this work we will focus principally on step (1), and consider the aspects of the
VDM-RT language as UTP theories. Ultimately, our aim is the creation of a lingua franca
for the various notations in INTO-CPS, that we dub INTO-CSP, that will be built in steps (2)
and (3) as a fusion of the various different theories we develop. Thus in this deliverable we
consider a theory of object orientation, that can later be augmented with theories of real-time
and concurrency and cover the other aspects of VDM-RT. We will briefly consider the latter
aspects before going on to object-orientation in more depth.

3.1 VDM-RT in the UTP

Real-time, concurrency, and rich-state modelling have already been given substantial study in
the UTP, specifically within the context of the Circus language family [35]. Circus is a formal
modelling language that combines the constructs of the CSP language [20] for modelling of
concurrent systems with rich-state modelling as provided by the Z specification language [45].
Circus thus provides semantically equivalent constructs to those in VDM-SL for modelling
operations and state, together with the ability to represent concurrent stateful systems. Process
state variables in Circus are not shared by concurrent processes, and so information can be
conveyed from process to process only through CSP-style communication channels. As we also
mentioned in Section 2.3 the basis of Circus is the reactive design, that allows the expression
of reactive specifications with assumptions and commitments.

The CircusTime language [40] is an extension of Circus that introduces discrete real-time
modelling constructs such as timeouts and deadlines. Additionally, the COMPASS modelling
language [44] (CML) is a more recent development that provides similar modelling constructs,
but in the context of a new semantic model that has an improved treatment of time in the
presence of operators like external choice [6]. All of these languages are based on an extension
of reactive designs called timed reactive designs [18, 42]. A timed reactive design, is defined in
terms of a healthiness condition RT that subsumes R from reactive designs, and also ensures
that measurement of time is well-behaved. A timed reactive design is then written as RT (P `
Q), for timed assumption P and commitment Q. The addition of timing information here
allows the expression of constraints like timing budgets, and could therefore we used to give
an account to implicit operations in VDM-RT.

Also of interest here are languages like Timed CSP [36] and Hybrid CSP [19] that provide sup-
port for continuous time modelling (and in the case of the latter, system dynamics). Although
VDM-RT is discrete time, other notations such as Modelica [32] are continuous time based and
so the links between discrete and continuous CSP variants needs to be considered to allow the
use of these languages in a co-simulation framework. Again, this is a big motivation for the
creation of INTO-CSP.

The semantic model of CircusTime or CML can thus be applied to give a semantics to the
real-time CPUs and threads of VDM-RT. We will model each thread, object, CPU, and bus
from VDM-RT as different types of Circus processes, as outlined in Figure 3. A thread would,
for example, have a collection of local state variables that would be synchronised with the
corresponding object process variable store, by the CPU process, when sufficient time has
passed as defined by the enclosing duration statement. The duration statement also has
deadline capabilities which can also be modelled in CML and CircusTime using the deadline
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Figure 3: Overview of VDM-RT entities modelled as Circus processes

operator PI t, where P must terminate before t time units expire. Busses are processes which
deliver messages between CPUs whilst exhibiting time penalties that can be modelled by the
wait statement, Wait n that pauses execution for n time units. CPUs then also need to provide
routing for operation call messages using appropriate Circus channels and events.

Time in such a setup can be measured by a global clock, and suitable synchronisation measures
provided for the various threads. In this way the system can be ordered to advance a certain
number of units, or until a condition on an object state variable is satisfied. This will then allow
us to link the VDM-RT semantics to FMI [13], which requires the specification of a doStep(s,
n) function that advances a model in state s by up to n time units, in the presence of certain
inputs [5]. For more information on the semantics of FMI, please see the sister Deliverable
D2.1d [1]. For VDM-RT model, the doStep function will be given a semantics that executes
all possible behaviour across the CPUs, until either the given time bound n has elapsed, or else
one of externally visible discrete variables changes state.

We have thus provided the context for the work in the remaining sections of this particular de-
liverable. Here we focus, not on the real-time behaviour, but on the state space of the individual
objects as typed by VDM-RT classes.

3.2 Object-oriented semantics in the UTP

Object-orientation was first given a UTP semantics in the work of Santos [37, 10]. This work
provides a general theory for the definition of class structures containing attributes and methods.
Classes can be inherited to add further attributes and methods, and method implementations in
parent classes can be overridden as is usual in OO languages. Unlike VDM-RT, Santos’ theory
considers only classes which have one parent, that is single-inheritance, where VDM-RT has
multiple-inheritance.
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The class theory uses the UTP theory of designs to define these commands in a purely relational
setting. Objects in this setting are simply described by records that enumerate the attributes of
the corresponding class. Methods are represented as UTP procedures that are defined with
the context of Higher Order UTP (see [21] chapter 9 and also [46]) that enables predicates to
contain variables that themselves have predicate types. Thus a method definition corresponds
to a UTP variable with such a predicate type defining the method’s implementation.

This work was later extended by Zeyda [47] who added a modular approach to method defini-
tions in the presence of recursion. The original work [10] requires that a collection of (mutually)
recursive methods be declared simultaneously so that a common fixed-point can be declared
that encompasses them all. Zeyda [47] overcomes this problem by introducing higher-order
method variables that can be invoked in the body of a method and only later bound to an actual
implementation. This means the fixed point need only be created at the point of method call,
not the point of definition. We will not explicitly consider recursion in our theory, although we
note that Zeyda’s work is fully compatible.

3.3 UTP semantics of VDM-RT classes

Although VDM-RT already has an operational semantics [28] (see also appendix A), this does
not cover the semantics of the declarative class mechanism. Specifically, although it supports
the creation of objects from classes, the assumption is that class definitions have already been
flattened to deal with things like inheritance and overriding, so that an unambiguous collection
of definitions is available in the operational context. Morever, as highlighted in Section 2.1 a
number of unresolved issues exist in the tool implementation of VDM-RT, such as diamond
inheritance.

The aim of the new UTP semantics is to provide a semantic framework for VDM-RT classes,
in which the relationships between operators can be precisely studied. This will also allow us
to begin to address some of semantic issues outlines above. Though we cannot give solutions
to all of these issues, many of which require further discussion on the intended semantics of
VDM-RT, nevertheless we hope that our semantics provides a framework in which these issues
can be explored. Indeed the UTP has been designed specifically for this purpose.

Our approach to object-orientation in the VDM-RT semantics is two-fold. Firstly we define an
extended version of Santos’ UTP theory of classes [10] that adds support for multiple inheri-
tance in Section 4. This will act as the low-level declarative language for classes, and will have
a relational semantics. This theory is highly abstract, and does not directly consider concepts
which can be defined through syntactic transformation such as method overloading, or static
classes. This general theory then provides us with a framework in which different kinds of
object-oriented programming language can be constrasted. Secondly, in Section 5 we define
a syntactic mapping from VDM-RT classes into this extended theory that provides the deno-
tational semantics. In this work we do not focus on recursive methods, instead we refer the
reader to [47].

For multiple inheritance, the main problem to be solved is how a method implementation should
be selected when two or more disjoint ancestor classes implement the same method. Different
languages take different strategies here. Java, for instance, allows only multiple inheritance of
class interfaces, that can only specify method signatures and not implementations thus remov-
ing the possibility of conflict. C++ allows multiple inheritance, but insists that methods be fully
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qualified by the originating class name so that no ambiguity is present. Scala [34] implements
traits, which are like Java interfaces except that they can provide method implementations, but
unlike classes cannot have parametric constructors. These restrictions allow an algorithm that
can unambiguously pick an appropriate method implementation based on the order in which a
trait was added to the class. Eiffel [29] takes a different approach again wherein unrestricted
multiple inheritance is allowed, but the programming must explicitly state which features are
inherited into the new class. Moreover different features with the same name are disallowed, so
there can be no ambiguity present. For VDM-RT, therefore, a number of different options are
available, and so for this work we will simply provide non-deterministic selection of inherited
methods, with possible refinement of this as future work.

4 Theory of Classes and Objects

In this section we present a UTP-based theory of classes and objects that is generally appli-
cable to semantics of OO languages and in particular can be applied to VDM-RT (and hence
VDM++). We will use the mathematical Z notation [45] to give the definitions of our opera-
tors4. Our theory is a conservative extension of the theory developed by Santos [37, 10] and
then later extended by Zeyda and others [47]. Specifically, we augment class declaration with
the ability to declare classes with multiple superclasses, and appropriately update the method
call semantics taking this into account. Method resolution is supported by representing methods
as explicit tables of possible implementations, rather than as a cascade of tests on the specified
object as in the original works.

The theory we define will then in turn be used to give a semantics to VDM++ classes in Sec-
tion 5. Defining a general theory rather than giving a direct semantics to VDM++ will allow
us to draw out the common elements with those of other language which also exhibit object-
oriented aspects, such as Modelica, though this is left as future work.

Our theory relies heavily on the existing UTP theories of designs and procedures. We also
make use of UTP procedures that we will use to give a semantics to VDM-SL operation calls.
A UTP procedure of the form pds • P consists of a set of parameters pds and a body P using
the parameters. Parameters can take three forms:

• Value parameters (val x : A), where the caller supplies an input value of type A that
populates variable x;

• Result parameters (res x : A), where the caller supplies a variable of type A that the
procedure writes to. Result parameters thus generalise the concept of a method “return”
statement;

• Value-result parameters (vres x : A), where caller supplies a variable and the procedure
both reads from and writes to it.

For example, we can specify a simple operation for adding two numbers together:

add , val x : N; val y : N; res r : N • r := x + y

4A helpful reference manual detailing all the operators we use can be found at http://spivey.oriel.ox.ac.uk/
∼mike/zrm/zrm.pdf
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This has two value parameters, x and y of type N, and a result parameter r of type N. The
body assigns x + y to r that will cause it’s value to be propagated to the caller. Internally, a
UTP operation is simply a λ-abstracted predicated, and therefore can be called like a normal
function: add(5, 7, x). The return statement in languages like VDM-RT can be handled through
creation of a distinguished result parameter, such as RESULT, to which the return statement
assigns the given expression.

4.1 Extended Theory of Classes

As we stated in Section 2.3 a UTP theory consists of its alphabet of observational variables,
the signature of operators in the language, and the healthiness conditions as idempotent func-
tions that constrain the theory’s domain. We will now proceed to define each of these for our
extended theory of classes. We assume the following types for our theory of classes:

• Type, the set of all type names;

• T (⊂ Type), the set of basic type names;

• CName(⊂ Type), the set of class names;

• AName, the set of attribute5 names.

For VDM-RT, T consists of the usual constructions such as strings, integers, sequences, maps,
and sets. We also assume a function carrier : T → PU that gives the set of values for each
type (in a suitable universe). Moreover, we assume that every type yields a non-empty carrier,
that is ∀ t ∈ T .∃ v.v ∈ carrier(t), which ensures that we can always pick an arbitrary value for
each type by using the indefinite description operator ε (as in Isabelle/HOL). Next we give the
observational variables of our UTP theory of classes.

cls : PCName
atts : CName 7→ (AName 7→ Type)

sc : CName↔ CName
ivr : CName 7→ Object 7→ Pred

C ≺ D =̂ (C,D) ∈ sc+

C � D =̂ (C,D) ∈ sc∗

The observational variable cls records the set of defined classes, atts is a partial function as-
signing a set of attributes to each class, and sc is the subclass relationship. We deviate slightly
from [10] and [47] in that sc is now a relation (CName↔ CName) rather than a partial function.
This allows us to support multiple inheritance, where the original work only supported single
inheritance. We also introduce syntax for the strict superclass relation ≺, and the non-strict
version �.

As a side note, we could have alternatively defined sc to have type CName 7→ iseq CName,
which would also impose an order on the inherited classes. This can potentially be useful to
help resolve conflicts between overridden methods. However, for now we opt for the simpler
version, and leave potential refinement to future work. We also define a new observational

5Attributes in this language correspond to instance variables in VDM-RT. We will sometimes use these terms
interchangeably.
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Invariant ψ for SIH(ψ)
OO1 Object ∈ cls
OO2 dom sc = cls \ {Object}
OO2a ran sc ⊆ cls
OO3 ∀C ∈ dom sc • (C,Object) ∈ sc+

OO3a ∀C ∈ dom sc • ∀D1,D2 ∈ sc(|{C}|) | D1 6= D2 • (D1,D2) /∈ sc+

OO4 dom atts = cls
OO4a dom ivr = cls
OO5 ∀C1,C2 | C1 6= C2 • dom(atts C1) ∩ dom(atts C2) = ∅
OO6 ran(

⋃
ran atts) ⊆ T ∪ cls

Table 6: Healthiness conditions of class theory

variable ivr that associates an invariant predicate with each class. As usual, we also define a
distinguished class Object that acts as the base of the class hierarchy.

With our observational variables defined, we can proceed to define our healthiness conditions
which define the invariants on the class structure. They are given in Table 6. As with [47] we
define these relative to the theory of invariants [9]. The theory of invariants effectively converts
a predicate over the state to a relation that specifies preservation of that predicate by lifting it
into a design. It defines a parametric healthiness condition SIH(φ), where φ is the invariant,
such that SIH(φ)(P ` Q) = (P ∧ φ) ` (Q ∧ φ′). Thus our class invariants are both assumed
and preserved by elements of the UTP theory.

The healthiness conditions are mainly adapted from [47], though we have added three addi-
tional healthiness conditions. OO1 states that Object must always be a member of the set of
classes and thus this set is never vacuous. OO2 states that the domain of the subclass relation-
ship includes every class other than Object , or alternatively every class other than Object has
a superclass. OO3 states that every class must be related to the Object class via the subclass
relationship.

In the original work OO2 and OO3 together were sufficient to ensure that the subclass graph
is acyclic, effectively by ensuring that the underlying relation forms a tree rooted by Object .
However, since we now permit multiple inheritance, we do not necessarily have a tree, but
rather a directed acyclic graph (DAG). We therefore require two additional healthiness condi-
tions, OO2a and OO3a (named so as to remain consistent with existing work).

OO2a requires that the range of sc is within the set of classes. This was automatically satisfied
in the case of single inheritance through OO2 and OO3 since every class other than the root
class Object is in the domain, and so each class must eventually reach the root (the inheritance
tree is rooted). However, since we have multiple inheritance, apart from OO2a it would be pos-
sible to have classes with two roots. OO3a disallows redundant inheritance, that is inheriting
classes D1 and D2 where D1 is superseded by D2. Specifically, it states that if D1 and D2 are in
the image of sc under {C}6, and it follows that D1 and D2 are different, then D1 and D2 cannot
be related in the subclass hierarchy sc+. This also helps ensure that there are no cycles in sc+.
OO3a is trivially satisfied in the case of single inheritance.

6The (||) brackets denote relational image
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Healthiness condition OO4 states that attributes are defined for each class, and OO4a ensures
that an invariant is defined for each class. OO5 states that no two different classes can have
the same attributes, that is attribute names are unique. Finally, OO6 states that the type of each
attribute must either be a basic type, or else a defined class in cls. Thus we can define the
overall healthiness condition for class declaration:

OO =̂ SIH
(

OO1 ∧ OO2 ∧ OO2a ∧ OO3 ∧ OO3a∧
OO4 ∧ OO4a ∧ OO5 ∧ OO6

)

This healthiness condition is idempotent, since any SIH lifted healthiness condition is idempo-
tent through the idempotency of conjunction. From these healthiness conditions, we can prove
the following important property.

Theorem 4.1 (≺ is a strict partial order under OO)

Proof 4.1 Assume OO. It suffices to show that ≺ is transitive and irreflexive:

• Transitivity. By definition of ≺ as a transitive closure.

• Irreflexivity. By contradiction. Assume that there is a class A where A ≺ A. Then there
is a chain B1 · · ·Bn where ∀ 1 ≤ i ≤ n − 1 • (Bi,Bi+1) ∈ sc, such that B1 = Bn = A.
We know that for any i such that 1 ≤ i ≤ n, by OO2 that Bi 6= Object , since Object
can have no parent, and by OO3 that Bi ≺ Object . Then it must be the case that there
exists k and C such that 1 ≤ k ≤ n where (Bk,C) ∈ sc and 6 ∃ i.Bi = C, i.e. C is not
in the chain. Moreover, it follows that (Bk,Bk+1) ∈ sc. But then also Bk+1 ≺ Bk and by
transitivity, Bk+1 ≺ C. By OO3a this is not allowed and so we have a contradiction. �

As a corollary, we can assert that ≺ is acyclic as required.

4.2 Class Declaration

The class theory defines commands for the creation of classes, attributes, invariants, and meth-
ods. It contains the following operators, the first three of which are adapted directly from
[10]:

• class A extends B1 · · ·Bn – create a new class called A, with superclasses B1 · · ·Bn;

• att A x : T – create a new attribute in class A called x with type T;

• meth A m pds • p – create a new method in class A called m with parameters pds and
body p;

• invar A p – add an invariant predicate p to class A or augment the existing invariant.

The definition of a class then consists of a sequence of commands that create such definitions.
We give a semantics to this calculus using the theory of designs, where each construct will
specify as the precondition the declarations that must already exist. The postcondition will
then add new declarations. Moreover, each command must preserve the invariants specified in
OO. Thus each class definition command has the form OO(P ` Q), i.e. it is a design that
satisfies the theory invariants.

For our semantic definitions we assume the presence of a fixed contextual alphabet Σ that
contains all the theory observational variables and method variables declared. We will now
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proceed to give definitions for each of the commands in our class calculus. These definitions
are heavily mathematical, and so a casual reader may wish to skip to Section 5 to see how these
commands are applied in the VDM-RT semantics.

4.2.1 Classes and Attributes

Definition 4.1 (Class introduction) The declaration of a class is defined as shown below.

class A extends B1 · · ·Bn =̂

OO



A 6= Object ∧ A /∈ T ∪ cls ∧
(∀ i ∈ {1 · · · n} • Bi ∈ cls) ∧
(∀ i, j ∈ {1 · · · n} • Bi ⊀ Bj)
`
(cls′ = cls ∪ {A})
∧ (sc′ = sc ∪ {A 7→ Bi | 1 ≤ i ≤ n})
∧ (atts′ = atts ∪ {A 7→ ∅})
∧ (ivr′ = ivr ∪ {A 7→ val self : Object • true})
∧ IIΣ\{cls,sc,atts,ivr}


The design updates variable cls with A and maps it in the relation sc to B1 · · ·Bn as its immediate
superclasses. Only new names are allowed (A /∈ T ∪ cls), and classes B1 · · ·Bn need to have
been previously declared (Bi ∈ cls). Moreover we require that no two superclasses are ancestors
of each other; this ensures that OO3a is satisfied. An entry for A in atts is mapped to the empty
set, and the initial class invariant is simply true for any object. No other observational variable
is modified as specified through conjoining the predicate with a skip operator (II) parametrised
by the unchanged variables.

Definition 4.2 (Attribute introduction) To introduce an attribute x of type T in class A we
can use the construct defined below.

att A x : T =̂

OO


A ∈ cls
∧ x /∈ dom

⋃
{N : cls • atts(N) }

∧ T ∈ T ∪ cls
`
(atts′ = atts⊕ {A 7→ (atts(A) ∪ {x 7→ T})})
∧ IIΣ\{atts}


The class A must exist, the attribute must not already be declared in any existing class, and
the type must be a valid type. The second of these may seem like a substantial limitation in
the creation of class hierarchies, but it should be noted that each attribute name of a VDM-RT
class is qualified by the containing class. This allows us to overcome the problem of diamond
inheritance for attributes (see Section 5.1). Assuming all the these preconditions are satisfied,
the set of attributes is updated.

4.2.2 Method Definition

Each class can potentially provide its own implementation of a method m. Thus, a method is
represented by a variable m : CName 7→ (Object × T1 × · · · × Tn → Pred) that represents the
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method table associated with m. As usual the method takes the object as a parameter, together
with value and result parameters. As new method implementations are defined, this table is
updated to include implementations for particular classes. This is in contrast to [10] where each
method is simply represented by the body of that method with a top-level conditional that picks
the appropriate implementation based on the given object. We chose to explicitly represent the
table as it enables non-deterministic method selection for multiple inheritance.

Definition 4.3 (New method introduction) For new methods, the declaration is defined as
follows.

meth A m pds • p =̂

OO


var m ;

A ∈ cls
∧ ∀ t ∈ types(pds) • t ∈ T ∪ cls
`
(m′ = {A 7→ vres self : Object ; pds • P})
∧ IIΣ\{m}




provided m /∈ Σ

We introduce a new variable m into scope, the identifier for the new method. The class design
requires that the class A exists, and that each type in the list of method parameters is an existing
type. That being the case, m is assigned to a singleton mapping from the class name A to the
method body, which is extended with the object value-result parameter self . This operator
has a well defined behaviour only when m is not already in Σ, i.e. it is not already a declared
method. Otherwise the operator below should be used instead. It should be noted that this
construct is built on top of higher-order UTP (see chapter 9 of [21]), since it assigns a predicate
(the body of the method) to a variable.

Definition 4.4 (Method redefinition) If the method name declared is not new, the correspond-
ing definition is the following.

meth A m pds • p =̂

OO


A ∈ cls
∧ ∀ t ∈ types(pds) • t ∈ T ∪ cls
`
(m′ = m⊕{A 7→ vres self : Object ; pds • P})
∧ IIΣ\{m}


provided m ∈ Σ

If the method name has been declared already, then rather than creating a new variable we need
to update the existing one. The preconditions of the design are the same, but the postcondition
updates the method table with a new implementation for class A.

Definition 4.5 (Invariant definition) To introduce an invariant, or augment an existing one,
we can use the construct defined below.

invar A p =̂

OO


A ∈ cls
`
(ivr′ = ivr ⊕ {A 7→ val self : Object • ivr(A)(self ) ∧ p})
∧ IIΣ\{ivr}


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Definition of an invariant requires that the specified class exists, and, if it does, updates the
invariant map. If an invariant already exists for the class, then the new formula is conjoined
with the old invariant.

4.3 Object Manipulation

With the operators defined for declaring classes, attributes, and methods we proceed to define
the core language elements for creating and manipulating objects of these classes. The UTP
gives us a language of imperative programs in the theory of alphabetised relations, and as
illustrated in Figure 4 on page 13 an operational semantics can be derived from this. Since
objects in this setting are simply instances of record types, we can use the standard assignment
and other operators to handle them as ordinary values. However, we need to define some
additional operators to deal with method call and object creation, and this is the purpose of this
section.

4.3.1 Object Expressions

UTP expressions do not, by default, contain explicit type information. For object oriented
programming it is necessary that we carry type data about the class to which an object belongs.
We thus define a derived form of expression and functions for querying this type data. An
object expression e is represented by a pair: (eτ , ev), where the first element eτ ∈ T ∪ cls is
the type of e and the second element ev is its value. We can then define the construct null that
stands for a family of values, one for each class. The type held by eτ in this case is inferred
from the context. For instance, in an assignment x := null , we have that eτ = xτ ; this means
that the runtime type of null is the declared type of variable x. For our implementation of the
UTP in Isabelle all variables and expressions carry such data from the type system, thus this is
a valid assumption (Isabelle/UTP is inherently strongly typed in nature).

4.3.2 Method Call

Method call in our calculus differs from [10] in that we need to pick the appropriate method
implementation from the table. The presence of multiple inheritance means that several valid
implementations can be present, and so we make a non-deterministic choice between them. If
only one implementation is present this one will be selected.

Definition 4.6 (Method call (unqualified)) A call to an unqualified method is defined as fol-
lows.

obj.f (v1 · · · vn) =̂
d
{m(obj, v1 · · · vn) | m ∈ f (| Min≺{C ∈ dom f | objτ � C} |)}

where Min<(A) =̂ {x ∈ A | ∀ y ∈ A. y < x ⇒ y = x}

We first take the set of superclasses of the object’s class objτ that implements the given method
f (i.e. C ∈ dom f ). We then calculate from this the set of minimal elements Min≺, that is, those
classes whose implementation of f has not been overridden. Since by theorem 4.1 we know
that ≺ is a partial order, we also know that at least one such minimal element must exist. Once
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we have obtained all such candidate methods, we apply them to the object and parameters and
take a non-deterministic choice of the results.

VDM-RT also allows explicitly qualified method calls, with which an implementing class can
be explicitly chosen.

Definition 4.7 (Method call (qualified))

obj.A‘f (v1 · · · vn) =̂
d
{m(obj, v1 · · · vn) | m ∈ f (| {A} |)}

The semantics here is much simpler as we can directly pick the class method.

4.3.3 Object creation

An object value is a pair (type, value): the type is a class name and the value is a mapping from
names to state component values. Using sc and atts to recover state components and inheritance
information, we provide a definition for new as follows.

new N =̂N,


x : dom map; t : Type; v : U |
((map(x) ∈ T ) ∧ (t = map(x)) ∧ (v = εx • x ∈ carrier(t)))
∨ (∃T : cls • (map(x) = T) ∧ (t = T) ∧ (v = null)) •
x 7→ (t, v)




where map =
⋃

(atts(| sc∗(| {N} |) |))

An object is represented as a record mapping each attribute name to the respective type and
value. Creation of a new object involves creating an instance of such a record with default
values for each attribute. First, though, we must establish a collection of attributes associated
with the class, which includes the attribute from all inherited classes. This is role of the constant
map; we use the reflexive transitive closure of sc to calculate all superclasses of N and then
extracts the attributes from each class. Each attribute type in the class can either be a member
of T (a basic type) or cls (a class). If it is a basic type attribute, then we simply pick an arbitrary
member of the type’s carrier. If it is a class we insert the value null .

5 Semantics of VDM-RT Classes

In this section we show how VDM-RT classes can be given a semantics in terms of the calcu-
lus presented in section 4. We first describe some preprocessing steps, and then describe the
semantic transformations for the VDM-RT language.

5.1 Preprocessing

Our class theory does not explicitly handle resolution of name clashes through shadowing, mul-
tiple inheritance, or overloading. There is a general assumption that attributes and differently
typed methods possess unique names across the scope of all classes. In real programs this is of-
ten not be the case, and so prior to application of our semantic transformations we require some
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class A
instance variables
x : real

end

class B
instance variables

y : seq of nat1

operations
bop : nat1 ==> ()
bop(n) == y := [n] ˆ y

end

class C
instance variables
y : set of char

end

class D is subclass of B, C end

Table 7: Diamond inheritance problem

initial static type checking and α-renaming. This static renaming should be performed either
during parsing or type checking in an implementing tool. This is possible since, unlike method
overriding, which is subject to dynamic dispatch, attribute lookup and overloading resolution
can always be statically determined.

Attribute uniqueness is enforced through explicitly qualifying each attribute with the name
of the class in which is was declared. This serves to ensure that each object, when created,
contains each attribute of each inherited class qualified by the name of that class. This also
partially solves the diamond inheritance problem, illustrated in Table 7. Two instances of the
problem manifest in class D: firstly, attribute x is inherited twice (from both B and C), and two
differently typed versions of y are given. Qualifying the attribute names means that class D has
three attributes, namely A‘x, B‘y, and C‘y.

Methods that access these variables access their local version – for example, in the body of
operation bop, y is is renamed so that y becomes B‘y. Moreover, since only one copy of x is
present, all methods access the same variable; there is no need to distinguish different copies.
An attempt to access an attribute called y in D can either result in a type error (if this situation is
undesirable), or else a standard resolution strategy can be adopted, such as right-to-left ordering
of superclass attributes. We leave this as an open question for discussion.

In general an attribute access expression can be rewritten thusly:

x.a x.A‘a
where x : B, A ∈ Min≺{C | B � C ∧ a ∈ attr(C)}

Min< yields the (non-empty) set of minimal elements under the strict partial order <, ≺ and �
are the strict and non-strict subclass relations, and attr yields the set of attribute names defined
in a class. Thus A is picked from one of the most direct ancestors of B that define an attribute
named a. If B itself defines a, then a singleton set results, and thus B is picked. This semantics
requires that we can query the subclass relationship and the direct attributes of a class, so in an
implementing tool this information must be computed as an initial step.

Overloading is resolved through renaming methods to include the input and output types. For
example, if we can have two identically named operations:

myop : nat ==> ()
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myop : char ==> ()

Then we would create two methods, myop nat and myop char, corresponding to the two
types. Calls to such operations are likewise rewritten through a static type check to determine
the correct input parameters. Alternatively if being implemented within a logical tool like
Isabelle that supports overloading natively these facilities can also be utilised (as we do in
Section 6).

5.2 Semantic Transformations

In this section we define a collection of semantic functions that map elements of the α-renamed
VDM++ abstract syntax tree to UTP class predicates. We present these semantic functions
using the Oxford-style semantic brackets. This a departure from the UTP approach to simply
having elements of the language distinguished with a teletype font face. We use this approach
as we sometimes also want to carry contextual information in the transformation, and we want
to emphasise that this stage is technically the second stage of rewriting.

Aside from the functions here explicitly defined, we also assume the following functions:

• JeKexp – maps a VDM expression to a UTP expression. The translation is relatively
straightforward as both have their foundations in ZF set theory;

• JPKprg – maps a VDM operation body (a program) to a UTP alphabetised relation. Again
this is more or less direct, and uses the operators defined for object manipulation in
Section 4.3;

• JtydefsKA
tyd – defines constants for each of the given type definitions. Types in VDM are

simply represented as sets in UTP (or types in HOL);

• JvaldefsKA
vld – defines constants for each of the value definitions;

• JvaldefsKA
fnd – defines constants for each of the function definitions.

In the following transformations, we focus only on the object-oriented aspects.

5.2.1 Classes

The semantics of a VDM++ (or VDM-RT) class is given as a mapping into the class calculus.
Declaration of a class A actually yields two class declarations in the calculus: one named A
that corresponds to the actual declared class, and one named A-stat that will group the static
elements of A, such as attributes. This treatment of static constructs is novel contribution
beyond the previous work in [10, 47].

Declarations of types, values, functions, invariants, and operations are all given a semantics
through corresponding semantic functions. A default constructor for the static class is created.
It is called A-stat and assigns default values to each of the static instance variables. Finally,
a single object of type A-stat is created that acts as the companion object for A with all static
content.
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u

wwwwwwww
v

class A is subclass of P1 · · ·Pn

types tydefs
values valdefs
functions fundefs
instance variables ivdefs
operations opdefs

end A

}

��������
~

vdm-pp

=̂



class A extends P1 · · ·Pn ;
class A-stat ;
JtydefsKA

tyd ; JvaldefsKA
vld ;

JfundefsKA
fnd ; JivdefsKA

ivd ;

JopdefsKA,JivdefsKasn
opd ;

meth A-stat A-stat =

res r : () • JivdeclsKsasn ;
A := newA-stat()


5.2.2 Instance Variables

Instance variables are represented as attributes (att) in the theory. Class variables are assigned
to the corresponding static class A-stat. Invariants are mapped to the invariant command. A
sequence of attribute definitions is simply sequentially composed.

Jx : T[:= e]KA
ivd =̂ att A x : T

Jstatic x : T[:= e]Kivd =̂ att A-stat x : T

Jinv PKA
ivd =̂ invar A JPKexp

JV1 ; V2KA
ivd =̂ JV1KA

ivd ; JV2KA
ivd

Default assignments for instance variables are accumulated into an assignment predicate, that is
used to augment the default constructor. That is to say, in this semantics default assignments are
really considered as the creation of a default constructor. Only instance variables are considered
here (they map to skip), with default assignments to class variables handled separately. Instance
variables with no default values also yield a skip in the constructor.

Jx : TKA
asn =̂ II

Jx : T := eKA
asn =̂ x := e

Jstatic x : T := eKasn =̂ II

Jinv PKA
asn =̂ II

JV1 ; V2KA
asn =̂ JV1KA

asn ; JV2KA
asn

5.2.3 Implicit and Explicit Operations

Both kinds of operation are interpreted as methods whose bodies are UTP designs. The designs
assume the precondition and invariant holds, and commits to establishing the post condition
and preserving the invariant. An explicit operation additionally encapsulates the semantics of
the operation body in the post condition. Therefore, an explicit operation whose body does
not satisfy the postcondition or violates the invariant is equivalent to the miraculous design>D.
This is a strong interpretation of the use of invariants and postconditions in the semantics, and
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in practical terms it may be unnecessarily restrictive. For example, we could alternatively prove
that the operation satisfies its obligations, rather than asserting that it does. Nevertheless, since
this is a safe use of the assertional formulas we retain the strong semantics.

s
opn(x1 : T1...xn : Tn) r : U
pre Pre post Post

{C,asn

opd
=̂ meth C opn

 res r : U ; val x1 : T1 · · · xn : Tn

•
(

JPreKexp
∧I(C)

)
`
(

JPostKexp
∧I(C)′)

)
provided opn 6= C

u

v
opn : (T1 × Tn) =⇒ U
opn(x1...xn) == Body
pre Pre post Post

}

~

C,asn

opd

=̂ meth C opn


res RESULT : U ; val x1 : T1 · · · xn : Tn

•
(

JPreKexp
∧I(C)

)
`

 JBodyKprg ∧
JPostKexp
∧I(C)′)




provided opn 6= C

5.2.4 Constructors

A constructor is a special class of method whose name matches that of the encapsulating class.
Constructors, like regular operations, are given semantics as designs. Constructors in VDM-
RT are always explicit operations, and do not have pre or postconditions; thus the constructor
design has assumption true. The commitment assigns default values to variables using the
accumulated asn, and then executes the constructor body. Additionally, we assume that each
constructor must establish the invariant (though it need not hold initially); a constructor which
does not establish the invariant is miraculous (>D). The definition of a sequence of operations
yields a sequential composition.

s
C : (T1 × Tn) =⇒ C
C(x1...xn) == Body

{C,asn

opd
=̂ meth C C

(
res RESULT : C ; val x1 : T1 · · · xn : Tn

• true ` (asn ; JBodyKprg) ∧ I(C)′

)

JOp1 ; Op2KA,asn
opd =̂ JOp1KA,asn

opd ; JOp2KA,asn
opd

6 Mechanisation of Objects and Classes

In this section we consider an experimental mechanisation of the theory of objects in our
Isabelle-based theorem prover, Isabelle/UTP. The section has been type set and processed us-
ing Isabelle’s automatic document preparation system. Thus all definitions herein have been
verified by Isabelle.

A major question to be answered by a semantic embedding of the theory of objects is how
should the definitional constructs of classes, attributes, and methods be handled in the theorem
prover. Our theory in Section 4 represents a collection of declarations as a UTP predicate
that assigns the constructs to variables. In Isabelle/UTP we have a semantic embedding of the
UTP predicate model and therefore we could use this to provide a target for class declarations.
Indeed, if we wish to prove that our class constructs satisfy the healthiness conditions this is
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what we must do. This requires though that we can give an account to higher order predicates
in our mechanisation to allow method definitions.

Giving a full account to higher order predicates in Isabelle/UTP is a non-trivial problem be-
cause it requires a self-injective universe of predicates. Our model of predicates in Isabelle/UTP
is binding sets, that is Pred = P(V → U) sets of functions from variables (V) to values in some
universe U. In order to have predicates assigned to variables, we require that Pred ⊆ U, but
such a construction is generally impossible in HOL as it would invoke Russell’s paradox. A po-
tential solution to this problem lies in axiomatic extension to Isabelle that carefully constructs
such as universe that supports only limited self-injection. An initial attempt at such an exten-
sion in Isabelle has been developed by Zeyda7 and appears promising. However, if we wish to
remaining purely definitional, we need another solution.

For our implementation, we follow an alternative shallower approach of using Isabelle’s own
definitional mechanisms for the declaration of classes and methods. Thus the observational
variables like cls, atts, and method definitions m rather than being UTP variables, instead be-
come variables of the Isabelle theory state that can be manipulated by ML code. We therefore
avoid some of the problems of Higher Order UTP, although limit ourselves to constructions pos-
sible directly in Isabelle. The implementation considers a fragment of the language we defined
in Section 4. Specifically we implement the procedure and object manipulation constructs, and
not the declarative constructs, which can be implemented through ML procedures.

We also implement a form of dynamic dispatch through the use of Isabelle’s own type system.
Specfically, dynamic dispatch is achieved through the creation of HOL’s polymorphic con-
stants that enable the selection of an appropriate method implementation at runtime. Moreover
we provide direct support for parameter overloading through the type system – this is strictly
speaking unnecessary and could also be implemented through method renaming (though using
the type system achieves a more direct translation). The implementation here is thus a relatively
shallow embedding of UTP classes, and means we cannot prove much about the dispatch mech-
anism since it is core to HOL. However, we can most likely use this for theorem proving, whilst
retaining the advantages of a deep predicate model. Nevertheless, we recognise that achieving
an embedding that provides both the fidelity of a deep embedding and the verification utility of
a shallow embedding remains future work.

Objects are modelled using HOL records, and classes as record types. Class methods are simply
UTP procedures. We have already implemented the syntax of UTP procedues in Isabelle/UTP,
thus we can write definitions like this:

definition prc :: (nat × (nat, ′a) pvar, ′a) uproc where
prc = ‘‘val x : nat, res y : nat · y := $x + �5�‘‘

It represents a simple procedure taking a value parameter x of type nat, and a result parameter
y of type nat that is assigned the value x + 5 in the body. Procedures are characterised by the
type ( ′par, ′m) uproc, for some parameter type ′par model type ′m. For prc the parameter type
pairs a natural number with a variable of the natural number type, the latter being the result
variable. Additionally we provide syntax for the return statement in the form of ReturnA
which assigns to a distinguished result parameter called RESULT the given value. For example
we could rewrite the above procedure with a return as

definition prc ′ :: (nat × (nat, ′a) pvar, ′a) uproc where

7https://github.com/isabelle-utp/utp-main/blob/axiomatic/theories/theories/thiago.thy
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prc ′= ‘‘val x : nat, res RESULT : nat · return ($x + �5�)‘‘

Due to the shallow nature of this model, we cannot directly implement the healthiness condi-
tions given in Section 4, as these would need to operate at the level of the Isabelle definitional
mechanisms rather than UTP predicates. Specifically, we here rather than creating a UTP pred-
icate consisting of the definitions, we apply the definitions directly to the HOL proof state –
it is this which makes our implementation essentially shallow. For similar reasons, we also
cannot handle recursive method definitions. Theoretical support for rescursive methods has
already been accomplished in a new UTP theory of methods in [47]. However, this approach
uses Higher-Order UTP predicates rather than Isabelle constants to formalise method defini-
tions. Initial investigation seems to conclude that this kind of machinery is beyond a purely
definitional implementation and may require axiomatic extensions to Isabelle/HOL, which we
are exploring separately.

type-synonym ( ′cl, ′inp, ′out, ′m) umeth
= (( ′cl, ′m) pvar ∗ ( ′out, ′m) pvar ∗ ′inp, ′m) uproc

We introduce our type of methods umeth as an Isabelle type synonym. It is a parametric type
with four parameters:

• cl represents the class type, and will usually be the Isabelle record type containing the
classes (and objects) state space;

• inp represents the input type of the method, which will usually be a tuple of types;

• out represents the output type of the method, which may be the unit type unit if no value
is returned;

• m is the value model of Isabelle/UTP.

The representation of a method is then simply a procedure (uproc) where the parameters consist
of a tuple with three elements:

• a variable with the class type, which records the target of a method call;

• a variable with the output type, which records the result;

• the input type.

Next we introduce a special class of methods that represent class constructors.

consts UCONSTRUCT :: ( ′cl, ′inp, unit, ′m) umeth

Class constructors are methods that are called upon object creation. We represent the con-
structor implementation table as a polymorphic constant UCONSTRUCT with a method type
returning no value. This can then be overridden for each new class created, and each new input
combination.

With the core types defined, we can next proceed to define the core constructs of object ori-
ented programs, namely the new and method call commands. For this mechanisation we do
not handle object expressions as given in 4.3, but rather represent the constructs directly as
commands.

definition NewA ::
′m :: TYPED-MODEL alpha⇒ ′class itself ⇒ ( ′class, ′m) pvar⇒ ′m uapred

where NewA A c x = AssignA x A (LitPE (undefined :: ′class))
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The basic new construct, NewA, takes an alphabet, class type, and variable to assign the new
class to. There is no constructor to call as such, so the meaning of this statement is simply the
assignment of an arbitrary literal value of type class selected by the undefined construct.

definition MethCallA ::
′m :: TYPED-MODEL alpha⇒ ( ′cl, ′m) pvar⇒ ( ′cl, ′inp, ′out, ′m) umeth
⇒ ( ′inp, ′m) pexpr⇒ ( ′out, ′m) pvar⇒ ′m uapred where

MethCallA A obj f v x = ProcCallA f (ProdPE (LitPE obj) (ProdPE (LitPE x) v))

The method call command, MethCallA, takes an alphabet, object variable, method, an expres-
sion of the input type, and a variable of the output type. It constructs a product (using ProdPE)
of the input object, input value, and output variable which to which the method is applied us-
ing the procedure call operator ProcCallA. The latter simply evaluates the passed parameter
expression and feeds it through the lambda term representing the method.

definition NewConsA ::
′m :: TYPED-MODEL alpha⇒ ′class itself ⇒ ( ′class, ′m) pvar
⇒ ( ′inp, ′m) pexpr⇒ ′m uapred

where NewConsA A c obj inp = (NewA A c obj ; α MethCallA A obj UCONSTRUCT inp unde-
fined)

Construction of a new class via a constructor is achieved with the NewConsA command. It takes
an alphabet, the class type to be constructed, a variable where the new object should be stored,
and an expression representing the input to the constructor. Internally, this command constructs
a new (arbitrary) object instance using NewA and then calls the UCONSTRUCT method on the
new object which executes an appropriate constructor (if one exists).

We now give a short example to illustrate how classes and object can be constructed in this
framework, with the help of two classes: Date and Person that we create. The date class con-
sists of three fields representing the day, month, and year, associated accessor methods, and
constructors as indicated below.

class Date
instance variables

day : nat
month : nat
year : nat

operations
getDay : () ==> nat
getDay() == return day

getMonth : () ==> nat
getMonth() == return month

getYear : () ==> nat
getYear() == return year

Date : () ==> Date
Date() == day := 1; month := 1; year := 1970

Date : (nat * nat * nat) ==> Date
Date(d, m, y) == day := d; month := m; year := y

end
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The Person class consists of three fields for the forename, surname, and date of birth.

class Person
instance variables

forename : seq of char
surname : seq of char
dateOfBirth : Date

operations
Person : () ==> Person
Person = surname := ""; forename := ""; dateOfBirth := new Date()

In Isabelle we represent the Date class as the following record:

record date =
day :: nat
month :: nat
year :: nat

This record introduces a new unique Isabelle type that will represent the class, and all objects in
the class will have this type. Next we define three accessor methods for these attributes.

consts
getDay :: ( ′cl, ′inp, ′out, ′m) umeth
getMonth :: ( ′cl, ′inp, ′out, ′m) umeth
getYear :: ( ′cl, ′inp, ′out, ′m) umeth

As for UCONSTRUCT we define them all as polymorphic constants. At this level the types of
these constants are completely unconstrained, as they can be implemented for any class, and
simply act as method names rather than implementations. We next define two implementations
of constructors for the date class.

definition
date-constructor-1 =
‘‘vres self : date, res RESULT : unit, val dummy : unit
· self•day := 1
; self•month := 1
; self•year := 1970‘‘

The first implementation, date-constructor-1, is the default constructor which takes no inputs
and produces no outputs. It takes a date object parameter self, a result parameter (which is
nullary), and an input parameter called dummy (which is also nullarly as the method has no
input). The body assigns the values 1, 1, and 1970 to the three object attributes.

definition
date-constructor-2 =
‘‘vres self : date, res RESULT : unit, val day : nat,

val month : nat, val year : nat
· self•day := $day; self•month := $month; self•year := $year‘‘

The second implementation, date-constructor-2, takes three explicit parameters to populate the
three attributes.

defs (overloaded)
date-constructor-1-meth [simp]: UCONSTRUCT ≡ date-constructor-1
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date-constructor-2-meth [simp]: UCONSTRUCT ≡ date-constructor-2

With two constructors defined we use Isabelle’s overloading mechanism to provide constructor
implementations for the date constructor in UCONSTRUCT. Thus when a new object of type
date is constructed with one of the two parameter types, the appropriate implementation will be
selected by the type system. We similarly define implementations of the three class methods.
Unlike the constructors, these also have return types.

definition date-getDay = ‘‘vres self : date, res RESULT : nat, val dummy : unit
· return($self•day)‘‘

definition date-getMonth = ‘‘vres self : date, res RESULT : nat, val dummy : unit
· return($self•month)‘‘

definition date-getYear = ‘‘vres self : date, res RESULT : nat, val dummy : unit
· return($self•year)‘‘

defs (overloaded)
date-getDay-meth [simp]: getDay ≡ date-getDay
date-getMonth-meth [simp]: getMonth ≡ date-getMonth
date-getYear-meth [simp]: getYear ≡ date-getYear

We show below how this class can then be used in a UTP program. We first use the first
constructor to build a new date type, and apply the getDay method to it (which in this case
will yield 1), assigning its return value to a local variable y.

term ‘‘dcl y : nat · new{x:TYPE(date)}() ; y := x•getDay()‘‘

In the second example we provide three explicit inputs to the constructor, which will therefore
cause the second constructor to be selected.

term ‘‘dcl y : nat · new{x:TYPE(date)}(�25 :: nat�,�08 :: nat�,�1983 :: nat�) ; y := x•getDay()‘‘

Finally, we show how the date class can be used in the context of another class call person. We
first create a new record type, which has a dateOfBirth attribute.

record person =
surname :: string
forename :: string
dateOfBirth :: date

We then produce a default constructor for the person class, which sets both the surname and
forename of the person to an empty string, constructs a new date object, and finally assigns this
to dateOfBirth.

definition
person-constructor-1 =
‘‘res self : person, res RESULT : unit, val dummy : unit ·

self•surname := ′′′′; self•forename := ′′′′;
(dcl dob : date · new{dob:TYPE(date)}() ; self•dateOfBirth := $dob)‘‘

defs (overloaded)
person-constructor-1-meth [simp]: UCONSTRUCT ≡ person-constructor-1
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When the date constructor is invoked the Isabelle type system will detect that we give it the
input type unit and will therefore select implementation 1 for the constructor. We also likewise
overload UCONSTRUCT with new definition for the person constructor.

Thus we have shown how classes can be represented in Isabelle. Such class definitions for Date
and Person could in the future we generated by suitable ML code in Isabelle. We would then
have the ability to start to prove theorems about VDM-RT classes. For now though, this is also
left as future work.

7 Conclusion

In this deliverable we have summarised the initial work towards creation of a novel semantics
for VDM-RT. We described how object-orientation can be handled through a UTP theory of
classes and methods, including novel healthiness conditions that allow handling of multiple
inheritance. We then gave a translation from VDM-RT classes into this calculus that includes a
new approach to handling of static attributes, methods, and constructors. We also provided an
Isabelle proof-of-concept for some of key object-oriented constructs in the UTP. In addition we
also mechanised the existing operational semantics in appendix A.1 that has allowed us to gain
greater insight into the language. Moreover, our own UTP theory effectively elaborates the flat
class state-space of the former semantics with inheritance.

The next deliverable in this series, Deliverable D2.2b, will accompany the work described
herein by providing a semantics for real-time and interruption. We outlined in this deliverable
a proposed approach using CircusTime or CML in section 3 that we will investigate further. In
particular we will show how VDM-RT threads and their concurrent behaviour can be modelled
using a variant of CircusTime/CML processes. This will ensure that VDM-RT has a well-
founded semantics, and also allow us to begin to formal link VDM-RT to the other notations
in this project, using our lingua franca language, INTO-CSP. This semantics will allow us to
ensure the INTO-CPS notations can be soundly integrated, enabling a well-founded tool-chain
where evidence can be gathered from a variety of different components. We previously demon-
strated this approach in our implementation of the Symphony tool8 for modelling systems of
systems, that allowed us to build a suite of tools with the common foundation of the UTP [14].
For example, our mechanisation in Isabelle could provide a way forward for building a program
verifier for VDM-RT controllers.

Appendices

A Mechanised Operational Semantics

In this appendix we provide a partial mechanisation of the operational semantics of VDM-RT
from [28] in Isabelle. This is not a UTP semantics, which is our eventual aim, but rather a
direct implementation using Isabelle datatypes and inductive sets. This then gives us a baseline

8http://symphonytool.org/
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mechanised semantics with which to guide future progress. Additionally the mechanisation
highlighted a few small inconsistencies in [28] that we have now fixed. Though we have not
verified the operational semantics, it has passed Isabelle’s type checker and is therefore well-
formed.

Transition rules in the mechanised operational semantics are written using Isabelle’s notation
for inductive predicate clauses. A typical law will have the form JA; B; CK =⇒ D where A, B,
and C are assumptions of the rule, and D is the consequent, in sequent calculus style.

A.1 VDM-RT State Types

We describe the types needed to describe the state of a VDM-RT model, in terms of CPUs,
threads, busses, statements, objects, message and so on. The majority of the types are adapted
from [28] but modified for Isabelle/HOL, for example by the replacement of union types with
disjoint unions and algebraic datatypes. Moreover the names of primitives and types differ
slightly and we have made a number of simplifications. Datatypes not directly relevant for the
semantics (such as patterns) are omitted from the presentation, though present in the Isabelle
theories. We also specify some basic types like VDMValue and VDMExpr, and functions like
the VDM-SL typing relation x :v t that are omitted. A number of identifier types are also
defined, including:

• cla-id – class identifier

• obj-id – object identifier

• op-id – operation identifier

• fun-id – function identifier

• thr-id – thread identifier

• bus-id – bus identifier

• var-id – variable identifier

We first describe bindings Σ, that are partial functions mapping variables identifiers to VDM
values. They are used widely in the semantics to represent state spaces, let definitions, and the
result of executing pattern matches.

type-synonym Σ = var-id ⇀ VDMValue

Next we defined pending updates to a state, which are partial mappings from object identifiers
to bindings. Each write within an object does not update the global CPU state until specific
synchronisation times. Until then, they are stored in a pending buffer.

type-synonym Pending = obj-id ⇀ Σ

An assignment associated variable identifier, or object and variable identifier, with an expres-
sion.

record Assignment =
asntarget :: var-id + (obj-id × var-id)
asnexp :: VDMExpr

record CallContext =
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ccpending :: Pending
ccstate :: Σ
ccpost :: VDMExpr option

type-synonym Definition = var-id ∗ VDMExpr

The statement type specifies all the different kind of statements that can be constructed in
VDM-RT.

datatype Stm
= Skip A null statement
| Assignment Assignment Assign an expression to a variable
| Atomic Assignment list A list of atomic assignments
| AsyncCall (name: (obj-id × op-id) + (cpu-id × obj-id × op-id))

(args: VDMExpr list)
Asychronous call, consisting of a method identifier and arguments
| SyncCall (ctarget: (var-id + (cpu-id × thr-id)) option)

(name: (obj-id × op-id) + (cpu-id × obj-id × op-id))
(args: VDMExpr list)

Sychronous call
| Cases (exp: VDMExpr) (cases: (Pattern × Stm) list) Stm option

Case statement
| Cycles (cycles: VDMExpr) (body: Stm)

Cycles statement
| DurOrPDur (durOf : DurOrPDur)

Either a duration statement or a (semantic) partial duration statement
| ForIndex (var: var-id) (fromind: VDMExpr) (toind: VDMExpr)

(byind: VDMExpr) (body: Stm)
For loop over an incremented index interval
| ForSet (pattern: Pattern) (setExp: VDMExpr) (body: Stm)

For loop over a set
| ForSeq (pattern: Pattern) (setExp: VDMExpr) (body: Stm)

For loop over a sequence
| If (exp: VDMExpr) (thenb: Stm) (elseb: Stm)

If-then-else statement
| LetBe (bind: Bind) (suchThat: VDMExpr) (body: Stm)

Let-be-such-that statement
| LetDef (localDefs: Definition list) (body: Stm)

Local let definition of a list of expressions to variables
| New (nclass: cla-id) (target: var-id)
New statement: create a new object from the given class
| Return (rexp: VDMExpr option)

Return statement
| PartialLetDef (ctx: Σ) (plocalDefs: Definition list) (pbody: Stm)
Partial let statement (semantics only). Gives the evaluated variable valuations so far together with the

remaining unevaluated definitions.
| ObjectContext (object: obj-id) (objbody: Stm) (callctx: CallContext)
Object context for a statement (semantic only)
| Wait (wtarget: (var-id + (cpu-id × thr-id)) option)
| PartialAtomic Assignment list obj-id set

A collection of atomic assignments
| SimpleBlock (sbody: Stm list)
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A block consisting of a sequence of statements
| Start (obj: obj-id)
Instruction to start an object thread running
| While (exp: VDMExpr) (body: Stm)

While looop
and DurOrPDur = Dur (duration: DurTime) (dbody: Stm list)

| PDur (duration: DurTime) (elapsed: Time) (dbody: Stm list)
The duration statement body consists either of a complete duration statement with a specified time

and list of statements, or else a partially executed duration statement that is used only in the operational
semantics. The duration can either be ExecTime, meaning the statement takes the duration is the cal-
culated statement duration, or else ExpTime e meaning the duration is overriden by the specified time
expression e.

Function definitions consist of a list of argument declarations, a list of returns types, a body
expression, a precondition expression and a postcondition expression.

record Fun =
args :: (var-id × VDMType) list
ret :: VDMType list
body :: VDMExpr
pre :: VDMExpr
post :: VDMExpr

Operation definitions consist of an asynchronous flag, a list of argument declarations, a list of
return types, a body consist of a list of statements wrapped by duration statements, a precon-
dition, a postcondition, and a measure function (to aid in showing termination of a recursive
operation).

record Op =
async :: bool
args :: (var-id × VDMType) list
ret :: VDMType list
body :: DurOrPDur list
pre :: VDMExpr option
post :: VDMExpr option
measure :: Fun

A periodic thread specifies the operation that should be executed, the period of time between
each call, the clock jitter, clock delay, and offset.

record Periodic =
op :: op-id
period :: VDMExpr
jitter :: VDMExpr
delay :: VDMExpr
offset :: VDMExpr

A VDM-RT class consists of a set of superclasses, a set of constant values specified by the
class, a set of variables specifying types and initial values, a set of named operations, a set of
invariants over the instance variables, and initial behaviour which can either be a list of duration
statements (a main operation), or a periodic thread.

record Class =
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parents :: cla-id set
clvalues :: Σ
vars :: var-id ⇀ VDMType × VDMExpr
ops :: op-id ⇀ Op
funs :: fun-id ⇀ Fun
invs :: Fun set
initial :: (DurOrPDur list) + Periodic

An object consists of the class (to which the object belongs), a state binding giving values
to each of the instance variables, and a periodic countdown that determines when the next
execution of the associated periodic thread should take place.

record Object =
objclass :: cla-id
objstate :: Σ
periodicCountdown :: Time option

A call message consists of the object identifier, the operation identifier, the list of arguments,
an optional thread to which control should be returned after the completion of the operation (in
the case of a synchronous call) and the time stamp of when the message was sent.

record CMessage =
obj :: obj-id
oper :: op-id
args :: VDMValue list
replyto :: (cpu-id × thr-id) option
sendTime :: Time

A return message consists of the list of values being returned, the thread to which control will
be returned to, and a time-stamp.

record RMessage =
rvalue :: VDMValue list
replyto :: cpu-id × thr-id
sendTime :: Time

A thread consists of its status, a collection of pending writes associated with the thread, an
object context within which the thread runs, and a body giving the statements to be executed
by the thread. A thread can be in one of five states: running, runnable, waiting, pending, or
completed.

datatype ThreadStatus = Running | Runnable | Waiting | ThrPending | Completed

record Thread =
status :: ThreadStatus
pending :: Pending
tcontext :: obj-id
tbody :: Stm list

A bus consists of a set of CPUs that the bus connects, a speed indicating how fast the bus
forwards messages with respect to the global clock, and a queue of messages awaiting delivery
to one of the connected CPUs.

record Bus =
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cpus :: cpu-id set
speed :: nat
queue :: (cpu-id × (CMessage + RMessage)) list

A CPU consists of the set of objects that is running on the CPU, the set of associated threads,
and the speed of the CPU relative to the global clock.

record CPU =
objects :: obj-id ⇀ Object
threads :: thr-id ⇀ Thread
speed :: nat

With all the main components of different parts of the VDM-RT state specified, we now com-
plete the definition by giving the overall state in terms of the CPUs, Busses, Classes, and present
time.

type-synonym CPUs = cpu-id ⇀ CPU
type-synonym Busses = bus-id ⇀ Bus
type-synonym Classes = cla-id ⇀ Class

record VDMRT =
cpus :: CPUs
busses :: Busses
time :: Time
classes :: Classes

A.2 VDM Timed Expressions

A VDM-RT expression has a time penalty associated with it, defining how much time evalu-
ation of the expression takes. The following Isabelle locale gives a context for evaluation of
timed expressions.

locale VDMRT-Context =
fixes

SkipTime IfTime WhileTime CasesTime NewTime ForIndexTime ForSeqTime
ForSetTime LetDefTime LetBeTime LocalAssignmentTime RemoteAssignmentTime
AtomicTime StartTime LocalSyncCallTime LocalAsyncCallTime RemoteSyncCallTime
RemoteAsyncCallTime :: Time

begin

The locale specifies a fixed constant for each of the statements which specifies its default time
penalty. We also specify a (partial) evaluation function for timed expressions. It takes a context
consisting of the current time, the set of classes, set of CPUs, set of local pending variables
values, and the object context. Given a context and a VDM expression, the evaluation function
yields a (optional) value and new time.

fun evalVDMRTExpr ::
Time × Classes × CPUs × Pending × obj-id⇒
VDMExpr⇒ (VDMValue × Time) option (- ` [[-]] [100,0] 100) where

(τ , C, N, P, ob) ` [[VarE x]] = do { Γ <− P ob; v <− Γ(x); Some (v, 0) } |
(τ , C, N, P, ob) ` [[LitE v]] = Some (v, 0) |
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(τ , C, N, P, ob) ` [[BinE b e f ]] =
do { (u, t1) <− (τ , C, N, P, ob) ` [[e]]

; (v, t2) <− (τ , C, N, P, ob) ` [[f ]]
; if (b ∈ ArithOp)
then do { x <− numOf (u); y <− numOf (v); n <− numBin b (x, y)

; Some (NumV n, t1 + t2) }
else
if (b ∈ NumCmpOp)
then do { x <− numOf (u); y <− numOf (v); n <− numCmp b (x, y)

; Some (BoolV n, t1 + t2) }
else
if (b ∈ LogOp)
then do { x <− boolOf (u); y <− boolOf (v); n <− logOp b (x, y)

; Some (BoolV n, t1 + t2) }
else None } |

(τ , C, N, P, ob) ` [[ThisE]] = Some (ObjRefV ob, 0) |
(τ , C, N, P, ob) ` [[TimeE]] = Some (NumV τ , 0)

A.3 VDM-RT Operational Semantics

The VDM-RT operational semantics is specified as a collection of inductively defined sets that
give the transition relation at different levels of abstraction. For example the set vdmrt-stmt-rel
describes the operational semantics of individual statements in the context of an object, within
a thread running on a particular CPU. We begin by entering the VDMRT-Context locale that
gives the context for timed evaluation of statements and expressions. Each inductive set takes
a similar form of Γ ` p → q where Γ is a set of contextual elements (such as the set of CPUs
of the system, the set of objects running, the current time and so on), p is the element which is
being transitioned, and q is the result of applying the transition rule.

context VDMRT-Context
begin

The operational semantic rules are defined in a different order to [28]; this is simply because
in Isabelle we must declare elements in order of their dependencies. We first describe the tran-
sition relation for evaluation of bindings, such as set bindings or type bindings. The transition
relation has a context, and shows how a bind, together with a set of pending updates and a CPU
context, should map to a pattern and binding associated with that pattern. Additionally, we also
produce an updated time since evaluation of a set bind contains and expression and can thus
exert a time penalty.

inductive vdmrt-bind-rel ::
(Time × Classes × CPUs × cpu-id × thr-id × obj-id)⇒
(Bind × Pending × CPU)⇒
(Pattern list × Σ × Time)⇒
bool (- ` - −bind→ - [60,0,60] 60) where

Select a possible x of type ty and match the pattern against it using the match function.

Type-Bind:
[[ length(p) = 1
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; x :t ty
; match(hd(p), x) = Some(σ ′)
]] =⇒
(τ , css, cs, c, t, ob) ` (Inr (TypeBind p ty), pdg, cpu) −bind→ (p, σ ′, 0) |

Match over a list of patterns and merge the resulting binding.

Multi-Type-Bind:
[[ length(ps) > 1
; σ ′= merge {σ | σ p x. p ∈ set(ps) ∧ x :t ty ∧ match(p,x) = Some σ}
]] =⇒
(τ , css, cs, c, t, ob) ` (Inr (TypeBind ps ty), pdg, cpu) −bind→ (ps, σ ′, 0) |

Evaluate the given set expression, select and element, and pattern match against it.

Set-Bind:
[[ length(p) = 1
; (τ , css, cs, pdg, ob) ` [[e]] = Some (SetV valueSet, δe)
; x ∈ rcset valueSet
; match(hd(p), x) = Some(σ ′)
]] =⇒
(τ , css, cs, c, t, ob) ` (Inl (SetBind p e), pdg, cpu) −bind→ (p, σ ′, δe) |

Match over a list of patterns and merge the resulting binding.

Multi-Set-Bind:
[[ length(ps) > 1
; (τ , css, cs, pdg, ob) ` [[e]] = Some (SetV valueSet, δe)
; σ ′= merge {σ | σ p x. p ∈ set(ps) ∧ x ∈ rcset(valueSet)}
]] =⇒
(τ , css, cs, c, t, ob) ` (Inl (SetBind ps e), pdg, cpu) −bind→ (ps, σ ′, δe)

Next we describe the transition relation for statements, which is the largest of all the semantic
definitions. It describes how a list of statements, together with pending rewrites, a CPU and
collection of busses, is transformed through time. A statement is executed in the context of a
particular CPU, thread, and object, that are identified in the context. The transition relation is
inductive over the list of statements and provides a ”big-step” operational semantics. Each rule
includes a line (usually second to last) that calculates the overall time penalty for the transition
by summing up the constituent statement penalties.
inductive vdmrt-stmt-rel ::
Time × Classes × CPUs × cpu-id × thr-id × obj-id⇒
Stm list × Pending × CPU × Busses⇒
Stm list × Pending × CPU × Busses × Time⇒
bool (- ` - −stmt→ - [60,0,60] 60) where

The base case, an empty list of statements has no effect and zero time. In this rule τ represents the
present time, clss the collection of classes, cpss the collection of CPUs, c the present CPU id, t the
present thread id, and ob the present object id.

Stm-Base: (τ , clss, cpss, c, t, ob) ` ([], pdg, cpu, bss) −stmt→ ([], pdg, cpu, bss, 0) |
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If skip is at the head of the list of statements, calculate the transition for the remainder of the statements,
and add to the resulting time penalty the skip penalty.

Stm-Skip:
[[ (τ , clss, cs, c, t, ob) ` (rest, pdg, cpu, bss) −stmt→ (rest ′, pdg, cpu, bss, δ)
; δ ′= SkipTime + δ ]] =⇒
(τ , css, cs, c, t, ob) `
(Skip # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg, cpu, bss, δ ′) |

The semantics of simple block simple unwraps the contents of the block and prepends it to the beginning
of the statement list before calculating the latter’s semantics.

Stm-SimpleBlock:
[[ (τ , css, cs, c, t, ob) `

(stms • rest, pdg ′, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ) ]] =⇒
(τ , css, cs, c, t, ob) `
(SimpleBlock(stms) # stms, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ) |

The semantics of if-then-else first evaluates the conditional expression. If it evaluates to true then the
then branch is prepended to the statement list and the semantics of this is calculated. Otherwise the else
branch is used. The overall time penalty for the statement is calculated by summing the conditional
evaluation time, the remaining statement execution time, and the default time penalty in IfTime (that is
provided by the enclosing locale).

Stmt-IfTrue:
[[ (τ , css, cs, pdg, ob) ` [[e]] = Some (TrueV, δe)
; (τ , css, cs, c, t, ob)
` (th # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)

; δ ′= δe + δ + IfTime ]] =⇒
(τ , css, cs, c, t, ob) `
(If e th el # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ ′) |

Stmt-IfFalse:
[[ (τ , css, cs, pdg, ob) ` [[e]] = Some (FalseV, δe)
; (τ , css, cs, c, t, ob)
` (el # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)

; δ ′= δe + δ + IfTime ]] =⇒
(τ , css, cs, c, t, ob) `
(If e th el # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ ′) |

The while loop functions much the same as if-then-else, except that the while body and a copy of the
while statement is prepended to the statement list.

Stmt-WhileTrue:
[[ (τ , css, cs, pdg, ob) ` [[e]] = Some (TrueV, δe)
; stms = [bdy, While e bdy] • rest
; (τ , css, cs, c, t, ob)
` (stms, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)

; δ ′= δe + δ + WhileTime ]] =⇒
(τ , css, cs, c, t, ob) `
(While e bdy # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, busses ′, δ ′) |

Stmt-WhileFalse:
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[[ (τ , css, cs, pdg, ob) ` [[e]] = Some (FalseV, δe)
; (τ , css, cs, c, t, ob) ` (rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)
; δ ′= δe + δ + WhileTime ]] =⇒
(τ , css, cs, c, t, ob) `
(While e bdy # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, busses ′, δ ′) |

The semantics of the case statement first evaluates the selection expresssion e. This is then used to select
matching case patterns through a list comprehension. This (potentially empty) list is prepended to the
list of other options, and a default skip option. The head of the resulting list is selected as the case
branch that will be taken, resulting in a binding σ giving values to any case variables, and a statement
stm to be executed. Finally, a partial let def is constructed for the new pattern variable definitions, and
the semantics of the resulting expression is calculated. The overall time penalty is also calculated from
the expression time and statement times.

Stmt-Cases:
[[ (τ , css, cs, pdg, ob) ` [[e]] = Some (value, δe)
; alts = [(σ, stm). i← [0..<length cass]

, (∃ p. cass!i = (p, stm)
∧ Some σ = match(p, value)
∧ σ 6= Map.empty)]

• [(Map.empty, the(others)). others 6= None] • [(Map.empty, Skip)]
; (σ, stm) = hd(alts)
; lt = PartialLetDef σ [] stm
; (τ , css, cs, c, t, ob)
` (lt # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)

; δ ′= δe + δ + CasesTime
]] =⇒
(τ , css, cs, c, t, ob) `
(Cases e cass others # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ ′) |

The semantics for creating a new object from class cl is somewhat complicated. The class cl must exist,
and should not have periodic initial behaviour. A new object identifier oid is selected which must not
already exist on the given CPU. Initial constant values and initial variable expressions can be calculated
for the new object from the class cl. Each initial variable expression is then evaluated, resulting in a list
of values and time penalties. The initial constant and variable values are then composed to produce σ,
the initial state space for the object. The list of associated time penalties is then summed to produce
the overall time penalty for variable initialisation. The new object obje is then constructed and the
corresponding CPU is updated, adding this new object to the store associated with new object identifier.
The map of pending variables is then also updated, with the object target variable tgt pointing to the new
object reference. Finally the remainder semantics is calculated and overall time penalty produced. This
includes δe that is calculated by summing up all the time penalties associated with evaluating the initial
variable value expressions. The summing is performed by the builtin in HOL function listsum which
adds together the elements of a list.

Stmt-New:
[[ cl ∈ dom(css)
; ¬ isPeriodic(initial(the(css(cl))))
; oid /∈

⋃
{dom (objects acpu) | acpu. acpu ∈ ran(cs) ∪ {cpu}}

; initVals = clvalues (the(css(cl)))
; initVars = vars (the(css(cl)))
; inits = [i 7→ (v, δe) | i v δe. i ∈ dom(initVars)
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∧ (τ , css, cs, pdg ++ [oid 7→ initVals], oid)
` [[snd (the (initVars i))]] = Some (v, δe)]

; σ = initVals ++ [i 7→ v | i v. i ∈ dom(inits) ∧ Some (v, -) = inits(i)]
; δe = listsum (map snd (sorted-list-of-map ((Some ◦ snd) ◦m inits)))
; obje = Object.make cl σ None
; cpu ′= cpu(|objects := objects cpu ++ [oid 7→ obje]|)
; pdg ′= pdg ++ [ob 7→ (the(pdg(ob)) ++ [tgt 7→ ObjRefV oid])]
; (τ , css, cs, c, t, ob) ` (rest, pdg ′, cpu ′, bss) −stmt→ (rest ′, pdg ′′, cpu ′′, bss ′, δ)
; δ ′= δ + δe + NewTime
]] =⇒
(τ , css, cs, c, t, ob) `
(New cl tgt # rest, pdg, cpu, bss) −stmt→ (rest ′, pending ′′, cpu ′′, busses ′, δ ′) |

The next five rules deal with evaluation and execution of duration statements. The first rule takes care
of evaluating a duration statement that contains an expression. If the expression is not a constant, then
it is evaluated and a new duration statement is constructed containing the resulting constant value. This
statement, plus the rest of the program, is then executed.

Stmt-Duration-Eval:
[[ expr /∈ TimeConst
; (τ , css, cs, pdg, ob) ` [[e]] = Some (value, τ ′)
; rest ′= DurOrPDur (Dur (ExpTime (LitE value)) stms) # rest
; (τ , css, cs, c, t, ob) ` (rest ′, pdg, cpu, bss) −stmt→ (rest ′′, pdg ′, cpu ′, bss ′, δ ′)
]] =⇒
(τ , css, cs, c, t, ob) `
(DurOrPDur (Dur (ExpTime expr) stms) # rest, pdg, cpu, bss)
−stmt→ (rest ′′, pdg ′, cpu ′, bss ′, δ ′) |

The next rule deals with the case when the duration statement body completes, that is it state with no
further statements or a singleton return statement. If the duration statement has already been evaluated
(i.e. it is a constant literal) or if the duration is ExecTime meaning the duration should be calculated, and
such a state is reached then the remainder of the program transition is calculuated, and the overall time
penalty calculated.

Stmt-Duration-Complete:
[[ dur = DurOrPDur (Dur value stms)
; value ∈ TimeConstDur ∪ {ExecTime}
; (τ , css, cs, c, t, ob) ` (stms, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ ′)
; rest ′= [] ∨ (rest ′= [Return (Some v)] ∧ v ∈ VDMValue)
; rest ′′= rest ′ • rest
; value 6= ExecTime −→ δ ≤ (value :: Time)
; (τ , css, cs, c, t, ob) ` (rest ′′, pdg ′, c ′, bss ′) −stmt→ (rest ′′′, pdg ′′, cpu ′′, bss ′′, δ ′)
; value 6= ExecTime −→ δ ′′= (value :: Time) + δ ′

; value = ExecTime −→ δ ′′= δ + δ ′

]] =⇒
(τ , css, cs, c, t, ob) `
(dur # rest, pdg, cpu, bss) −stmt→ (rest ′′′, pdg ′′, cpu ′′, bss ′′, δ ′′) |

The next rule deals with the situation when the duration statement can executed only partially, that
is the time elapsed is less than the time penalty for the whole body. This being the case the duration
statement becomes a partial duration statement specifying the time elapsed so far, the remain time, and
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the remaining body of the statement.

Stmt-Duration-to-PartialDuration:
[[ value ∈ TimeConstDur ∪ {ExecTime}
; (τ , css, cs, c, t, ob) ` (stms, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)
; hd(rest) /∈ range(Return)
; value 6= ExecTime −→ δ ≤ (value :: Time)
; rest ′′= [PDur value δ rest ′]
]] =⇒
(τ , css, cs, c, t, ob) `
(DurOrPDur (Dur value stms) # rest, pdg, cpu, bss) −stmt→ (rest ′′, pdg ′, cpu ′, bss ′, δ) |

The next rule deals with further transitions of a partial duration statement and is very similar to the
previous rule.

Stmt-Duration-Step-PartialDuration:
[[ value ∈ TimeConstDur ∪ {ExecTime}
; (τ , css, cs, c, t, ob) ` (stms, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)
; hd(rest :: Stm list) /∈ range(Return)
; value 6= ExecTime −→ δ ≤ ((value :: Time) − δe)
; rest ′′= [PDur value (δe + δ) rest ′]
]] =⇒
(τ , css, cs, c, t, ob) `
(DurOrPDur (PDur value δe stms) # rest, pdg, cpu, bss) −stmt→ (rest ′′, pdg ′, cpu ′, bss ′, δ) |

The final duration rule deals with the completion of a partial dureation statement when the body
transitions to a state where no further statements remain, or else only a return statement remains.

Stmt-Duration-Complete-PartialDuration:
[[ partialduration = DurOrPDur (PDur value δe stms)
; (τ , css, cs, c, t, ob) ` (stms, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)
; rest ′= [] ∨ (rest ′= [Return (Some v)] ∧ v ∈ VDMValue)
; rest ′′= rest ′ • rest
; value 6= ExecTime −→ δ ≤ ((value :: Time) − δe)
; (τ , css, cs, c, t, ob) ` (rest ′′, pdg ′, cpu ′, bss ′) −stmt→ (rest ′′′, pdg ′′, cpu ′′, bss ′′, δ ′)
; value 6= ExecTime −→ δ ′′= (value :: Time) + δ ′

; value = ExecTime −→ δ ′′= δ + δ ′

]] =⇒
(τ , css, cs, c, t, ob) `
(partialduration # rest, pdg, cpu, bss) −stmt→ (rest ′′′, pdg ′′, cpu ′′, bss ′′, δ ′′) |

The next three rules deal with iteration of a statement over an index range, over a sequence data structure,
and over a finite set, respectively. They all follow a similar structure: the bounds of the iteration are
calculated, a list of partial let defs is created – one for each instance of the iteration – giving values to
the internal variables, and the overall semantics for the resulting sequence of statements is calculated.

Stmt-ForIndex:
[[ forindex = ForIndex idv ef et eb stm
; (τ , css, cs, pdg, ob) ` [[ef ]] = Some (vf , δf )
; (τ , css, cs, pdg, ob) ` [[et]] = Some (vt, δt)
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; (τ , css, cs, pdg, ob) ` [[eb]] = Some (vb, δb)
; stms = [PartialLetDef [idv 7→ NumV v] [] stm

. n← [1..((vf :: int) − vt) + 1]
, n ∈ Nats
, v = (vf :: int) + (n ∗ (vb :: int))]

; (τ , css, cs, c, t, ob) ` (stms • rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)
; δ ′= δf + δt + δ + ForIndexTime
]] =⇒
(τ , css, cs, c,t ,ob) `
(forindex # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ ′) |

Stmt-ForSeq:
[[ (τ , css, cs, pdg, ob) ` [[seqExpr]] = Some (SeqV seq, δe)
; stms = [PartialLetDef σ [] stm. i← [0..<length seq], match(p, seq!i) = Some σ]
; (τ , css, cs, c, t, ob) ` (stms • rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)
; δ ′= δe + δ + ForSeqTime
]] =⇒
(τ , css, cs, c,t ,ob) `
(ForSeq p seqExp stm # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ ′) |

Stmt-ForSet:
[[ (τ , css, cs, pdg, ob) ` [[setExpr]] = Some (SetV setv, δe)
; stms = [PartialLetDef σ [] stm

. i← [0..<length(set2seq(setv))]
, match(p, (set2seq(setv))!i) = Some σ]

; (τ , css, cs, c, t, ob) ` (stms • rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)
; δ ′= δe + δ + ForSetTime
]] =⇒
(τ , css, cs, c,t ,ob) `
(ForSet p setExpr stm # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ ′) |

The cycles statement functions is giving a semantics in terms of the duration statement, with the appro-
priate time scale coefficient given by the executing CPU context.

Stmt-Cycle:
[[ (τ , css, cs, pdg, ob) ` [[e]] = Some (val, τ v)
; (val :: int) ≥ 0
; ti = convertCyclesToTime(val, cpu)
; dur = Dur (ExpTime (LitE (NumV ti))) [stm]
; (τ , css, cs, c, t, ob) ` (dur # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)
]] =⇒
(τ , css, cs, c,t ,ob) `
(Cycles e stm # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ) |

The next rule deals with definition of local variables in a let statement. The rule creates a partial let
definition from the given variable binding and the semantics of the latter is calculated.

Stmt-LetDef :
[[ stms = PartialLetDef Map.empty defs bdy # rest
; (τ , css, cs, c, t, ob) ` (stms, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)
; δ ′= δ + LetDefTime
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]] =⇒
(τ , css, cs, c, t, ob) `
(LetDef defs bdy # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ ′) |

Let-be-such-that functions much the same as a let, except that the variable value being declared is se-
lected non-deterministically through the use of the bind transition.

Stmt-LetBe:
[[ (τ , css, cs, c, t, ob) ` (bnd, pdg, cpu) −bind→ (ps, σ ′, δb)
; pdg ′= pdg(ob 7→ the(pdg(ob)) ++ σ ′)
; (τ , css, cs, pdg ′, ob) ` [[e]] = Some (TrueV, δe)
; stms = PartialLetDef σ ′ [] bdy # rest
; (τ , css, cs, c, t, ob) ` (stms, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)
; δ ′= δe + δb + δ + LetBeTime
]] =⇒
(τ , css, cs, c, t, ob) `
(LetBe bnd e bdy # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ ′) |

The next three rules deal with partial let definitions. When variables are declared locally their values
must be evaluated in the given context. Partial let defs are a semantic artefact that enable this. The
context is augmented step-by-step with the variable assignmens being made. The first rule shows how
a single local assignment is evaluated. Given a local variable idv, assigned expression e, and partially
evaluated let context σ, e is evaluated within the context of σ and the partial let context is updated with
the new evaluation.

Stmt-PartialLetDef-Step:
[[ partialletdef = PartialLetDef σ defs bdy
; (idv, e) = hd defs
; pdg ′= pdg(ob 7→ the(pdg(ob)) ++ σ)
; (τ , css, cs, pdg ′, ob) ` [[e]] = Some (v, δe)
; σ ′= σ(idv 7→ v)
; stms = PartialLetDef σ ′ (tl defs) bdy # rest
; (τ , css, cs, c, t, ob) ` (stms, pdg, cpu, bss) −stmt→ (rest ′, pdg ′′, cpu ′, bss ′, δ)
; δ ′= δe + δ
]] =⇒
(τ , css, cs, c, t, ob) `
(partialletdef # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′′, cpu ′, bss ′, δ ′) |

The next rule gives the case when a partial let def is fully evaluated – no further variable declarations
remain in the list. This being the case the inner body can be executed in the context of the evaluated vari-
able declarations. This rule is applicable only when the resulting state is not an empty list of statements
or a singleton return, which is dealt with by the next rule.

Stmt-PartialLetDef-Eval-Waiting:
[[ partialletdef = PartialLetDef σ [] bdy
; pdg ′= pdg(ob 7→ σ)
; (τ , css, cs, c, t, ob) ` ([bdy], pdg ′, cpu, bss) −stmt→ (rest ′, pdg ′′, cpu ′, bss ′, δ)
; rest ′ 6= [] ∧ (rest ′ 6= [Return -])
; pdg ′′′= (pdg ′′ |‘ (− {ob})) ++ (pdg |‘ {ob})
; σ ′= the (pdg ′′ ob)
; rest ′′= PartialLetDef σ ′ [] (SimpleBlock rest ′) # rest
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]] =⇒
(τ , css, cs, c, t, ob) `
(partialletdef # rest, pdg, cpu, bss) −stmt→ (rest ′′, pdg ′′′, cpu ′′, bss ′′, δ ′) |

The final partial let definition rule deals with when the inner body has completed; i.e. the resulting
statement list is empty or a return statement. This being the case the statements following the partial let
definition are executed.

Stmt-PartialLetDef-Eval-Complete:
[[ partialletdef = PartialLetDef σ [] bdy
; pdg ′= pdg(ob 7→ σ)
; (τ , css, cs, c, t, ob) ` ([bdy], pdg ′, cpu, bss) −stmt→ (rest ′, pdg ′′, cpu ′, bss ′, δb)
; rest ′= [] ∨ (rest ′= [Return (Some v)] ∧ v ∈ VDMValue)
; rest ′′= rest ′ • rest
; pdg ′′′= (pdg ′′ |‘ (− {ob})) ++ (pdg |‘ {ob})
; (τ , css, cs, c, t, ob) ` (rest ′′, pdg ′′′, cpu ′, bss ′) −stmt→ (rest ′′′, pdg ′′′′, cpu ′′, bss ′′, δ)
; δ ′= δb + δ
]] =⇒
(τ , css, cs, c, t, ob) `
(partialletdef # rest, pdg, cpu, bss) −stmt→ (rest ′′′, pdg ′′′′, cpu ′′, bss ′′, δ ′) |

The next two rules deal with variable assignments to local and remote variables. The first rule evaluates
the expression to be assigned, and updates the pending variable state associated with the object context.
The invariant of the associated class is also checked at this point using the checkInvs function on the
updated state.

Stmt-Assign-Local:
[[ (τ , css, cs, pdg, ob) ` [[e]] = Some (value, δe)
; σ ′= the(pdg(ob))(tgt 7→ value)
; pdg ′= pdg(ob 7→ σ ′)
; objects cpu ob = Some obje
; checkInvs(invs(the(css(class obje))), objstate obje ++ σ ′)
; (τ , css, cs, c, t, ob) ` (rest, pdg ′, cpu, bss) −stmt→ (rest ′, pdg ′′, cpu ′, bss ′, δ)
; δ ′= δe + δ + LocalAssignmentTime
]] =⇒
(τ , css, cs, c, t, ob) `
(Assignment (| asntarget = Inl tgt, asnexp = e |) # rest, pdg, cpu, bss)
−stmt→ (rest ′, pdg ′′, cpu ′, bss ′, δ ′) |

The second assignment rule deals with the case when the assignment is made to a variable in a different
object to the one where the assignment statement is located. In [28] this is a called ”remote assignment”,
however here we reserve the term “remote” for inter-CPU communication. The result of this rule is an
update to the pending state of the associated object.

Stmt-Assign-Nonlocal:
[[ (τ , css, cs, pdg, ob) ` [[e]] = Some (value, δe)
; σ ′= the(pdg(oid))(v 7→ value)
; pdg ′= pdg(oid 7→ σ ′)
; objects cpu ob = Some obje
; checkInvs(invs(the(css(class obje))), objstate obje ++ σ ′)
; (τ , css, cs, c, t, ob) ` (rest, pdg ′, cpu, bss) −stmt→ (rest ′, pdg ′′, cpu ′, bss ′, δ)
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; δ ′= δe + δ + NonlocalAssignmentTime
]] =⇒
(τ , css, cs, c, t, ob) `
(Assignment (| asntarget = Inr (oid, v), asnexp = e |) # rest, pdg, cpu, bss)
−stmt→ (rest ′, pdg ′′, cpu ′, bss ′, δ ′) |

The next four rules deal with atomic assignments, where several variables are assigned simultaneously.
The invariant need only hold when the whole assignment is completed. The first rule converts an atomic
assignment into a partial assignment.

Stmt-Atomic-Start:
[[ stmts = PartialAtomic assigns # rest
; (τ , css, cs, c, t, ob) ` (stmts, pdg, cpu, bss) −stmt→ (rest ′, pdg ′′, cpu ′, bss ′, δ ′)
]] =⇒
(τ , css, cs, c, t, ob) `
(Atomic assigns # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′′, cpu ′, bss ′, δ ′) |

The next rule is the base case for atomic assignments. Once all assignments have been made the
invariant is checked.

Stmt-PartialAtomic-Base:
[[ states = [oid 7→ objstate(the(objects cpu oid)) ++ the(pdg(oid))

| oid σ. (oid, σ) ∈m objects cpu]
; invars = [oid 7→ invs(the(css(objclass(the(objects cpu oid)))))

| oid. oid ∈ dom(objects cpu)]
; ∀ oid ∈ dom(objects cpu). checkInvs(the(invars(oid)), the(states(oid)))
; δ = AtomicTime
]] =⇒
(τ , css, cs, c, t, ob) `
(PartialAtomic [] # rest, pdg, cpu, bss) −stmt→ ([], pdg, cpu, bss, δ) |

The next two rules apply local and non-local assignments. They differ from the normal assignment
rules in that the invariant is not checked, as this is only done once all assignments in the atomic assign-
ment have been made.

Stmt-PartialAtomic-Local:
[[ length(assigns) ≥ 1
; hd(assigns) = Assignment.make (Inl tgt) expr
; (τ , css, cs, pdg, ob) ` [[expr]] = Some (value, δe)
; σ ′= the(pdg(ob)) ++ [tgt 7→ value]
; pdg ′= pdg ++ [ob 7→ σ ′]
; rest ′= PartialAtomic (tl assigns) # rest
; (τ , css, cs, c, t, ob) ` (rest ′, pdg ′, cpu, bss) −stmt→ (rest ′′, pdg ′′, cpu ′, bss ′, δ)
; δ ′= δe + δ + LocalAssignmentTime
]] =⇒
(τ , css, cs, c, t, ob) `
(PartialAtomic assigns # rest, pdg, cpu, bss) −stmt→ (rest ′′, pdg ′′, cpu ′, bss ′, δ ′) |

Stmt-PartialAtomic-Nonlocal:
[[ length(assigns) ≥ 1
; hd(assigns) = Assignment.make (Inr (ido, idv)) expr
; (τ , css, cs, pdg, ob) ` [[expr]] = Some (value, δe)
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; σ ′= the(pdg(ido)) ++ [idv 7→ value]
; pdg ′= pdg ++ [ido 7→ σ ′]
; rest ′= PartialAtomic (tl assigns) # rest
; (τ , css, cs, c, t, ob) ` (rest ′, pdg ′, cpu, bss) −stmt→ (rest ′′, pdg ′′, cpu ′, bss ′, δ)
; δ ′= δe + δ + NonlocalAssignmentTime
]] =⇒
(τ , css, cs, c, t, ob) `
(PartialAtomic assigns # rest, pdg, cpu, bss) −stmt→ (rest ′′, pdg ′′, cpu ′, bss ′, δ ′) |

The next rule deal with starting an object’s thread. The object must not already have a running thread,
and the object must have a non-periodic thread body. This being the case a new thread is created on the
current CPU.

Stmt-Start:
[[ ∀ thr ∈ ran(threads cpu). tcontext thr 6= obje
; Inl bdy = initial(the(css(class(the(objects cpu obje)))))
; cpu ′= createThread(cpu, obje, bdy)
; (τ , css, cs, c, t, ob) ` (rest, pdg, cpu ′, bss) −stmt→ (rest ′, pdg ′, cpu ′′, bss ′, δ)
; δ ′= δ + StartTime
]] =⇒
(τ , css, cs, c, t, ob) `
(Start obje # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′′, bss ′, δ ′) |

The next two rules deal with the execution of a context for an object operation call. Object contexts
exist to record the valuation of the state at the point that the execution of the operation began. They are
used to evaluate the postcondition at the conclusion of the operation. The first rule simply steps an object
context forward by stepping the encapsulated body, provided that the resulting program is not empty or
a singleton return.

Stmt-ObjectContext-Step:
[[ (τ , css, cs, c, t, oid) ` ([bdy], pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)
; rest ′ 6= [] ∧ hd(rest ′) /∈ range Return
; rest ′′= ObjectContext oid (SimpleBlock rest ′) cctx # rest
]] =⇒
(τ , css, cs, c, t, ob) `
(ObjectContext oid bdy cctx # rest, pdg, cpu, bss) −stmt→ (rest ′′, pdg ′, cpu ′, bss ′, δ ′) |

The second rule deals with the completion of the operation behaviour. When the body’s execution
yields an empty sequence or return the call context is extracted. This is then used to ensure that the
operation postcondition is satisfied. Assuming that is the case, the remaining behaviour is calculated.

Stmt-ObjectContext-Complete:
[[ (τ , css, cs, c, t, oid) ` ([bdy], pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)
; rest ′= [] ∨ (hd rest ′= Return (Some v) ∧ v ∈ range LitE)
; cctx = CallContext.make prepending argues (Some postc)
; checkCallPost(css, cs, oid, prepending, pending ′, argues, [v], postc)
; rest ′′= rest ′ • rest
; (τ , css, cs, c, t, ob) ` (rest ′′, pdg ′, cpu ′, bss ′) −stmt→ (rest ′′′, pdg ′′, cpu ′′, bss ′′, δ ′)
; δ ′′= δ + δ ′

]] =⇒
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(τ , css, cs, c, t, ob) `
(ObjectContext oid bdy cctx # rest, pdg, cpu, bss) −stmt→ (rest ′′′, pdg ′′, cpu ′′, bss ′′, δ ′′) |

The next four rules deal with operation calls, in their various varieties – asynchronous vs. synchronous
and local vs. remote. The first rule deals with the case of a synchronous local operation call to operation
opr on object oid with arguments argues. The result of the operation (if any) is assigned to tgt. The list
of arguments is first evaluated, and the specified operation is extracted from the object’s class definition.
The local state σ in which the operation will be executed is created by assigning the argument values to
their corresponding variables. The precondition of the operation is also checked against the parameter
values. An object context is then created for the operation by construction of a partial let definition for
local parameters and a call context to store the state at the beginning of the operation. A call block is
then constructed which adds a synchronous wait following the execution of the operation body. The
synchronous wait will be matched with a return statement later.

Stmt-Call-Op-Local-Sync:
[[ argsTimed = [(val, δe). a← argues, (τ , css, cs, pdg, ob) ` [[a]] = Some (val, δe)]
; argues ′= [val. (val, -)← argsTimed]
; ops(the(css(objclass (the (objects cpu oid))))) opr

= Some (Op.make - params retr bdy (Some prec) postc msr)
; σ = [p 7→ a | a i p. i ∈ {0..<length(argues ′)} ∧ a = argues ′!i ∧ params!i = (p, -)]
; checkCallPre(css, cs, pdg, argues ′, params, oid, prec)
; callContext = CallContext.make pdg σ postc
; partialLetDef = PartialLetDef σ [] (SimpleBlock bdy)
; objContext = ObjectContext oid partialLetDef callContext
; callBlock = [objContext, Wait tgt]
; stms = callBlock • rest
; (τ , css, cs, c, t, ob) ` (stms, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δr)
; δ ′= listsum [δe. (-, δe)← argsTimed] + δr + LocalSyncCallTime
]] =⇒
(τ , css, cs, c, t, ob) `
(SyncCall tgt (Inl (oid, opr)) argues # rest, pdg, cpu, bss)
−stmt→ (rest ′′, pdg ′′, cpu ′′, bss ′′, δ ′) |

For the case of a local asynchronous call a new thread is created containing a synchronous call to the
operation (which will in turn use the previous rule).

Stmt-Call-Op-Local-Async:
[[ opTgt = Inl (oid, opr)
; argsTimed = [(val, δe). a← argues, (τ , css, cs, pdg, ob) ` [[a]] = Some (val, δe)]
; argues ′= [val. (val, -)← argsTimed]
; ops(the(css(objclass (the (objects cpu oid))))) opr

= Some (Op.make True params retr bdy (Some prec) postc msr)
; cpu ′= createThread(cpu, oid, [DurOrPDur (Dur ExecTime [SyncCall None opTgt argues])])
; (τ , css, cs, c, t, ob) ` (stms, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′′, bss ′, δ)
; δ ′= listsum [δe. (-, δe)← argsTimed] + δ + LocalAsyncCallTime
]] =⇒
(τ , css, cs, c, t, ob) `
(AsyncCall opTgt argues # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′′, bss ′, δ ′) |

A remote asynchronous operation call requires the use of the message bus to convey the message to
the remote CPU (ccpu) where the object (oid) resides. This call information is first extrated from the
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call target. As before, the arguments are then evaluated, and the operation definition of opr is extracted.
The bus which links the local CPU c to the remote CPU ccpu is then calculated from the bus map bss.
A message is then constructed to convey the operation call, and this is appended to the queue for the
message bus. Finally the remaining behaviour is calculated, along with the overall time penalty.

Stmt-Call-Op-Remote-Async:
[[ opTgt = Inr (ccpu, oid, opr)
; argsTimed = [(val, δe). a← argues, (τ , css, cs, pdg, ob) ` [[a]] = Some (val, δe)]
; argues ′= [val. (val, -)← argsTimed]
; ops(the(css(objclass (the (objects cpu oid))))) opr

= Some (Op.make True params retr bdy (Some prec) postc msr)
; bss(bs) = Some (Bus.make ({ccpu, c} ∪ connectd) spd que)
; cmsg = CMessage.make oid opr argues ′None τ
; bss ′= bss(bus 7→ Bus.make ({ccpu, c} ∪ connectd) spd (que • [(ccpu, cmesg)]))
; (τ , css, cs, c, t, ob) ` (rest, pdg, cpu, bss ′) −stmt→ (rest ′, pdg ′, cpu ′, bss ′′, δ)
; δ ′= listsum [δe. (-, δe)← argsTimed] + δ + RemoteAsyncCallTime
]] =⇒
(τ , css, cs, c, t, ob) `
(AsyncCall opTgt argues # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′′, δ ′) |

A remote synchronous follows a similar form to the asynchronous call, but additionally has to handle
return messages. The remaining statement list for the thread is prepended with a semantic wait statement
indicating that the thread will resume when the target sends a return value. The call message is then
inserted into the correct bus, and the status of the current thread is set to waiting. The bus rules will take
care of resuming the threads execution when the operation returns.

Stmt-Call-Op-Remote-Sync:
[[ opTgt = Inr (ccpu, oid, opr)
; argsTimed = [(val, δe). a← argues, (τ , css, cs, pdg, ob) ` [[a]] = Some (val, δe)]
; argues ′= [val. (val, -)← argsTimed]
; ops(the(css(objclass (the (objects cpu oid))))) opr

= Some (Op.make True params retr bdy (Some prec) postc msr)
; rest ′= Wait (Some tgt) # rest
; bss(bs) = Some (Bus.make ({ccpu, c} ∪ connectd) spd que)
; cmsg = CMessage.make oid opr argues ′ (Some (c, t)) τ
; bss ′= bss(bus 7→ Bus.make ({ccpu, c} ∪ connectd) spd (que • [(ccpu, cmesg)]))
; cpu ′= changeThreadStatus(cpu, t, Waiting)
; δ ′= listsum [δe. (-, δe)← argsTimed] + RemoteSyncCallTime
]] =⇒
(τ , css, cs, c, t, ob) `
(SyncCall (Some tgt) opTgt argues # rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ ′) |

The final six statement rules deal with operations returning a value. The first deals with the case when
a return statement contains an expression which must be evaluated.

Stmt-Return-Eval:
[[ e /∈ VDMValue
; (τ , css, cs, pdg, ob) ` [[e]] = Some (retValue, δe)
; rest ′= Return (Some (LitE retValue)) # rest
; (τ , css, cs, c, t, ob) ` (rest ′, pdg, cpu, bss) −stmt→ (rest ′′, pdg ′, cpu ′, bss ′, δ)
; δ ′= δe + ReturnTime
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]] =⇒
(τ , css, cs, c, t, ob) `
(Return (Some e) # rest, pdg, cpu, bss) −stmt→ (rest ′′, pdg ′, cpu ′, bss ′, δ ′) |

The next rule consumes a proceeding statement if it is not a wait, and thus cannot be executed since it
comes after the return statement.

Stmt-Return-Eat:
[[ rest 6= []
; hd(rest) /∈ range Wait
; rest ′= Return v # tl(rest)
; (τ , css, cs, c, t, ob) ` (rest ′, pdg, cpu, bss) −stmt→ (rest ′′, pdg ′, cpu ′, bss ′, δ)
]] =⇒
(τ , css, cs, c, t, ob) `
(Return (Some e) # rest, pdg, cpu, bss) −stmt→ (rest ′′, pdg ′, cpu ′, bss ′, δ) |

The next rule is the base case, which applies when no further statements exist following the return.

Stmt-Return-Base:
[[ v ∈ VDMValue
; stms = [Return (Some v)]
]] =⇒
(τ , css, cs, c, t, ob) ` (stms, pdg, cpu, bss) −stmt→ (stms, pdg, cpu, bss, 0) |

The next rule deals with the case when a return is paired with a nil wait statement, that is one that does
not expect a return value. This being the case, execution simply resumes from after the wait.

Stmt-Wait-Nil:
[[ (τ , css, cs, c, t, ob) ` (rest, pdg, cpu, bss) −stmt→ (rest ′, pdg ′, cpu ′, bss ′, δ)
]] =⇒
(τ , css, cs, c, t, ob) `
([Return None, Wait None] • rest, pdg, cpu, bss) −stmt→
(rest ′, pdg ′, cpu ′, bss ′, δ) |

The next rule deals with the case when a return is paired with a wait holding a target, that is a variable
into which the return value should be placed. This being the case the thread pending state is updated so
that the variable points to the returned value.

Stmt-Return-Wait:
[[ σ ′= (the(pdg ob))(tgt 7→ litExprOf (v))
; pdg ′= pdg(ob 7→ σ ′)
; (τ , css, cs, c, t, ob) ` (rest, pdg ′, cpu, bss) −stmt→ (rest ′, pdg ′′, cpu ′, bss ′, δ)
]] =⇒
(τ , css, cs, c, t, ob) `
([Return (Some v), Wait (Some (Inl tgt))] • rest, pdg, cpu, bss)
−stmt→ (rest ′, pdg ′′, cpu ′, bss ′, δ) |

Stmt-Wait-Message-Return:
[[ tgt = (rc, rt)
; rmsg = RMessage.make [litExprOf (v)] tgt τ
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; bss(bus) = Some (Bus.make ({rc, c} ∪ connectd) spd que)
; bss ′= bss(bus 7→ Bus.make ({rc, c} ∪ connectd) spd (que • [(rc, Inr rmsg)]))
; (τ , css, cs, c, t, ob) ` (rest, pdg, cpu, bss ′) −stmt→ (rest ′, pdg ′, cpu ′, bss ′′, δ)
]] =⇒
(τ , css, cs, c, t, ob) `
([Return (Some v), Wait (Some (Inr tgt))] • rest, pdg, cpu, bss)
−stmt→ (rest ′, pdg ′, cpu ′, bss ′′, δ ′)

inductive vdmrt-dur-rel ::
Time × Classes × CPUs × cpu-id × thr-id × obj-id⇒
Stm list × Pending × CPU × Busses⇒
Stm list × Pending × CPU × Busses × Time⇒ bool (- ` - −dur→ - [60,0,60] 60) where

Duration-Eval:
[[ expr /∈ TimeConst
; (τ , css, cs, pdg, ob) ` [[e]] = Some (value, τ ′)
; bdy = DurOrPDur (Dur (ExpTime expr) stmts) # rest
; bdy ′= DurOrPDur (Dur (ExpTime (LitE value)) stmts) # rest
; (τ , css, cs, c, t, ob) ` (bdy, pdg, cpu, bss) −stmt→ (bdy ′, pdg ′, cpu ′, bss ′, δ)
]] =⇒
(τ , css, cs, c, t, ob) ` (bdy, pdg, cpu, bss) −dur→ (bdy ′, pdg ′, cpu ′, bss ′, δ) |

Duration-Step-to-PartialDuration:
[[ n ∈ TimeConstDur ∪ {ExecTime}
; n 6= ExecTime −→ δ ≤ n
; bdy = DurOrPDur (Dur n stms) # tail
; (τ , css, cs, c, t, ob) ` (stms, pdg, cpu, bss) −stmt→ (rest, pdf ′, cpu ′, bss ′, δ)
; bdy ′= DurOrPDur (PDur n δ rest) # tail
]] =⇒
(τ , css, cs, c, t, ob) ` (bdy, pdg, cpu, bss) −dur→ (bdy ′, pdg ′, cpu ′, bss ′, δ) |

Duration-Step-PartialDuration:
[[ n ∈ TimeConstDur ∪ {ExecTime}
; n 6= ExecTime −→ δ ≤ n − δe

; bdy = DurOrPDur (PDur n δe stms) # tail
; (τ , css, cs, c, t, ob) ` (stms, pdg, cpu, bss) −stmt→ (rest, pdf ′, cpu ′, bss ′, δ)
; bdy ′= DurOrPDur (PDur n (δe + δ) rest) # tail
]] =⇒
(τ , css, cs, c, t, ob) ` (bdy, pdg, cpu, bss) −dur→ (bdy ′, pdg ′, cpu ′, bss ′, δ)

inductive vdmrt-cpu-rel ::
Time × Classes × CPUs × cpu-id⇒
CPU × Busses⇒
CPU × Busses × Time⇒ bool (- ` - −cpu→ - [60,0,60] 60) where

CPU-Pending:
[[ cpu = CPU.make objs thrs spd
; t ∈ dom(thrs)
; the(thrs(t)) = Thread.make Running pdg ob bdy
; (τ , css, cs, c, t, ob) ` (bdy, pdg, cpu, bss) −dur→ (bdy ′, pdg ′, cpu ′, bss ′, δ)
; dbody (durOf (hd bdy ′)) = []
; thrs ′= thrs(t 7→ Thread.make ThrPending pdg ′ ob bdy ′)
; cpu ′′= CPU.make objs thrs ′ spd
]] =⇒
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(τ , css, cs, c) ` (cpu, bss) −cpu→ (cpu ′′, bss ′, δ) |
CPU-Running:
[[ cpu = CPU.make objs thrs spd
; t ∈ dom(thrs)
; the(thrs(t)) = Thread.make Running pdg ob bdy
; (τ , css, cs, c, t, ob) ` (bdy, pdg, cpu, bss) −dur→ (bdy ′, pdg ′, cpu ′, bss ′, δ)
; dbody (durOf (hd bdy ′)) 6= []
; thrs ′= thrs(t 7→ Thread.make Running pdg ′ ob bdy ′)
; cpu ′′= CPU.make objs thrs ′ spd
]] =⇒
(τ , css, cs, c) ` (cpu, bss) −cpu→ (cpu ′′, bss ′, δ)

inductive vdmrt-cpus-rel ::
Time × Classes⇒
CPUs × Busses⇒
CPUs × Busses × enat⇒ bool (- ` - −cpus→ - [60,0,60] 60) where

CPUs-Base:
(τ , css) ` (Map.empty, bss) −cpus→ (Map.empty, bss,∞) |

CPUs-Step:
[[ c ∈ dom(cs)
; the(cs(c)) = cpu
; (τ , css, cs, c) ` (cpu, bss) −cpu→ (cpu ′, bss ′, elapsd)
; (τ , css) ` (cs |‘ {c}, bss ′) −cpus→ (css ′′, bss ′′, τ b)
; cpus ′′′= cpus ′′(c 7→ cpu ′)
; τ b

′= min elapsd τ b
]] =⇒
(τ , css) ` (cs, bss) −cpus→ (css ′′′, bss ′′, τ b

′)

inductive vdmrt-bus-rel ::
Time × Classes⇒
Bus × CPUs⇒
Bus × CPUs⇒ bool (- ` - −bus→ - [60,0,60] 60) where

Bus-Base:
[[ queue bus = (c, msg) # queue ′

; τ < arrivalTime (Bus.speed bus) msg
]] =⇒
(τ , css) ` (bus, cs) −bus→ (bus, cs) |

Bus-Call:
[[ queue bus = (c, msg) # queue ′

; τ ≥ arrivalTime (Bus.speed bus) msg
; msg = Inl (CMessage.make ido opr argus replto sendTim)
; ido ∈ dom(objects (the(cs(c))))
; cpu ′= createThread (cpu, ido, [DurOrPDur

(Dur
(ExpTime (LitE (NumV 0)))
[SyncCall (replto >>= Some ◦ Inr)

(Inl (ido, opr))
(map LitE argus)])])

; cs ′= cs(c 7→ cpu ′)
; bus ′= Bus.make (Bus.cpus bus) (Bus.speed bus) queue ′

; (τ , css) ` (bus ′, cpus ′) −bus→ (bus ′′, cpus ′′)
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]] =⇒
(τ , css) ` (bus, cs) −bus→ (bus ′′, cs ′′) |

Bus-Return:
[[ queue bus = (c, msg) # queue ′

; τ ≥ arrivalTime (Bus.speed bus) msg
; msg = Inr (RMessage.make values replto sendTim)
; replto = (c, t)
; c ∈ dom(cs)
; the(cs(c)) = CPU.make objs thrs spd
; t ∈ dom(thrs)
; the(thrs(t)) = Thread.make Waiting pdg ctxt bdy
; bdy = DurOrPDur (Dur τ d stms) # remainder
; stms ′= insertReturn(stms, Return vals)
; bdy ′= DurOrPDur (Dur τ d stms ′) # remainder
; thr ′= Thread.make Runnable pdg ctxt bdy ′

; thrs ′= thrs(t 7→ thr ′)
; cs ′= cs(c 7→ CPU.make os thrs ′ spd)
; bus ′= Bus.make (Bus.cpus bus) (Bus.speed bus) queue ′

; (τ , css) ` (bus ′, cs ′) −bus→ (bus ′′, cs ′′)
]] =⇒
(τ , css) ` (bus, cs) −bus→ (bus ′′, cs ′′)

inductive vdmrt-busses-rel :: VDMRT ⇒ VDMRT ⇒ bool (infix −busses→ 60) where
Busses:
[[ b ∈ dom(bss); the(bss(b)) = bus
; (τ , css) ` (bus, cs) −bus→ (bus ′, cs ′)
; bss ′= bss |‘ {b}
; VDMRT.make cs ′ bss ′ τ cls −busses→ VDMRT.make cs ′′ bss ′′ τ cls
; bss ′′′= bss(b 7→ bus ′)
]] =⇒
VDMRT.make cs bss τ cls −busses→ VDMRT.make cs ′′ bss ′′′ τ cls |

Busses-Base:
VDMRT.make cs Map.empty τ cls −busses→ VDMRT.make cs Map.empty τ cls

inductive vdmrt-exec-rel :: VDMRT ⇒ (VDMRT × Time)⇒ bool (infix −exec→ 60) where
Exec:
(τ , css) ` (cs, bss) −cpus→ (cs ′, bss ′, τ b) =⇒
VDMRT.make cs bss τ css −exec→ (VDMRT.make cs ′ bss ′ τ css, τ b)

inductive vdmrt-rel :: (VDMRT × Time)⇒ (VDMRT × Time)⇒ bool (infix−vdmrt→ 60) where
Big-Step:
[[ vdmrt1 = commitPendingValuesAndUpdateTime(vdmrt, τ)
; vdmrt1 −busses→ vdmrt2
; vdmrt3 = createPeriodicThreads(vdmrt2)
; vdmrt4 = doContextSwitches(vdmrt3)
; vdmrt4 −exec→ (vdmrt5, τ b)
; τ b

′= min τ b (minPendingCommitTime(vdmrt5))
]] =⇒ (vdmrt, τ) −vdmrt→ (vdmrt5, τ b

′)
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